
Linear Equality Constraints and Homomorphous Mappings in PSO
Christopher K. Monson and Kevin D. Seppi

Computer Science Department
Brigham Young University
{c,kseppi}@cs.byu.edu

Abstract- We present a homomorphous mapping that
converts problems with linear equality constraints into
fully unconstrained and lower-dimensional problems
for optimization with PSO. This approach, in contrast
with feasibility preservation methods, allows any un-
constrained optimization algorithm to be applied to a
problem with linear equality constraints, making avail-
able tools that are known to be effective and simplify-
ing the process of choosing an optimizer for these kinds
of constrained problems. The application of some PSO
algorithms to a problem that has undergone the map-
ping presented here is shown to be more effective and
more consistent than other approaches to handling lin-
ear equality constraints in PSO.

1 Introduction

Particle Swarm Optimization (PSO) [6] is a social algorithm
that is most naturally applied to unconstrained optimization
problems. Potential solutions called ‘particles’ are initial-
ized within and ‘flown’ through the target function’s do-
main, searching for the global minimum or maximum. The
standard formulas for particle motion are given as follows:

vt+1 = ωvt + φ1U1t⊗(p − xt) + φ2U2t⊗(g − xt) (1)
xt+1 = xt + vt+1 (2)

where ω is the inertia weight, each φi ≈ 2, each Ui is a
vector of numbers drawn from a standard uniform distribu-
tion, and ⊗ performs point-wise vector multiplication [9].
The variables p and g are different for each particle and
represent the best known position in the particle’s own past
and the best known position among particles in its neigh-
borhood, respectively.

While unconstrained optimization is the process of find-
ing a vector g? ∈ R

D such that f(g?) is the global opti-
mum, constrained optimization involves finding an optimal
g? ∈ F where F ⊂ R

D is a feasible subspace of the orig-
inal domain. In other words, the addition of constraints al-
ways restricts the space from which an optimal vector may
be taken. A number of approaches have been used to add
constraint-handling capabilities to PSO, each different de-
pending on the nature of the constraints [3, 4, 12, 14, 15].

Though diverse in detail, the various methods of han-
dling constraints in evolutionary optimization algorithms
can be categorized as one or more of the following [7, 12]:

Preserve: All potential solutions are initialized within F
and special operators are applied to search for new
solutions without violating the constraints.

Penalize: The fitness of solutions not in F is artificially

reduced in some way to make those solutions less de-
sirable.

Partition: Solutions are partitioned into feasible and infea-
sible sets and each set is treated differently. This in-
cludes techniques such as repair of infeasible solu-
tions and prioritizing solutions based on feasibility.

Preprocess: The problem itself is transformed so that the
constraints are either easier to handle or eliminated.
The Homomorphous Mapping introduced by Koziel
and Michalewicz [7] is in this category.

This paper is concerned with improving the performance
of PSO when applied to problems with linear equality con-
straints. These constraints are generally given in the form
Ax = b. Admittedly, linear equality constraints form a
very small subset of possible constraints, but they appear
in useful real world problems such as the training of sup-
port vector machines [13]. Some interesting work specific
to handling linear equality constraints in PSO is found in the
Linear PSO (LPSO) and Converging Linear PSO (CLPSO)
algorithms introduced by Paquet and Engelbrecht [12].

These algorithms, while simple to implement and em-
pirically effective, have two basic limitations. First, they
rely on feasibility preservation, which inherently restricts
algorithm design because the constraints must define the set
of possible motion operators. Second, the linear restriction
placed on the motion equations is known to reduce the ef-
fectiveness of PSO in unconstrained problems [11], leading
one to ask whether another style of PSO motion may be
more effective in linearly constrained problems.

We propose a homomorphous mapping that transforms a
space constrained by Ax = b into a space that is not only
fully unconstrained, but also of lower dimensionality, allow-
ing any unconstrained optimization algorithm to be directly
applied to a much easier problem. We begin by discussing
LPSO and CLPSO, followed by the introduction of the ho-
momorphous mapping suitable for handling linear equality
constraints and some discussion about the motivation for
the algorithm. Results comparing existing constrained opti-
mization techniques are then given.

2 LPSO and CLPSO

LPSO (Linear PSO) is much like classical PSO, except that
rather than use a different random number for each element
of the velocity and position vectors, a single scalar is multi-
plied by each vector, thus:

vt+1 = ωvt+φ1U1t(pi−xt)+φ2U2t(gi−xt) . (3)

This means that the resultant velocity (and therefore posi-
tion) is a strictly linear combination of other particle po-



sitions. If the particles are all initialized within F =
{x|Ax = b}, then they will always be within F . CLPSO is
similar to LPSO except that its globally best particle has its
own motion equation: its next position is calculated as the
sum of its personal best and a small random velocity within
the null space of the equality constraints. This allows the
swarm to do more local exploration and guarantees that at
least a local minimum will be found.

These algorithms fill an interesting gap in the con-
strained PSO literature because they focus solely on linear
equality constraints. They also have the advantage of rel-
ative implementation simplicity. While CLPSO appears to
have much better exploration capabilities than LPSO, how-
ever, both are based upon a version of PSO that has observ-
ably poor exploration characteristics as the particles near
convergence.

Consider for a moment the problem of unconstrained op-
timization using LPSO. If we think of the positions of par-
ticles as vectors, some or all of which participate in a basis
set, then linear combinations of these vectors will span a
space. Motion that is a result of strictly linear operations of
these positions will force particles to always be within that
span; this fact is what makes LPSO a feasibility preserving
method.

This same feature, however, cripples it in terms of ex-
ploration capability. If there are fewer particles than effec-
tive constrained dimensions, then the algorithm is doomed
from the start to explore a space with lower effective di-
mensionality than the target domain. If there are more par-
ticles than effective dimensions, they must be initialized in
such a way as to span the entire target domain, something
that is fairly likely when using random initialization. Even
when this is the case, however, as some particles approach
convergence and diversity decreases in the swarm, fewer of
the positions will be sufficiently unique to contribute to a
full span, and the dimensionality of the searchable space
decreases quickly.

In either case, the search space is eventually overcon-
strained. This behavior of reduced search dimensionality
can be observed when watching LPSO near convergence.
As some particles become still, the rest will increasingly
explore along a periodic straight line trajectory through g.
This exploration strategy can work well on some functions
like Rastrigin, where the local minima are spread out on a
regular grid, but in general it is not effective.

Even the use of some diversity increasing approaches
like ARPSO [16] or Spatial Extension PSO [8] does little
to solve the problem, as these are commonly implemented
to perform a linear change to the particle’s motion. As long
as the underlying motion overconstrains the search space,
these diversity increasing methods are of little help.

The overconstraining of the problem over time results
in premature convergence to locations of the target domain
that are not even local minima, an issue that motivated the
development of CLPSO (Converging Linear PSO), which
changes the motion equation for the best particle in the
swarm so that it explores in a complete span of the feasi-
ble domain using a random velocity component in the null

space of A. This idea is mathematically sound and empiri-
cally effective, but it is possible that fundamentally chang-
ing the underlying motion will produce better results.

3 Homomorphous Mappings in PSO

The homomorphous mapping approach proposed by Koziel
and Michalewicz [7] has many advantages over preservation
methods like LPSO and CLPSO, not least of which are the
ability to use an unmodified unconstrained optimization al-
gorithm and a sometimes significant reduction of the dimen-
sionality of the problem. This idea is especially interesting
when using PSO, since it is simple to implement, effective
at optimization, and most naturally applied to unconstrained
problems.

In general terms, the goal of a homomorphous mapping
is to convert a difficult constrained problem into a simpler
constrained or unconstrained problem. The burden of con-
straint handling is thus shifted from the optimization algo-
rithm to an algorithm that creates a transform or decoder
H : S 7→ F such that S is a space that is easier to work
with than F . The use of the decoder allows an optimiza-
tion algorithm to work with points x ∈ S while evaluat-
ing the target function in its original space: f(H(x)). For
more information on this interesting idea, see Koziel and
Michalewicz [7].

3.1 Linear Equality Constraints

Linear equality constraints of the form Ax = b always de-
fine a hyperplane, assuming that the rows of A are linearly
independent [12]. Since a hyperplane has lower effective
dimensionality (D−) than the space in which it exists (D),
it is always possible to reorient the plane such that it is com-
pletely contained within R

D− , a space that is spanned by a
subset of the axes in R

D. For example, a plane in R
3 can

always be oriented to lie in the x–y plane, and a line in R
3

can be oriented to lie along the x axis.
The size of R

D− may be easily determined from the lin-
ear equality constraints themselves. Each row of A repre-
sents a vector that is normal to a hyperplane in R

D, and
the effective dimensionality of this hyperplane is always
D − 1. To illustrate this idea, it is useful to think of adding
constraint hyperplanes into a space one at a time; the first
hyperplane reduces the effective dimensionality by 1, the
second forms an intersection with the first which drops an-
other effective dimension, and so on. The goal of the ho-
momorphous mapping is to reorient the resulting lower-
dimensional hyperplane such that it is contained entirely
within R

D− , allowing search to be restricted to that smaller
unconstrained space during optimization.

The most obvious such mapping is a projection from
the larger space into the lower dimensional space, but this
has some disadvantages, such as the necessity of selecting
out the appropriate dimensions in order to perform a use-
ful (non-degenerate) projection. The mapping on which we
will focus our attention in this paper is composed of rota-
tions and translations which are represented in a single ho-
mogeneous matrix H = T−1. The complete method for



Algorithm 1 HHM(pairs)

1: T = I

/* Rotate Space */
2: for i = 1 to len(pairs) do
3: a = D − (i − 1)
4: p1,p2 = pairs[i]
5: for j = 1 to a − 1 do
6: n+ = T(p2 − p1)

+

7: θ = atan2(nj , na)
8: T = Rθ,j,aT

/* Translate Space */
9: for i = 1 to len(pairs) do

10: a = D − (i − 1)
11: p1,p2 = pairs[i]
12: p̃+

1 , p̃+
2 = Tp+

1 ,Tp+
2

13: n = p̃2 − p̃1

14: q = (p̃1 · n)n
15: if qa 6= 0 then
16: Ta,D = −‖q‖2 /qa

17: return T

calculating T is given in Algorithm 1 and a more detailed
explanation follows.

3.2 Homogeneous Homomorphous Mapping (HHM)

Because each row of A and each corresponding element of
b together form the equation of a hyperplane, the constraint
system Ax = b may be rewritten as a set of equations of
the form ni · x = bi, where ni is normal to plane i and
bi is a distance parameter. If ni is of unit length, then bi

has a convenient geometric interpretation: it is the distance
from the origin to the plane in the direction of ni as illus-
trated in Figure 1. The figure also shows a useful alternative
definition of a plane using two points:

p1 = bn (4)
p2 = p1 + n . (5)

This two-point definition of a hyperplane is used in Algo-
rithm 1, which requires that each n has unit length. Since
any constraint system Ax = b may be trivially rewritten to
satisfy this requirement, it will be assumed throughout the
rest of this paper that constraints are normalized in this way.

The HHM algorithm is composed of two high-level
steps. Starting at line 2 it calculates all of the necessary
rotations that will orient the constraint hyperplane so that it
is parallel to R

D− , but not necessarily contained within it.
On line 9 it begins the process of finding the translation that
will move the hyperplane so that it has no support outside
of R

D− .
Each of these steps will be given special consideration

below. The result of the algorithm is a homogeneous matrix
of the form

T =











r1,1 · · · r1,D t1
...

. . .
...

...
rD,1 · · · rD,D tD
0 · · · 0 1











(6)

PSfrag replacements

p1

p2

n

b

Figure 1: A plane defined by unit normal n and distance b,
or by the points p1 and p2

PSfrag replacements

j

a

nj,a

θ

nj

na

Figure 2: Calculating the rotation for a normal projection

where ri,j participates in rotation and ti participates in
translation. A vector multiplied through this matrix must
first be augmented with a terminal 1:

p+
1 =

(

p1,0 · · · p1,D 1
)>

. (7)

The value pairs required by the HHM algorithm is a list
of point pairs representing the constraint planes as defined
in (4) and (5).

To better describe the HHM algorithm, which applies to
arbitrary linear equality constraints in any number of dimen-
sions, it is useful to work through a concrete example where
the number of constraints and the dimensionality are fixed.
The discussion that follows will assume that A has two rows
and that D = 3. Each constraint represents a plane in R

3,
and the two constraints together form a line at their inter-
section. The HHM algorithm will be applied to create a
transform T that orients the entire space so that this line
lies along the x-axis.

3.2.1 Rotation

The first step is to rotate each plane so that the intersection
is parallel to the x axis. We begin with plane 1, which is
defined by two points p1,p2 = pairs[1]. This plane will be
rotated so that its normal is parallel to the z axis, effectively
eliminating the need to consider that axis during subsequent
rotations.

The first plane is realigned by rotating a projection of
the normal in two planes, starting with the x–z plane; the



normal is transformed so that its projection in the x–z plane
(denoted n

x,z
1 ) lies along the z axis. Once this is done, the

projection will be oriented correctly, but the actual normal
vector may still have some support along the y axis.

Figure 2 illustrates what the algorithm is doing on
lines 6–7: it first gets the normal into the current space and
then calculates the rotation angle θ that will cause the pro-
jection of the normal into the j–a plane to lie along the a
axis. In this example, j is the index of the x component in
n and a is the index of the z component in n.

The angle θ is computed by

θ = arctan
nj

na

(8)

and is used to construct a rotation matrix Rθ,j,a that will
orient nx,z

1 along the z axis. The rotation matrix is the iden-
tity matrix of size D+1 with the exception of the following
elements:

Rj,j = cos θ Rj,a = − sin θ

Ra,j = sin θ Ra,a = cos θ .

Again referring to the example, the process is repeated in the
y–z plane so that ny,z

1 lies along the z axis. When finished,
the unprojected n1 = (0 0 1)> and is therefore lined up
along the z axis.

Because the first plane now has constant support along
the z axis, the intersection of the planes does as well. There-
fore, when applying this process to subsequent planes, that
axis need not be considered again. When the next plane is
considered, a rotation is performed in the x–y plane so that
the projection of the second normal into that plane (nx,y

2 )
lines up with the y axis. When that is done, the intersection
of the two planes will be parallel with the x axis, and the
rotation step is complete.

3.2.2 Translation

Because the planes may not have crossed through the origin,
the rotation step does not limit the constraint hyperplane to
R

D− . It does, however, have constant support in all but
the first D− dimensions. The last step performed by the
HHM algorithm performs a translation so that this constant
support is removed, e.g. the intersection of the two planes
in R

3 is not merely parallel to the x-axis, but superimposed
over it.

This translation step is made more convenient by the
two-point definition of a plane shown in Figure 1. Translat-
ing so that the first plane contains the origin is very simple:
its normal points along the z-axis and therefore it needs to
be translated by its (easily calculated) distance from the ori-
gin. Once this step is complete, however, the second plane
may look something like that shown in Figure 3. Note that
p̃1 is no longer the point in the plane closest to the origin,
and therefore ‖p̃1‖ 6= b.

Fortunately, it is easy to calculate the point in the plane
closest to the origin using a dot product: p̃1 · (p̃2− p̃1) = b.
The point q closest to the origin is simply b(p̃2 − p̃1) as
calculated in lines 13–14 of Algorithm 1. Given q it is pos-
sible to calculate the amount of y axis translation necessary

PSfrag replacements p̃1

p̃2

q

n

b

Figure 3: After translation, q is calculated

PSfrag replacements

θ

‖q‖

qa x (?)

q

a

Figure 4: Calculating the final translation for a hyperplane

to ensure that plane 2 contains the origin. As long as no
translation occurs in the z axis, the first plane will still con-
tain the origin as well.

Figure 4 illustrates the way in which the translations are
calculated. The angle θ is part of two triangles, and can
therefore be used in two formulas to find the unknown dis-
tance x:

cos θ = qa/ ‖q‖ (9)
cos θ = ‖q‖ /x (10)

producing

x = ‖q‖2
/qa (11)

which is how the translation is calculated in lines 15–16.
This calculation works for every plane to which it is applied,
including the first.

3.3 Comments on HHM

The result of applying HHM is a homogeneous matrix T

that transforms every point in R
D to another point in R

D.
Importantly, points in the feasible region F are all trans-
formed by this process to be contained within R

D− , e.g. no
vector in F will have a nonzero value for y or z after apply-
ing T, effectively reducing the dimensionality of the target
function.

To obtain the desired matrix H : R
D− 7→ R

D, one need
merely invert T and appropriately pad vectors in R

D− with
zeros and a trailing 1 before multiplying. Performing a gen-
eral inverse operation, however, is unnecessary because of



the nature of rotation matrices; it is straightforward to ob-
tain the inverse by splitting out the rotation and translation
components of T. The effects of applyingH can then be ob-
tained by first applying the negative of the translation vector
followed by the transposed rotation matrix. Other optimiza-
tions are possible, but are beyond the scope of this paper.

It is natural to ask why something simple like Gaussian
Elimination was not used instead of this rotation/translation
mapping. The advantages of the HHM presented here
are that it preserves Euclidean distance and it produces an
easily-reversed mapping, fulfilling two of the desiderata for
homomorphous mappings [7]. Gaussian Elimination, on the
other hand, performs a projection and is difficult to imple-
ment in a numerically stable way in all cases; in order to
apply Gaussian Elimination in a way that is guaranteed to
be stable, one must choose the appropriate subset of axes
on which to do the projection (equivalent to determining
the way in which columns of A are reordered), hopefully
in such a way that distances in the projection correspond
to similar distances in the original space [7]. The HHM
does this automatically by preserving Euclidean distance,
and its potential numerical problems inherent in repeated
matrix multiplication are easily addressed by infrequent re-
orthonormalization.

4 Experiments

Given the above algorithm for calculating a mapping, han-
dling linear constraints is as simple a task as finding H and
searching using particles x ∈ R

D− while evaluating f(Hx)
in the original space. The approach outlined here is actually
more general than its application to PSO, since any uncon-
strained optimization procedure may be applied after H has
been calculated.

4.1 Experimental Setup

Several benchmark functions were applied with the intro-
duction of LPSO and CLPSO, comparing them against
Genocop II, an evolutionary optimization package [10].
These benchmarks are also commonly used to test uncon-
strained optimization algorithms:

Sphere(x) =

D
∑

i=1

x2
i

Quadratic(x) =

D
∑

i=1

D
∑

j=1

e−(xi−xj)
2

xixj +

D
∑

i=1

xi

Rastrigin(x) =

D
∑

i=1

x2
i + 10 − 10 cos(2πxi)

Rosenbrock(x) =

D−1
∑

i=1

100(xi+1 − x2
i )

2+(xi − 1)2

Griewank(x) =
1

4000

D
∑

i=1

x2
i −

D
∏

i=1

cos

(

xi√
i

)

+ 1 .

Here they are subject to the following linear equality con-
straints [12]:

A =













0 −3 −1 0 0 2 −6 0 −4 −2
−1 −3 −1 0 0 0 −5 −1 −7 −2
0 0 1 0 0 1 3 0 −2 2
2 6 2 2 0 0 4 6 16 4
−1 −6 −1 −2 −2 3 −6 −5 −13 −4













(12)

b =
(

3 0 9 −16 30
)>

. (13)

Using the mapping produced by HHM, results were ob-
tained by applying the following unconstrained implemen-
tations of PSO to the resulting lower-dimensional problems:

Constricted:

vt+1 = χ (vt + φ1U1t⊗(p − xt)

+ φ2U2t⊗(g − xt)) (14)

BareBones:

xt+1 = G

(

1

2
(p + g), I ‖p− g‖2

2

)

(15)

PSOGauss:

vt+1 = χ

(

vt + G

(

p− xt,
1

4
I ‖p− xt‖2

2

)

+ G

(

g − xt,
1

4
I ‖g − xt‖2

2

))

(16)

Constricted PSO [2] used φ1 = φ2 = 2.05 with φ = φ1 +
φ2 and χ = 2/|2 − φ −

√

φ2 − 4φ|. BareBones [5] is a
simple parameter-free algorithm proposed by Kennedy, and
PSOGauss is a version of Constricted PSO with Gaussian
noise as proposed by Clerc in his TRIBES paper [1]. In
the definitions of both BareBones and PSOGauss, G(·, ·)
produces a draw from a multivariate Gaussian distribution
with the supplied mean and covariance. In all unconstrained
algorithms, a star sociometry is used.

4.2 Results

Tables 1–5 duplicate Paquet and Engelbrecht’s results using
Genocop II, LPSO, and CLPSO [12]. The tables also pro-
vide the results of applying HHM to the three unconstrained
algorithms above. Except on the Rastrigin function, the use
of the HHM allows all of the unconstrained algorithms to
outperform not only LPSO and CLPSO, but Genocop II as
well. Genocop II has better worst-case performance on Ras-
trigin but only has better average performance when em-
ploying 20 particles.

On every benchmark, including Rastrigin, the uncon-
strained algorithms find minima that are at least as good
as those found by the constrained algorithms. Notably, ev-
ery unconstrained algorithm has better best and worst-case
behavior than the constrained algorithms on Griewank.

In addition to these results, Figure 5 shows the average
fitness obtained by the swarm over time. The average is



Table 1: Sphere performance after 250 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 304.884 387.746 37.612 1680 54.846 16.939 32.544 107.584
LPSO 445.316 803.006 32.137 4505 32.137 7 × 10−12 32.137 32.137

CLPSO 32.139 0.007 32.137 32.183 32.137 3 × 10−6 32.137 32.137

Constricted 32.137 2 × 10−10 32.137 32.137 32.137 1 × 10−14 32.137 32.137

BareBones 32.137 1× 10−14 32.137 32.137 32.137 1 × 10−14 32.137 32.137

PSOGauss 32.137 1× 10−14 32.137 32.137 32.137 1 × 10−14 32.137 32.137

Table 2: Quadratic performance after 1000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 49.945 10.996 35.393 82.221 39.5 9.785 35.41 56.613
LPSO 758.525 1496 35.4 11230 59.762 39.831 35.377 246.905

CLPSO 68.57 53.865 35.377 196.067 39.832 10.887 35.377 71.38
Constricted 36.165 3.117 35.377 55.538 35.783 2.394 35.377 55.538
BareBones 40.019 9.609 35.377 75.147 37.079 5.332 35.377 55.538
PSOGauss 38.998 8.59 35.377 72.482 35.589 0.528 35.377 36.892

Table 3: Rastrigin performance after 1000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 52.379 7.498 37.116 67.564 43.059 6.142 37.011 59.959

LPSO 76.487 30.699 36.975 232.979 75.011 27.719 38.965 184.226
CLPSO 69.039 21.591 36.975 154.379 76.896 27.304 36.975 151.394

Constricted 50.431 12.314 36.975 85.728 46.199 7.477 36.975 76.736
BareBones 55.921 16.06 36.975 119.556 49.238 10.191 36.975 76.774
PSOGauss 55.622 14.826 36.975 119.094 47.11 8.136 36.975 68.802

Table 4: Rosenbrock performance after 2000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 21630 154.443 21490.8 22031 21485.7 0.4 21485.4 21486.6
LPSO 4 × 106 2 × 107 21554.2 2× 108 126000 1 × 106 21485.9 1 × 107

CLPSO 744600 7 × 106 21485.3 7× 107 21485.3 9 × 10−8 21485.3 21485.3
Constricted 21485.3 6× 10−11 21485.3 21485.3 21485.3 6× 10−11 21485.3 21485.3
BareBones 21485.3 6× 10−11 21485.3 21485.3 21485.3 6× 10−11 21485.3 21485.3
PSOGauss 21485.3 6× 10−11 21485.3 21485.3 21485.3 6× 10−11 21485.3 21485.3

Table 5: Griewank performance after 1000 generations
10 Particles 20 Particles

µ σ Min Max µ σ Min Max
GC II 0.702 0.187 0.417 0.971 0.584 0.131 0.201 0.843
LPSO 2.997 2.945 0.387 15.805 1.695 1.921 0.338 14.401

CLPSO 3.049 2.101 0.236 16.427 1.9 2.379 0.236 17.259
Constricted 0.488 0.168 0.151 0.83 0.413 0.145 0.151 0.792

BareBones 0.523 0.181 0.203 0.912 0.444 0.158 0.151 0.83
PSOGauss 0.53 0.168 0.151 0.958 0.454 0.174 0.151 0.83



101

102

103

104

100 101 102 103 104

F
itn

es
s

Iterations

BareBones
Constricted
PSOGauss

(a) Sphere

101

102

103

104

100 101 102 103 104

F
itn

es
s

Iterations

BareBones
Constricted
PSOGauss

(b) Quadratic

101

102

103

104

100 101 102 103 104

F
itn

es
s

Iterations

BareBones
Constricted
PSOGauss

(c) Rastrigin

104

105

106

107

108

109

1010

100 101 102 103 104

F
itn

es
s

Iterations

BareBones
Constricted
PSOGauss

(d) Rosenbrock

10-1

100

101

100 101 102 103 104

F
itn

es
s

Iterations

BareBones
Constricted
PSOGauss

(e) Griewank

Figure 5: Average fitness over time for unconstrained optimizers with HHM and 10 particles



computed over 100 runs using 10 particles. These graphs
show that every unconstrained algorithm (using HHM) on
every benchmark has converged to good values by the time
100 generations have completed. Time did not allow for the
creation of similar experiments with LPSO, CLPSO, and
Genocop II (this should be done in the future), but it is use-
ful to know that good values may be obtained earlier from
the HHM method than the tabulated data suggest.

5 Conclusions

The homomorphous mapping is a useful and effective al-
ternative to feasibility preservation when dealing with lin-
ear equality constraints in PSO. The particular mapping de-
veloped here, the HHM, is simple to implement, does not
suffer from the numeric problems inherent in using Gaus-
sian Elimination, and allows the application of any uncon-
strained optimization algorithm to a problem of reduced di-
mensionality. The performance of the unconstrained PSO
algorithms chosen here is not only better than that of both
LPSO and CLPSO in many instances, it also compares fa-
vorably with or outperforms Genocop II.

The ability to apply any unconstrained optimization al-
gorithm to functions with linear equality constraints is a
benefit by itself, since there are many more effective un-
constrained optimization algorithms than those that handle
constraints directly, many of which have been well tuned.
Reducing the problem dimensionality provides further ben-
efits that cannot be ignored.

The HHM approach described here may also be useful
when working with linear inequality constraints; it is possi-
ble that it could form the basis for a truly general method of
linear constraint handling. Work is ongoing in this area and
will be addressed more completely in the future.

It remains to be seen how this approach will fare in real
world applications like the training of SVMs, a potentially
interesting direction for future research.

Bibliography

[1] M. Clerc. TRIBES - un exemple d’optimisation par es-
saim particulaire sans paramètres de contrôle. In Op-
timisation par Essaim Particulaire (OEP 2003), Paris,
France, 2003.

[2] M. Clerc and J. Kennedy. The particle swarm: Explo-
sion, stability, and convergence in a multidimensional
complex space. IEEE Transactions on Evolutionary
Computation, 6(1):58–73, February 2002.

[3] G. Coath and S. K. Halgamuge. A comparison of
constraint-handling methods for the application of par-
ticle swarm optimization to constrained nonlinear op-
timization problems. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2003),
pages 2419–2425, 2003.

[4] X. Hu and R. C. Eberhart. Solving constrained non-
linear optimization problems with particle swarm op-
timization. In Proceedings of the Sixth World Multi-

conference on Systemics, Cybernetics and Informatics
2002 (SCI 2002), Orlando, USA.

[5] J. Kennedy. Bare bones particle swarms. In Proceed-
ings of the IEEE Swarm Intelligence Symposium 2003
(SIS 2003), pages 80–87, Indianapolis, Indiana, 2003.

[6] J. Kennedy and R. C. Eberhart. Particle swarm opti-
mization. In International Conference on Neural Net-
works IV, pages 1942–1948, Piscataway, NJ, 1995.
IEEE Service Center.

[7] S. Koziel and Z. Michalewicz. Evolutionary algo-
rithms, homomorphous mappings, and constrained
parameter optimization. Evolutionary Computation,
7(1):19–44, 1999.

[8] T. Krink, J. S. Vestertroem, and J. Riget. Particle
swarm optimisation with spatial particle extension. In
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2002), Honolulu, Hawaii, 2002.

[9] R. Mendes, J. Kennedy, and J. Neves. The fully in-
formed particle swarm: Simpler, maybe better. IEEE
Transactions on Evolutionary Computation, 8(3), June
2004.

[10] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Evolution Programs. Springer-Verlag, Berlin,
3 edition, 1996.

[11] C. K. Monson and K. D. Seppi. The Kalman swarm. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, volume 1, pages 140–150, Seattle,
Washington, 2004.

[12] U. Paquet and A. P. Engelbrecht. A new particle
swarm optimizer for linearly constrained optimization.
In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2003), pages 227–233, Canbella,
Australia, 2003.

[13] U. Paquet and A. P. Engelbrecht. Training support
vector machines with particle swarms. In Proceed-
ings of the International Joint Conference on Neural
Networks (IJCNN 2003), pages 1598–1603, 2003.

[14] K. E. Parsopoulos and M. N. Vrahatis. Particle swarm
optimization method constrained optimization prob-
lems. In Proceedings of the Euro-International Sym-
posium on Computational Intelligence 2002, 2002.

[15] G. T. Pulido and C. A. C. Coello. A constraint-
handling mechanism for particle swarm optimization.
In Proceedings of the 2004 Congress on Evolution-
ary Computation (CEC’2004), volume 2, pages 1396–
1403, Portland, Oregon, June 2004. IEEE.

[16] J. Riget and J. S. Vesterstrøm. A diversity-guided par-
ticle swarm optimizer — the ARPSO. Technical Re-
port 2002-02, Department of Computer Science, Uni-
versity of Aarhus, 2002.


