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Abstract—Particle Swarm Optimization uses noisy histori-
cal information to select potentially optimal function samples.
Though information-theoretic principles suggest that less noise
indicates greater certainty, PSO’s momentum term is usually both
the least informed and the most deterministic. This dichotomy
suggests that while momentum has a profound impact on swarm
diversity, it would benefit from a more principled approach. We
demonstrate that momentum can be made both more effective
and better behaved with informed feedback, and that it may
even be completely eliminated with proper application of more
straightforward and well-behaved diversity injection strategies.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is a stochastic hill-
climbing algorithm especially suitable for use in continuous
domains. At its most basic, it initializes several “particles”
with random positions and velocities in a limited region within
the function’s domain. This region is known as the “feasible
rectangle”, generally assumed to contain the global optimum.
Each particle samples the function at its current position,
examines the findings of its neighbors, and applies simple
rules to reposition itself. This procedure is then repeated [1].
Particles maintain a modest amount of state including velocity,
best known position, and best known function value. Addi-
tional state requirements can be found in the many published
adaptations to the basic algorithm.

An effort has been made to codify a standard variant of
PSO to be used as a baseline comparison for ongoing research
[2]. In our experience, this “Standard PSO” can be very effec-
tive when carefully implemented. It uses a static, minimally-
connected, symmetric “ring” topology with a swarm of 20
particles: each has exactly two neighbors. Other topologies
are possible1, including the popular fully-connected “star”
topology at the other extreme, but the ring topology is simple
and efficient [2].

The basic behavior of a single standard particle is described
by the following update equations [1], [6], [2]:

vt+1 = χ (vt + φpU ◦ (pt − xt) + φgU ◦ (gt − xt)) (1)
xt+1 = xt + vt+1 (2)

where φp = φg = 2.05 are the “cognitive” and “social”
coefficients [7], each U is a distinct vector whose elements

1Indeed, the number of possible topologies grows exponentially with swarm
size, and topology studies were popular in PSO publications for several years,
including dynamic approaches [3], [4], [5].

are independently drawn from a standard uniform distribution
for each use, and ◦ represents element-wise multiplication. The
constriction coefficient is typically χ ≈ 0.72984 [6], [2].

Particles update their positions based on their own history
and that of their neighbors. This is embodied in p, the location
of the particle’s best historical fitness, and g, the location of
the best historical fitness among its neighbors.

A common variant of (1) makes use of an inertia weight:
a coefficient ω that controls the momentum term directly in
place of the more broadly applied constriction χ [8]:

vt+1 = ωvt + φpU ◦ (pt − xt) + φgU ◦ (gt − xt) . (3)

Though possessing different analysis characteristics, these for-
mulations are trivially reducible to one another, e.g., letting
ω = 0.72984 and φp = φg ≈ 1.5 produces an equation that is
equivalent to (1) with χ = 0.72984 and φp = φg = 2.05.

The coefficient ω is typically between 0.4 and 1.0, though
values close to 1.0 can cause divergence. When constriction
values are not used (a departure from Standard PSO), the
inertia weight is often decreased linearly during optimization
[9].

Occasionally the velocity update is expressed in two parts,
making the notation more convenient to manipulate:

at+1 = φpU ◦ (pt − xt) + φgU ◦ (gt − xt)

vt+1 = ωvt + at+1 .

Although the inertia weight formulation can be equivalent
to standard PSO, its coefficients are typically less tightly
interrelated; it is therefore easy to choose values that cause
divergence. Thus, v is subject to a per-dimension maximum
Vmax, used to clip each element of v whose absolute value is
too large before calculating x. The elements of Vmax are often
set to the corresponding side lengths of the feasible rectangle.

While simple, the particle update in (3) exhibits complex
and effective optimization behavior when applied to a swarm.
It has the added benefit of being relatively straightforward to
implement, though setting the free parameters properly for a
given optimization task can at times be tedious and error-prone.
To this end, some effort has been devoted to reducing the
sensitivity of PSO to its various parameter settings, generating
reasonable behavior on interesting classes of functions while
reducing the configuration burden on the optimization practi-
tioner [3], [10], [11].



Encouraging progress has been made in this regard, but
despite many efforts to similarly improve the situation for ω,
it continues to be a fairly opaque and sensitive parameter. More
importantly, however, and the focus of this work, is that the
highly influential momentum term is very much unlike the
others when considering information and determinism.

We examine the use of momentum in PSO in light of basic
principles of information theory, specifically that determinism
is usually directly proportional to confidence, and that highly
confident influences should therefore arise from high-quality
information. In contrast, PSO’s momentum term is typically
both more confidently applied and less directly informed than
its peers. We explore preliminary results that suggest that
PSO can benefit from either better informing momentum or
replacing it completely with other diversity enhancements.

II. RELATED WORK

The coefficient ω has long been viewed as a means of
controlling swarm exploration and diversity [12], [13], [14]. It
is, however, difficult to predict how changing ω will impact
swarm behavior on any given function. Numerous attempts
have been made to improve the situation [12], [15], [16], and
these generally fall into one of several classes:

- Constant inertia,
- Linearly decreasing or increasing inertia,
- Nonlinearly decreasing or increasing inertia,
- Random inertia of various kinds,
- Self-optimizing inertia, and
- All conceivable combinations of the above [16].

For any given problem set or research endeavor, one of these
will be the most effective, but there no generally useful ranking
[14], [16]; momentum remains somewhat opaque.

A. Bare Variants

An early, classic analysis of particle behavior led to the
“Bare Bones” PSO [17], a method that simply samples from
a distribution centered on the average of p and g. This work
did not produce the leading method for moving particles in
a swarm, nor did it become the standard approach, but it
basically works, and the idea of it has some interesting conse-
quences. First, it dispenses with velocity (and thus momentum)
entirely, directly moving particles to the region most likely to
be promising given the information available in p and g:

xt+1 ∼ N
(
1

2
(p + g), I‖p− g‖22

)
(4)

This approach of sampling a position from a Normal distribu-
tion is elegant and intuitive, and works surprisingly well for
having stripped off so many algorithmic features from the con-
temporary state of the art, including momentum. Momentum
is missing from other notable algorithmic variants, as well,
including the spherical uniform update strategy proposed with
TRIBES [3], and HPSO-TVAC, where momentum is omitted
in favor of alternate forms of diversity injection [13].

PSO can clearly function without momentum, but the large
volume of literature following Bare Bones, including standard
PSO itself, appears to argue strenuously for its retention.
Momentum has an undeniable impact on swarm effectiveness,
but it is hard to reason about, hard to control, and from a
purely information-theoretic point of view, hard to motivate.

B. Dynamic Tuning

Practically speaking, a lack of grounding in information
theory is not in itself a fatal problem. It is, however, not the
only problem with momentum. Momentum is also hard to tune.
This simple fact may go a long way toward explaining why the
simplest inertia weight strategies, though sometimes improved
upon by other more complex or even principled methods,
remain the most popular: they are easier to understand, more
straightforward to implement, and typically employ fewer
tuning parameters.

The tedium and uncertainty inherent in tuning evolutionary
algorithms, PSO included, has been the subject of many papers.
Basic PSO has several free parameters, all of which can have
a dramatic impact on performance. Among them are

φg : The social coefficient,
φp : The cognitive coefficient,

Vmax : The maximum speed in each dimension,
ω : The inertia weight,
N : The number of particles in the swarm,

And, of course, the swarm’s topology.

To address swarm size and topology, Clerc invented
TRIBES [3], a brilliant (if somewhat hard to follow without al-
ternate exposition, e.g., [4]) approach to dynamically adjusting
swarm size and topology based on current swarm performance.
This method is comparatively nontrivial to implement and
never achieved great popularity, but it is very effective and
removes the considerations of both swarm size and topology
simultaneously: the swarm starts out small and grows or
shrinks as needed while adjusting information links between
particles based on performance.

PSO, especially when applied to multi-modal functions, is
known to benefit from supplemental mechanisms that increase
swarm diversity at appropriate times (e.g., SEPSO [18], [19]
or ARPSO [20]). Though useful, such mechanisms necessarily
increase the number of tuning parameters. The Contracting
Radius Increasing Bounce SEPSO (CRIBS) and similar algo-
rithms represent approaches to diversity that make performance
less sensitive to these parameterizations by adapting them
dynamically, using swarm behavior to inform parameter adap-
tations over time [10]. This not only improves performance of
the underlying mechanisms, but also relieves the practitioner
of the need to think carefully about initial settings: the swarm
will adapt and quickly recover from poor settings, allowing
optimization to proceed succesfully.

In a similar spirit, the Simple Adaptive Cognition (SAC)
algorithm dynamically adjusts φg and φp over time using
swarm behavior feedback, and improves performance of mul-
tiple kinds of swarm algorithms on a variety of functions [11].

It seems evident that the concept of informed feedback
is a powerful one: if a swarm can adapt its own parameters
based on information gained from the task at hand, it stands
to reason that it should behave more consistently and robustly.
This is, in fact, what is observed when applying feedback-
driven parameter adaptation via TRIBES, CRIBS, and SAC. It
would be useful to apply this principle to the inertia weight.



III. THE TROUBLE WITH MOMENTUM

The major ideas in Section II, specifically omitting momen-
tum and/or finding a way to tune it more or less automatically,
are more closely related than they first appear.

In (3) we see that each particle is acting on uncertain
information: it determines the most likely candidates for good
fitness by noisily combining its own history with that of its
neighbors, encoded in φp and φg , respectively. This added
noise represents uncertainty inherent in the sparse informa-
tion available about the fitness function while simultaneously
restricting the next region of exploration to one that is the most
informed. In contrast, the momentum term popularly enjoys a
deterministic status; it is certainly always influential.

When momentum is not deterministic, as in one of the
early adaptations that selected it randomly from the interval
[0.5, 1.0) [12], [14], [16], the added noise is not usually
informed. Whatever momentum’s level of determinism, the
quantity of information on which it is based is generally small.

The notation of (3) is well-suited to implementation, but a
formulation in terms of random variables will be more helpful
here. Consider the following equivalent formulation:

Pt+1 ∼ U [0, φp(pt − xt)] (5)
Gt+1 ∼ U [0, φg(gt − xt)] (6)
vt+1 = ωvt + Pt+1 + Gt+1 (7)

Here, P and G are sampled from a multivariate uniform
distribution over independent variables bounded by a hyper-
rectangle. These are then used to produce a new velocity.

The idea of rewriting the equation in terms of distributions
can be taken still further, since it is a well-known statistical
result that obtaining the sum of two samples from two inde-
pendent distributions is the same as taking a single sample
from the convolution of those distributions. More concretely,
adding samples from P and G is the same as sampling from a
single distribution C[a,b] ≡ U[0,a] ?U[0,b] obtained from
convolving the two uniforms:

Θt+1 ∼ C [φp(pt − xt), φg(gt − xt)] (8)
vt+1 = ωvt + Θt+1 . (9)

An example of one such convolution is depicted in Figure 1.

Keep in mind that this is exactly the same update as before,
merely differently perceived. Figure 1 also lends some intuition
to Bare Bones PSO and its use of a Gaussian distribution
centered on a point between p and g; another well-known
statistical result indicates that contributing additional uniform
distributions to the convolution (as would be the case in, e.g.,
a “Fully-Informed” particle swarm [21]) would cause it to
approach a Gaussian distribution.

The roughly pyramid-shaped distribution C represents
information about promising areas of the fitness function’s
domain. The C distribution attempts to capture both this
information and the inherent uncertainty in not yet having
sampled every possible location.

There are, of course, ways in which this distribution can be
justifiably critiqued. For example, the mode of C is centered
on the midpoint between φp(p − x) and φg(g − x). When
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Fig. 1. The convolution of U [(0, 0), (30, 20)] and U [(0, 0), (10,−10)].
By convention, the particle is located at (0, 0) for any such distribution.

these point in opposite directions, it “compromises” in an
overly naive way that lends weight to areas of the space that
neither vector indicates. This may explain why the Simple
Adaptive Cognition (SAC) method is successful: it gives more
weight to the vector that has the most recent update, skewing
this distribution toward the most promising information [11].
Even without SAC, however, disagreeing vectors cause the
probability to spread out more, sensibly (though somewhat
arbitrarily) encoding the uncertainty inherent in disagreement.

But again, the momentum term represents a quandary. It
effectively shifts the distribution C by an amount related to
the particle’s current velocity, and it does so with a great
deal of confidence, regardless of whether this shift agrees with
acquired data or not. Indeed, it does not arise directly from
observed data at all. This momentum shift is, in a very real
sense, the most influential determiner of the new velocity; far
from informing C about potential regions of interest, it simply
moves the distribution somewhere else.

Of course, to claim that even standard momentum is com-
pletely deterministic is a bit of an overstatement, as it inherits
uncertainty from the previous velocity calculation and, by
extension, from all previous velocity calculations in its history.
There is, however, no clear reason that a particle’s current
velocity should have more certainty than newly-acquired data
about locations of good fitness, and it is easy to imagine a
great many reasons why it should not.

All of this leads to the critical question of what might
be done instead. On the one hand, the determinism enjoyed
by momentum raises some questions that make adding noise
an obvious thing to try, but prior attempts at adding noise
have not produced a clear winner. To answer this difficulty, we
observe that the problem is not merely certainty, but the lack
of information from which a more correct level of certainty
might be derived. Blind attempts to merely suppress certainty
(e.g., through randomization [12]) are therefore every bit as
difficult to tune as the original algorithm: the level of desired
certainty (and thus the characteristics of any added noise) is not
tied to real information and is therefore impossible to guess. To
improve the situation, we take inspiration from feedback-based
auto-tuning historically applied to other PSO update terms.



Parabola (Sphere): (−50, 50) fc(x) = ‖x− c‖22

Ackley: (−5, 5) fc(x) = 20 + e− 20 exp

(−‖x− c‖2
5
√
D

)
− exp

(
1

D

D∑
i=1

cos 2π(xi − ci)
)

Rastrigin: (−5.12, 5.12) fc(x) = ‖x− c‖22 + 10
D∑

i=1

1− cos(2π(xi − ci))

Rosenbrock: (−100, 100) fc(x) =

D−1∑
i=1

100
(
(xi+1 − ci+1)− (xi − ci)2

)2
+ (xi − ci − 1)

2

TABLE I. BENCHMARK FUNCTIONS, WITH ASSOCIATED PER-DIMENSION INITIALIZATION BOUNDS AND OFFSET VECTOR c.

IV. INFORMING MOMENTUM

Feedback cannot be useful without a connection to the
parameter it adapts. An illustrative example of this is the SAC
adaptation to PSO. The idea behind SAC is that newer in-
formation is better information; all else being equal, a particle
favors moving toward locations that have been discovered more
recently over those that were discovered long ago:

vt+1 = ωvt + γt−tpφpU ◦ (pt − xt)

+ γt−tgφgU ◦ (gt − xt) .
(10)

Here, the social and cognitive terms are selectively suppressed
by adaptation factor γ ≈ 0.99, adjusted by the time since the
last local update tp and the last neighborhood update tg . As
these terms are fundamental to all PSO algorithms, this can be
applied nearly universally with good results [11].

This simple adaptation causes PSO to behave more con-
sistently, possibly because in suppressing the extent of one or
more uniform distributions, it can also sharpen the peak of
the convolution C (adding informed certainty). Furthermore,
it has the convenient property that it reverts to the standard
formulation of (3) not only when γ = 1 but also any time
an update of the best known locations occurs (allowing it
to continue performing as well as standard PSO on “easy”
functions like “Parabola”, where updates are frequent).

This sort of feedback is easy to justify because it is
closely tied to particle behavior: at each step, an assumption
is made that favorable regions tend to be close to other
favorable regions, and the particle attempts to explore in that
vicinity. Furthermore, because updates only occur when a
better location is discovered, a newer update is likely to be in
a more promising area: parameter and feedback are connected.

The principle of informed feedback also applies to
diversity-increasing techniques, as exemplified in the Contract-
ing Radius Increasing Bounce SEPSO (CRIBS) algorithm,
summarized here in preparation for a discussion of alterna-
tive momentum strategies. The basic Spatial Extension PSO
(SEPSO) endows particles with volume and causes them to
bounce off of one another. CRIBS adapts both particle radius
and bounce distance as more collisions occur [10]. A collision
is detected for particle i when the following is satisfied:

∃j 6=i.‖xi − xj‖ < (βbi + βbj )r (11)

typically with β = 0.9, r one tenth the length of the feasible
rectangle’s longest diagonal, and b the number of times a
particle has experienced a collision. Note that letting r = 0
restores standard non-bouncing behavior. Like SAC, this al-
gorithm automatically approaches standard PSO behavior: the
radius r is adjusted toward 0 after each collision.

With the detection of each collision, the calculated veloc-
ities and positions of the corresponding particles are modified
thus before being used to generate a new fitness sample:

vt+1 ⇐ −vt+1 (12)
xt+1 ⇐ xt − β−b(xt+1 − xt) . (13)

Again, this kind of feedback is easy to justify: a particle
that is consistently colliding with other particles indicates
that there is consensus that the region contains something
worth sampling. The radius contracts and the bounce distance
increases so that increasingly rare bounces are also more
exploratory. Furthermore, while particles may begin with large
r and bounce frequently, they rapidly become smaller and
collide less frequently. This allows the practitioner to be
somewhat more cavalier about initial parameter settings.

Ideally, similar kinds of feedback would apply to mo-
mentum, allowing it to adjust automatically to the current
function. The core question is this: what can be measured that
meaningfully connects the current swarm state to the previous
trajectory? In the case of φg and φp, the update age at least
provides an obvious and useful proxy for information quality.
In the case of CRIBS, each collision means that the level of
detail should increase. For ω, there is nothing quite so obvious.

A. Feedback for Momentum

One class of techniques that can be applied to momentum
is stochastic learning. The basic premise is to allow momentum
to take a random walk, nudging it toward values that corre-
late with past performance. For example, keeping track of a
time-weighted average of ω values for which a new swarm-
global best is found, one might favor that average over time,
eventually converging to a suitable value for the current task.

Several variations on this theme have been proposed with
varying levels of consistency and success [16]. Our own at-
tempts produced mixed results not effective enough to warrant
the additional algorithmic and tuning complexity. A software
bug, however, led to a discovery: some variants of PSO, par-
ticularly those with added diversity such as CRIBS, appear to
work well with ω = 0. This is not only consistent with results
elsewhere [13], but is generally suggestive that momentum as
a means of controlling exploration is not something to be taken
for granted, and it may not be needed as often, or even at all.

Armed with the feedback principles and examples above,
we now outline new strategies for momentum and demonstrate
their behavior on the common benchmarks in Table I. In
all cases, Standard PSO is used as the baseline, not only



because it is standard [2], but also because it is effective on
a broad class of functions. SAC and CRIBS, when indicated,
are implemented as previously described. All graphs show an
average of 20 runs.

Where Standard PSO is indicated, the adaptive and diver-
sity constants that govern SAC and CRIBS, respectively, are
disabled with γ = 1.0 and r = 0.0. The baseline constriction
settings are φp = φg = 1.5 and ω = 0.72984. Where SAC
is indicated, γ = 0.99, and where CRIBS is indicated, r is
one-tenth the longest diagonal of the feasible rectangle.

B. Informed Truncation of Momentum

Zero momentum can be effective [17], but is still less effec-
tive in general than Standard PSO (unless additional diversity
mechanisms are employed, as we will see later). Perhaps, then,
the balance between exploration and exploitation is not found
in the relative strengths of the momentum term and its peers,
but in a compromise bewteen zero momentum and non-zero
momentum. Viewed in that way, is it possible to predict when
momentum is useful and cut it off selectively when it is not? To
answer this question, we must first discover what information
can appropriately be used to make such a determination.

The most immediate and salient information available to a
particle at any time is the location of the best known values
in its own history and among its neighbor(s). The “Random
Momentum Truncation” algorithm that follows is an outgrowth
of the following reasoning: if momentum is taking a particle
away from the location that would otherwise be chosen without
it (high-probability regions of C), then it should generally be
cut off. If, on the other hand, a particle’s momentum more
or less agrees with the information at hand, then it should
be allowed to have some influence. Coarsely, momentum is
only assumed to be useful when it points toward p and g. In
keeping with the stochastic nature of PSO, truncation is applied
randomly, utilizing a Bernoulli trial where the probability of
truncation τ is taken from the strength of disagreement, thus2:

τt+1 = min{0,−ât+1 · v̂t} . (14)

If the trial with probability τt+1 is successful, ω = 0 for the
calculation of vt+1, otherwise it assumes its normal value.
Thus, ω can be truncated to zero if vt is not pointing toward
at+1, the sample from C. The stronger the evidence against
momentum, the more likely that it will be truncated. Note
that, in contrast with earlier methods that merely add noise
to momentum, this approach adds asymmetric adaptive noise,
based on what the information at hand indicates is appropriate.

The result of this operation is shown in Figure 2, where the
lines with the “-R” suffix indicate the application of random
momentum truncation as described above. It is noteworthy that
with the exception of Rastrigin, none of the applied methods
are failing; they all find the global optimum. In the case of
Rastrigin, however, the methods exhibit distinct behavior, but
none of the approaches are succeeding. Interestingly, when
looking at those functions where PSO succeeds, the gains
reported in the published description of SAC are still present
by the end of a session, but the effect of momentum truncation
is even more pronounced.

2â = a/‖a‖2, the unit-length vector pointing in the same direction as a.

Unsurprisingly, swarm behavior on Rosenbrock is less
consistent and on Rastrigin it suffers from stagnation. As both
of these are multi-modal functions that are typically prone
to premature convergence, an informed diversity-enhancing
method like CRIBS is prescribed.

Adding swarm diversity produces a new set of interesting
results shown in Figure 3. Here the SAC lines have been
removed, as the effects are not significant enough compared
to those of random truncation to warrant the added visual
noise. Not unexpectedly, the convergence of the swarm on
some of the easier functions has slowed, but the effect of
this is mitigated where random truncation is employed; it
appears to have retained more of its ability to seek minima
in spite of the artificial injection of diversity that comes
from particle bouncing. Apparently two diversity injection
mechanisms working at full capacity (momentum + CRIBS)
is one too many, and suppression of momentum is helping
convergence. Progress on Rosenbrock has also slowed, but
again much less with random truncation than without.

Also unsurprising is the fact that Rastrigin responds well to
the extra injection of diversity. Importantly, in all cases random
truncation represents a measurable improvement over the best
results achieved and in the speed of obtaining them. Any gains
on Rastrigin are modest at best, but the addition of randomly
truncated momentum is certainly not harmful.

The use of random truncation is also interesting for its
tuning properties. PSO momentum has a significant impact on
swarm exploration, but it is hard to adjust it to affect explo-
ration directly and predictably. With that in mind, consider the
following table showing the frequency with which a particle’s
normalized velocity vt has a positive dot product with the
normalized at+1:

Standard Standard-R
Parabola 0.005 0.017
Ackley 0.005 0.021
Rastrigin 0.002 0.008
Rosenbrock 0.005 0.017

Besides the fact that agreement is uncommon in general,
it is notable that random truncation significantly increases its
frequency, providing a potentially more direct tuning method-
ology for swarm exploration than can be achieved with the
inertia weight alone. For example, one might choose to directly
and predictably increase exploration by triggering truncation
when the dot product falls below −0.1 instead of 0.

C. No Momentum

Removing momentum altogether in a diversity-enhanced
environment (Standard PSO with CRIBS and SAC) is an
interesting exercise that is not without precedent [13], though
such results have not necessarily received deserved attention.
This may be due to the fact that, without the diversity
enhancements, zero momentum fares so poorly as to not
merit further experimentation. When used in conjunction with
diversity injection, however, some intriguing results emerge.
Consider Figure 4. Here we see these four variations of PSO:

- Standard-R: The Standard PSO algorithm from be-
fore, with CRIBS, SAC, and Random Truncation
applied.
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Fig. 2. Random truncation compared with standard PSO, with and without SAC applied.
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- Standard-Zero: The same algorithm, but with ω = 0.
- Zero: The same as Standard-Zero, but with pre-

constriction values φg = φp = 2.05, set higher to
aid in exploration.

- Zero-Neg: The same as Zero, but with a simple twist
on the way that U is used, described below.

In these graphs, we use “Standard-R” as the baseline, and
compare it with various ways of removing momentum from
a swarm. Let us ignore “Zero-Neg” for the moment.

The behavior of omitting momentum on the Parabola
function is not surprising. It is convex and therefore most
exploration effort is wasted: there is a perfect inverse corre-
lation between distance to the optimum and fitness. Though
Ackley is not convex, once the neighborhood of the optimum
is discovered it exhibits this behavior as well. Zero momentum
apparently works reasonably well on easy (or the easy part of)
functions, consistent with results published elsewhere [13].

In the case of Rosenbrock, removing momentum altogether
appears to harm the swarm’s efficiency, but not in all cases,
and not definitively; the swarm continues to progress and
successfully finds the region of the global minimum. It is
noteworthy that the zero-momentum variant with the larger
values for φp and φg (“Zero”) makes progress where the other
(“Standard-Zero”) does not. Rastrigin responds similarly well
to the larger social and cognitive coefficients. This agrees
with intuition: larger social and cognitive coefficients cause the
corresponding C distribution to cover more space, increasing
exploration. It would thus appear that the cognitive and social
terms might be used to directly compensate for the loss of
momentum. This suggestive result motivates “Zero-Neg”.

The “Zero-Neg” approach uses the same update equations
and parameters as “Zero”, but instead of drawing each of
the random vector elements from U[0, 1] as in (1), it draws
them instead from U[−0.15, 1]. This expands C to include
areas “behind” the particle, allowing it to occasionally move
opposite the more informed area. There is no momentum
present, but it works well. It would seem that the exploration
typically provided by momentum can indeed be obtained in a
completely different way.

It bears repeating that these last results are with a PSO
variant that includes both cognitive adaptation and artificial
diversity injection. However, the methods employed are self-
tuning, and have been demonstrated to be minimally invasive
where they do not help [11], [10]. The omission of momentum
certainly reduces swarm diversity [13], but additional diversity-
increasing methods are necessary on harder functions anyway,
and the idea that the responsibility for the remaining effects of
momentum might be successfully turned over to more directly-
informed terms is very attractive. If we cannot find consistently
motivated and effective ways to use momentum to control
swarm diversity and exploration, why not eliminate it?

V. CONCLUSIONS AND FUTURE WORK

PSO’s momentum term has some suboptimal characteris-
tics as a means of controlling swarm exploration, born out by
its history and the persistent lack of consensus on what it does
and how to use it. Furthermore, it is unique among the terms in

the PSO update equations, simultaneously in the significance
of its influence and in the paucity of its motivating information.

The application of informed random truncation of mo-
mentum is a promising idea that is simple to implement and
understand as well as improving performance when stagnation
is not otherwise an issue. Perhaps even more interesting, how-
ever, is that this kind of informed feedback can also provide
practitioners with a more direct means of tuning momentum-
based exploration, e.g., through adjustment of sensitivity to
vector disagreement. The idea has been briefly introduced in
this work, and further study is warranted.

The potential for an adaptive feedback mechanism like
random truncation to reduce algorithmic sensitivity to the
inertia weight is also important. Successfully finding the best
values for ω has historically been a difficult task, with many
available options and few predictive clues. Effective applica-
tion of momentum is thus something of a black art, and the
strategies for dealing with it are as varied as their results on
various classes of fitness function. PSO seems to respond well
to information-oriented approaches to self-tuning for many of
its parameters, including swarm size and topology, cognitive
and social coefficients, and diversity injection. Now it can also
be seen to respond well to a more informed, automatically
adjusted momentum, though there are many variations left to
attempt and there is clearly room for improvement on those
reported here.

When PSO is viewed as a stochastic sample-based algo-
rithm whose informed distribution is capriciously relocated by
momentum, it becomes appealing to simply remove the term.
Doing so may be achievable by reassigning the responsibility
for exploration and diversity to other more directly-informed
(and thus responsive to automatic tuning) mechanisms. Among
these are older methods such as CRIBS and SAC, as well as
newer methods introduced here, such as the introduction of
negative uniform bounds for the cognitive and social terms.
The behavior of these approaches is encouraging and suggests
that there is more to be uncovered.

There are many potential consequences of a definitive
removal of momentum, should such an objective be achieved.
Mathematical analysis of PSO behavior would undoubtedly
be simplified due to the loss of a momentum term, allowing
statistical tools to be more directly brought to bear; after
all, at that point the core algorithm would be a relatively
straightforward sample from a distribution (like Bare Bones),
while still retaining its useful and emergent neighborhood-
based complexity (rather unlike Bare Bones). Furthermore,
the question of divergence would practically disappear, since
velocities would no longer be able to grow without bound
unless constricted or capped by something like Vmax. All of
these ideas would be interesting to explore in future work.
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