A Bayesian CMAC for High Assurance Learning

James L. Carroll and Kevin D. Seppi
3350 TMCB Brigham Young University, Provo UT 84602, USA
jlcarroll@gmail.com and kseppi@cs.byu.edu

Abstract—We analyze the drawbacks to using ANNs in more than just the output that they consider most probable,
high assurance systems and propose a solution based uponthey should return a distribution over possible outputs.
a Bayesian approach with a specific network topology that Another major drawback to using ANNs for high assur-

can be solved in closed form. The Bayesian approach leads trol i | ight int tability ANNs f
to better answers in the traditional sense, while also alloing ~2MNC€ CONtrol Involvesveight interpretabiiity s form

us to quantify risk and deal with it in a reasonable manner. We function outputs by passing input values through a netwbrk o
demonstrate this approach on several synthetic functionsral  nodes, each with a set of interconnections and weights. The

the Abalone data set. output is formed by summing the weights of interconnected
nodes. Such a structure can be extremely difficult to inegyrpr
and although we can query the network with a specific input
Artificial Neural Networks (ANNs) are a common tech-to see its output, it is difficult to understand exactly why
nique for learning classification and control from exampleshe network is generating the specific output. Thus, it can be
However, there are several drawbacks to using ANNS in higtifficult to look at a given network and determine that it has
assurance systems. These drawbacks involve issues with dound a “correct” or “safe” policy.
put uncertainty, weight interpretability, output generation, The next major drawback to using ANNs for high as-
expert knowledge inclusion, and the sufficiency of trainingurance control involvesutput generalizationThe weights
data. We will discuss each of these problems in greaterldetasf an ANN are learned through training examples rather
and then propose solutions based on a Bayesian adaptatiban by specifically specifying what the outputs should be.
of the CMAC [1] network topology. This can actually result in improved performance, since
The most common complaint about ANNs in high ashand coded rules can be very brittle to unexpected inputs.
surance systems isutput uncertaintylt is tempting to try If the input to the network is not in its training set, the
and remove all uncertainty in situations where the wrongeights will hopefully return a reasonable output based
response can have disastrous consequences. Unfortynatety the similar examples that it has seen. The process of
this is not always possible. There are many sources determining appropriate outputs in areas of the functian fo
uncertainty including: an inappropriate learning algurnt which there is no training data is known as generalization.
intrinsic non-determinism in the function to be learnedd anYet, this can also be problematic in high assurance control,
insufficient or inappropriate training data. Since it isalbu since the network’s behavior is often unpredictable when
impossible to remove all uncertainty (whether or not an ANNjiven unexpected inputs. Because the network’s policy is
is being used) we believe that the best solution to thesmt easily interpretable by looking at the weights, it can be
problems is to reduce uncertainty where possible througfifficult to predict exactly how the network will respond in
user input, and to quantify the uncertainty that can not beach situation.
removed. Then it is possible to compute the risk involved in This could be solved bgxpert knowledge inclusiohe
each decision when made in the context of that uncertaintyser could provide some simple safety steps such as “never
using the principles of decision theory. do a when b is observed” this could greatly reduce the
Traditional ANNs return only the answer that they conuncertainty of the system and thereby improve the applica-
sider most probable, but do not provide measures of thdiility of ANNs to high assurance control. Unfortunatelyeth
confidence in that answer. This makes traditional ANNs espegery problem that made the network weights un-interpretabl
cially inappropriate for high assurance systems. For exampalso makes it difficult to provide the network with such
if an ANN were trained on the mushroom dataset [2] taules. Since it is difficult to determine the behavior of the
predict whether a mushroom will be edible or poisonousetwork given its weights, it is equally difficult to detemei
given its appearance, how could that network be used toset of weights that will guarantee a certain behavior. Thus
make decisions about eating a given mushroom? This tisaditional ANN learning is limited by information in the
an example of a high assurance system since if you atedata, and it can be difficult to provide external information
poisonous mushroom you can get very sick, even die. If thie the system.
network predicts that the mushroom is edible should you eat The next difficulty involves theufficiency of training data
it? Of course that depends on how hungry you are and @&NN learning improves with training data, however it is
how certain the network is in its prediction. Thus, in order t difficult to determine how much data is necessary to be
be effective at aiding decision making ANNs should provideertain that the network is likely to perform within safety
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limits. This is also due to the lack of confidence reporting in
the network outputs. Attempts to answer these questiofis wit
PAC learnability and VC dimensions have provided some
loose bounds, but have failed to answer these questions in
an average case.

Our proposed solution to the above problems is to recast
the supervised learning paradigm in terms of decision theor
and a graphical model[3]. When ANNs are built using the
model as a guide, prior distributions can be used as a
mechanism for providing input from a human expert, and
the network will produce a true posterior distribution as it
output. This provides a measure of confidence in the network
outputs. In addition, our solution uses the CMAC network
topology. This topology for an ANN is appealing since the
weights are trivially interpretable, and since this parte
network topology allows the Bayesian approach to be solved .
in closed form. The interpretability of the weights allovet Utility
user to provide additional information in an intuitive mann
and allows the learned policy of the network to be easily Fig. 1. Complete decision theoretic model for supervisedrig.
analyzed.

We will explain the graphical model of supervised learn-
ing, the CMAC topology for ANNs, and then derive a
Bayesian ANN based on this network topology. We will
compare the traditional CMAC with our new BCMAC and

probability provide an optimal technique for classificatidt
can be shown that:

analyze the BCMAC's ability to express confidence in its p(y X X, y) = /p(y’|x’,f)p(f|x,y)df. (1)
results, and discuss the implications of the techniqueifgit h
assurance systems. Using Bayes law and the independence assumptions of the

model it can also be shown that:
II. THE UNIFIED BAYESIAN DECISION THEORETIC

MODEL (UBDTM) p(Fxy) = pylx, fp(f) )

The supervised learning problem can be modeled as a set Jptylx Fp(f)df
of random variables. These variables include feature yectdEquations 1 and 2 form the backbone of our Bayesian model
x that are mapped to an output valyeA list of x, y pairs for supervised learning [4]. This formulation is surprigy
constitutes a training set. Similarly we will represent theversatile. To create a learning system with a desired bias
test set withx’, ¢/ pairs. Usually there is also an unknownthe user only has to specify(f), a prior distribution over
function f that either maps feature vectors to output vectorthe functions of interest, and the rules of probability diet
in the deterministic cas¢ : x — y, or from feature vectors the rest. Specifying(f) usually consists of two parts, spec-
to a distribution over output values in the stochastic cadéying the representation and the priors for the parameters
f :x — p(y). Of special interest is that we are treating theof this representation. It is possible to selegf) so that
unknown function itself as a random variable, and this willve match the representational bias of a wide variety of
have significant implications in how the model is used. classical learning techniques. and has been applied toadeve
Several different relationships between the random varincluding neural networks [5], support vector machines [6]
ables in a supervised learning problem are possible, band evolutionary computation [7][8]. In all of these cadas t
perhaps the simplest would be the relationship represdaytedapproach has lead to improved performance over many test
the graphical model in figure 1 [4]. This set of relationshfps cases.
very intuitive, and implies that function outpugsandy’ are It has been traditional to separate the ideas of classiitati
dependent on the feature vectorsand x’ and the function from control/decision theory; however, in practice, cifiss
f that maps them. Note that this model of variable relacation is not performed for its own sake. Usually we do not
tionships considerg and f to be conditionally independent classify things for the intrinsic value of putting things in
and therefore does not model the relationship captured lslasses, rather, we classify things to aid in decision nmgakin
unsupervised and semi-supervised learning which is basdd shown in figure 1, the entire decision process can be
on this relationship. represented as a decision network tied to the graphical mode
Supervised learning can be seen as the problem of det&f* is the node most commonly tied to decisions. In the
miningp(y’|X’, X, y), that is, of determining the probability of simplest case, there is some outcomethat will depend
a class in the test set given its features and the trainirg daupon the decisionD and the value ofY”’ (see figure 1).
If we accept the relationships among the random variabl@hen the utilityU is determined from the outcont@. Many
given in the graphical model of figure 1, then the rules ofmore complex examples could be envisioned, for example,




the output could depend on many more things that Jst
however, we will only focus on this case. i B - -

If the posterior distribution for/|x’, y, X is computed as
shown in equation 1, then it is possible to compute the
expected utility of any decisiod as:

E[U(d,0)] =Y _ Ulo)p(oly,d)p(y' X, x,y). ()
y' ey
and the optimal decision € D that will maximize the - |

expected utility can be found as follows:

argmax Y U(o)p(oly’, d)p(y'|X', %, y) - (4)

= Fig. 2. Tile structure for a CMAC with three layers, and foileg per
Yy

layer.
The degree to which the system is risk averse, risk seeking,
or risk neutral is determined by the utility function chosen
Once a utility function is chosen, these equations allowous tThe error at location X is:
quantify the risk of using the network’s outputs for control
This is especially important for high assurance systems. e(r) = fomac(®) — fobserved(T).
Furthermore, this value will change as more dgta IS acqulreI‘iiaditionally the weights can then be intuitively updated a
and the learner becomes more confident in its outputs. Wsiows:
call this graphical/decision model, and the learning athor _ e(x)
based on it the Unified Bayesian Decision Theoretic Model Awli] = S ()
or UBDTM [4]. _ _ )
Notice that in order to effectively use a classificatioVN€ré « is a learning rate. The output y of the network

technique to make general decisions that technique mu@ny Position x is the sum of the weights for the tiles
provide a full distribution ovep(y/|x’, X, y). Techniques that that overlap that position. It can be shown that this update

simply report the most probable class are not useful fdule iteratively approximates a maximum likelihood saduti

making optimal decisions from a maximum expected utilitfO" e weights given the training data. Unfortunatelyglik

perspective. Returning to our mushroom example, witho@y maximum likelihood technique, this approach does not

a full distribution overy’ it is impossible to quantify the Produce a full distribution over outputs.

risk of eating the mughroom. Since tradlt_lonal ANN'’s _only IV. A BAYESIAN LEARNING PROCEDURE FOR THE

report what they consider to be the most likely class without CMAC

reporting the entire distribution they are dangerous to use ) ) ) _

in high assurance systems. However, an ANN based on the"Ve Will create a Bayesian technique for computing the

UBDTM could report a full distribution, and could be moreParameters of” whereF' is a CMAC. First, we assume that

effective in high assurance systems. the function that we are trying to approximate is stationary
We will propose an ANN based on UBDTM, but which and that our observationg have linear Gaussian noise

has a very specific network topology, namely the cMAQVith covarianceX,. For this work we will assume that

ANN. This network is especially interesting because th@ll oPbservations are of equal quality. We initiali2e, as

. ) 3 2 i i .
values in the network can be solved in closed form for thi&s = 9,1 whereo, is a constant which models how much

network, and because its values weights are especially ed¥§ Should expect the output of eaghto vary from the
to interpret. tre value of the function (for example, this can account for

sensor noise). We also assume that the training and test sets
I1l. THE TRADITIONAL CMAC are identically distributed, and thu¥(y|z, f) = P(y'[’, f),

. ] a common assumption in Machine Learning.
The CMAC is a well known ANN topology which has  gince a CMAC models functions using a sum of weights,

been shown to be useful for many applications [1]. It i s convenient to model the prior faf as follows:
modeled on the human cerebellum, and functions by mapping

weightsw|i] to tiles which are interpreted spatially (see figure p(w) if f e {x.g(x,w)|¥x € RP.g(x,w) =
2). Inputs are mapped to the correct bins by means of any(f) = S wlilbli])(z)}

association functiom[:](z), whereb[i](z) = 0 whenx does 0 otherwise

not fall within the spatial region assigned to hiand where

bli](z) = 1 when it does. p(W) = N(Wlo, o)

The output of the system can be simply computed by

femac(z) :Zw[i]b[i](x). where 7 is a list of all tiles in the CMAC and where
w is a vector-valued random variable with a multivariate

%



o . . . TABLE |
normal distribution with prior meangg (corresponding to 9
SUM< ERROR OF THE ACTUAL FUNCTION OUTPUTS AND THE

the weights of each tile) and prior covarianteg.
g. . : ) P § . TRADITIONAL CMAC OUTPUTS OR THE MEAN BCMAC OUTPUTS OVER
The distribution ofX does not need to be modeled since
. . . . THE TEST SETWE ALSO PRESENT THE RATIO BETWEEN THESE ERRORS
its values are given. Then, the relationship betw&ert”,

and F' can be modeled as follows: RN Simple CMAC | BCMAC CNACT
Sun?® Error Sun? Error | BCMAC
p(Y[X, ) = N(y|f(x), %) 1 1857654 | L1,459.136 | 1.27
) o o 2 1,917.688 1,412.675 1.36
At this point it is helpful to note that(y|x, f), and similarly 3 1,323.653 1,141.215 1.16
the predictive distributionp(y’|x, f), can be rewritten as 4 1,593.757 1,326.135 1.20
follows: 5 1,728.339 1,401.232 1.23
. 6 1,660.846 1,327.345 1.25
7 1,621.135 1,292.013 1.25
p(yX, ) = N(y[Hw, =), 8 1472.336 | 1273971 | 1.16
- 9 1,271.723 1,121.361 1.13
whereH can be thought of as an association matrix,; = 1
if tile j influences the training example That is,H; ; = 100 1,950.859 1,534.583 1.27
b[j](z;). Notice thatx is used to construcH, and then Average | 1581205 | 1305917 ] 1.21

drops out of the equation. Arbitrarily complex kernels can

be represented by simply modifying tik& matrix such that

H; ; = k[j](x;), wherek[j](z;) is not binary but rather is a  Priors can come from many places. If detailed information
function of the distance from; to the center of tilej. Thus IS known a-priori concerning the function, then a detailed
H encodes the amount of influence each tile has on a givéfior can be provided, allowing the system to perform well
;. with low amounts of data. This is possible because of the

The weights are related to our observations according toiferpretability of weights in the CMAC topology. If less

multivariate normal model [9] with prior parameteges and IS known, then a wide subjective prior can be chosen. If

3. The parameters of the posterior distribution are then the prior is sufficiently wide, it will have little effect orhe
posterior. This will cause the system to require more sample

p1 = po + Ki(y — Hpo), points before it becomes confident in its outputs. Although
and the data in a specific tile may be sparse, the cumulative
T = (I- K H)(Z), data over the entire function will often be more rich. By
analyzing the cumulative data, it is possible to use that
where information to produce an “empirical” prior for each tile
K, = (So)H (H(Zo)H" +3,)". which can often improve performance over a wide subjective

\%r'or. Theoretically a hierarchical model would be more

In the more complex case where the function can change o tisticall t but at th f |
time in a linear manner with Gaussian noise these equatioﬁg]l istically correct, but at the expense of a more complex
model, which is unwarranted in this case.

become identical to the Kalman Filter Equations.
This observation means that, given a prior over CMAC V. RESULTS

weights and some training data, a well known and widely 4 (et the power of the BCMAC, we performed several
studied filtering technique can be applied to solve in Close&periments. First, we attempted to determine if the BCMAC

form for both the posterior distribution over the CMAC ,yserformed the standard CMAC on the sorts of functions
weights, and for the posterior predictive distribution tbe |, might expect to encounter by comparing their results

CMAC outputs. We call this technique the Bayesian CMAGy, geveral synthetic functions, and on a variant of the
or BCMAC. Learning in theBCMAC is simply Bayesian yc| apalone data set. We also explored the ability of the

inference. _ _ , _ algorithm to express confidences in its outputs.
Perhaps most importantly, this technique can simply pro-

duces an actual posterior distribution over possible dstpuA. BCMAC and CMAC Compared

given the training datay(y'[x’, X, ). Equation 1 tells us that  First, we chose to illustrate the algorithm’s behavior with
this is a large and often difficult integral. However, be@usa simple two dimensional function called step2d because the
in this case we are dealing with the sum of a set of normaésults could easily be visualized. The function was design
random variables this can be solved simply in closed formg be difficult for a CMAC representation. 12 + 222 < 10
ot / ¢ the function returns 1 otherwise it returns -1. This causes a

p(Y' X, X, y) = N(y'[Hw, H'EH). ®) steep transition, and a curved boundary to that transition,
This makes it possible to know how much to trust théooth of which are difficult features for a CMAC to capture.
BCMAC's outputs in each part of the function. This canPoints in the function fall in the domain between 0 and
reveal when more data is needed, and where such data wobldor both x1 and x2. We created 100 different training
be most useful. Such a confidence is also essential in ordssts by drawing 100 different sets of 500 examples each
to use the outputs of the algorithm to make optimal decisiorfsom the function, drawn uniformly. We then trained both a
from a decision theoretic standpoint. traditional CMAC and the BCMAC (with a wide subjective



TABLE 1l
AVERAGE SUM? ERRORS FOR THESIMPLE CMAC AND THE BAYESIAN
AC AVERAGED OVER 100DIFFERENT TRAINING SETS ON SEVERAL
DIFFERENT BENCHMARK FUNCTIONS

prior meanu, = 1 and covariancé&, = 20I) on these
training sets, and computed the difference between the me
of their outputs to a single test set of size 20,000. The tgsul

are summarized numerically in Table I. Although the error

can vary substantially from one run to another depending Function | CMAC | BCMAC
on the quality of the small random training set chosen, the step2d | 1581.205| 1305.917
ratio of the standard CMAC error over the Bayesian CMAC 2dEgg | 510.409 | 499.885
X ) : : 3dEgg | 483.814 | 481.560
error is consistent. This means that although the quality of Abalone | 09063 | 07543

the training set is an important factor in obtaining a good
result on this function, the BCMAC always outperformed
the standard CMAC no matter what training set it is given.,
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Fig. 5. a) Training points for the BCMAC, selected from a ftioic
exponentially biased towards the center. b) Tile variarfter &raining with
data points in a, darker areas represent regions of lesaneari Note that
the algorithm is more confident in areas where more data tes digserved.

Fig. 3. CMAC output, viewed from the side to show the jaggedrshioot  treated as continuous. All nominal features were dropped,
artifacts. as well as the many redundant features, leaving the most
informative weight measurements (shell weight) and the

most informative size measurements (diameter). The first
1500 examples were used as test data, while the remaining
examples were used as training data (see Table Il). The
BCMAC priors were again set “empirically.”

’s2d500.dat’

B. Expressing Confidence

We have seen that when the BCMAC reports its most
likely output values it consistently has a lower mean sqdiare
error than the traditional CMAC on all the functions that
we tested. However, the real power of this technique is not
in its lower error alone. Because the training technique for
the BCMAC is Bayesian in nature, a full distribution is
available for the predictive posterior. If more data hasnbee
Fig. 4. Bayesian CMAC output, notice that there are lessgdgmvershoot encountered in one region, then the algorithms will be more
artifacts. confident in their answers in that region. If less data has bee

encountered in another region they will be less confident in

This process was then repeated for a variant of the twtheir answers in that region.
dimensional egg carton function= sin(x1*2.5)+ sin(x2x* To illustrate, we again used the step2d function to demon-
2.5), 2dEgg, and its three dimensional varignt sin(x1*  strate BCMAC’s ability to return confidences in its results.
2.5) + sin(x2 * 2.5) + sin(x3 * 2.5), 3dEgg. These results We generated data that is exponentially skewed towards
are summarized in Table Il. In the interests of space, onljnie center of the domain. After training we then graphed
the averages will be reported here, however, the full tablébe algorithm’s confidence (see figure 5). This ability to
were much like those shown for step2d, where the individuaéport confidence in a statistically meaningful way is an
values varied greatly depending on the random training siebportant advantage of our algorithms. Such a confidence
chosen, but where the ratio between the results of the \ariois essential in decision theory in order to make optimal
methods was consistent. Parameters for these functiores weecisions with respect to maximum expected utility [9].
tuned using the “empirical” technique discussed above. Because this value quantifies risk, it is an essential part of

We also compared the CMAC with the BCMAC on theany high assurance system. Furthermore, the distribdtiona
UCI Abalone data set [2]. This problem was chosen becausetput can be extremely useful in situations such as active
of its continuous features and ordinal output which can blearning [10].
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VI. DISCUSSION BCMAC needs to be increased. Furthermore, if there is more
variance in one part of the output than in another, then this
tion 5) is a normal distribution. Having a full distributida could indicate not only that more data is needed, but where

extremely important for high assurance systems. Returnifffitd@ would be most useful. This can be helpful in active
to our mushroom example, assume that mushrooms wi arning situations. Thus, because the network reports its
toxicity levels below 10 are harmless, but with levels over 1co?f|d?1ncz, thz risk of using the Zyster:n can be evaluated
their negative effects begin to grow rapidly. Assume that wBeforehand and improvements made when appropriate.
have been lost in the forest for 10 hours, and are beginning”An°ther way of lowering the variance of the predicted
to be hungry. Now we come across a patch of mushroomUtputs would be to provide the algorithm with expert human
Whether or not we should eat the mushrooms depends §powledge. If a human expert knows that dark mushrooms

our utility function. Because we are hungry there is a sligh®f @ certain size are always very poisonous, while light
negative utility (-1) if we don't eat the mushroom. If we eatmushrooms of the same size are never poisonous, then that

the mushroom, the utility will depend on the toxicity levelinformation can easily be introduced into the priors for the

Notice that the posterior predictive of the BCMAC (equa

of the mushroom as follows: weights. Because the weights are spatially interpretitale,
clear which weight priors need to be adjusted to achieve the
U(notEat,tox) = —1 desired effect. Furthermore, the strength of the prior terde

mined by the variance on the weights, allowing our experts
to express how confident they are in their information.

This ability is illustrated by the above step2d experiments
In those experiments we set the mean to 1 and the variance

Now, if our mushroom toxicity predicting algorithm onl to 20 because we did not want to give the BCMAC an
' X | toxicity p g aig Y unfair advantage. However, since we knew beforehand that
returns the maximum likelihood result, as most neural ne;

e ) - he values would vary between -1 and 1 we could have
works do, and if it returns 10.1 as the most likely toxicitfy. | vary : :
this were the true toxicity, the utility of eating these hlily selected a more informed prior with a mean of 0 and a
toxic mushrooms wouldyl;)e 5 Th()e/ tilit ofgnot catin thestandard deviation of 1. It would have been possible to do
. . B Y 9 N en better by setting the prior mean of all tiles with cemter
mushrooms is -1. At first glance it would seem that the be

thing to do would be to eat the mushrooms. However th?g-12 + 22* < 10 to 1 with all others set to -1, and then
g ' ' Pwering the variance accordingly, in which case little or n

all depends on how sure the algorithm is in its prediction. | :
. S . earning would have been necessary because of the accuracy
the most likely toxicity is 10.1, then there is some chanc§f the prior

that the actual toxicity is 15, or perhaps even 20, in whic
case eating the mushrooms would be very dangerous. The
problem here is not that we are uncertain, but that we are
unable to quantify our uncertainty and risk. It is impossibl By modeling the regression and classification process as
to effectively make this decision without more information a graphical model we have produced a Bayesian variant of

If we used our BCMAC, the posterior predictive valuethe CMAC that can be solved in closed form. We call this
would be a normal distribution. Suppose that our algorithrtechnique the BCMAC. We have shown that these techniques
returned a mean of 10.1 with a variance of 3 for theutperform the traditional training techniques for leagthe
toxicity of the mushroom. Now the expected utility of eatingweights of a CMAC for several example functions including
the mushroom can be computed by integrating as given &tep2d, 2dEgg and 3dEgg, as well as for the Abalone data-
equation 3. The expected utility of eating the mushroom caset. Furthermore, the BCMAC not only can determine the
now be computed and is -5.2, and the best action is to notost likely weights, but it can also give a statistically remt
eat the mushroom even though the utility at the maximurastimate of how certain it is of its values at every position,
likelihood value would seem to indicate that we should eawhich is essential for making good decisions from a decision
the mushroom. If we had been lost longer, the utility otheoretic perspective.
not eating the mushroom could drop considerably as the We have shown that the BCMAC has several advantages
likelihood of starving increases. Once this value dropswel in high assurance systems. Its weights are interpretdine, t
-5.2, the optimal decision will be to eat the mushroomgriors can be used to introduce expert knowledge, and the
despite the risk. distributional output can be used to quantify risk, has emou

If we were designing the ANN for mushroom toxicity data, and determine if the algorithm is sufficiently acoairat
detection, we might have noted that for many commoto be used in a given context. This can greatly improve the
mushrooms the variance returned was simply too high iapplicability of ANNs to high assurance situations.
too many common cases. This could be cause by a naturally
noisy function, but if the amount of intrinsic noise in the REFERENCES
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