
Particle Swarm Optimization in Dynamic Pricing
Patrick B. Mullen

Computer Science Department
Brigham Young University

mullenp@cs.byu.edu

Christopher K. Monson
Computer Science Department

Brigham Young University
c@cs.byu.edu

Kevin D. Seppi
Computer Science Department

Brigham Young University
kseppi@cs.byu.edu

Abstract— Dynamic pricing is a real-time machine learning
problem with scarce prior data and a concrete learning cost.
While the Kalman Filter can be employed to track hidden
demand parameters and extensions to it can facilitate explo-
ration for faster learning, the exploratory nature of Particle
Swarm Optimization makes it a natural choice for the dynamic
pricing problem. We compare both the Kalman Filter and
existing particle swarm adaptations for dynamic and/or noisy
environments with a novel approach that time-decays each
particle’s previous best value; this new strategy provides more
graceful and effective transitions between exploitation and
exploration, a necessity in the dynamic and noisy environments
inherent to the dynamic pricing problem.

I. INTRODUCTION

The popularity of the Internet somecommand as a medium
for commerce creates unique opportunities to alter prices
rapidly in response to changes in markets. While not respon-
sible for its existence, this fluid medium lends increased im-
portance to an interesting real-time learning problem known
as dynamic pricing, “...the problem of setting prices dy-
namically to maximize expected revenues in a finite horizon
model in which the demand parameters are unknown. [1]” In
dynamic pricing, training examples are available in the form
of one set of price-revenue pairs per time period.

In addition to being a real-time learning problem, dynamic
pricing also has measurable associated costs that must be
taken into account when determining an appropriate balance
between exploration and exploitation. A pure exploitation
strategy may produce good results for a time, but the
dynamic nature of the environment may eventually cause
its performance to degrade. Alternatively, exploration is
likely to provide useful information about the true nature
of the market, information that may facilitate more effective
future exploitation. Because exploration and exploitation are
indistinguishable from the perspective of a buyer (as both
involve setting a price), liberal exploration carries with it
the risk of opportunity cost, revenue lost at the current time
period because the price was set away from the optimum.

One frequently applied approach to the problem is to
model demand using a parametric model. As the true market
demand is not known a priori, the parameters of the model
are considered to be hidden; a price is chosen and a revenue
observed, but the nature of the demand at every price point
is generally unknown. Such a model lends itself well to
Bayesian reasoning, making a case for the use of the Kalman
Filter to track its hidden parameters [2].

The Kalman Filter is provided a prior (and generally
subjective) belief about the hidden parameters, which it
combines with observations to adjust and track its under-
standing of those parameters. This information is typically
used to set a new price that optimizes the expected revenue
during the next time period. After setting the new price, the
actual revenue is observed and the process is repeated. This
“myopic pricing strategy” was enhanced by Carvalho and
Puterman, who estimate the value of different prices using a
one-step look ahead function and choose the price with the
highest total expected revenue for a given number of time
steps [3].

The Kalman Filter is not unique in its ability to track
hidden parameters, however, and these modifications, while
allowing it to explore, do not provide compelling evidence
that an optimal exploration/exploitation balance has been
achieved. Because the dynamic pricing problem requires
striking such a balance, PSO is an interesting alternative; it
tends to naturally operate at the boundary between stability
and chaos [4]. It is essentially an optimization technique
based on social behavior that modifies each “particle” in
a “swarm” by combining its current position in the search
space ~xi, velocity ~vi, best remembered location ~pi, and the
best location known among its neighbors ~g [5]. This is
typically done in the following way:

~vi = χ
(

~vi + ϕ1
~U1 ⊗ (~pi − ~xi) + ϕ2

~U2 ⊗ (~g − ~xi)
)

(1)

~xi = ~xi + ~vi (2)

where each ~Ui is a vector whose elements are drawn from a
standard uniform distribution at each time step, and the ⊗ op-
erator performs element-wise multiplication. The constant χ
is called the “constriction coefficient” and is calculated thus:

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ|
(3)

usually with ϕ = ϕ1 + ϕ2 > 4 [4].
Unfortunately, standard unmodified PSO is not even suit-

able for application to static pricing problems due to the
presence of observation noise; one abnormally favorable
observation far from the optimal price can fix a particle’s
~p (and often ~g) to an overly optimistic value, causing the
entire swarm to converge quickly on that erroneous point.
This occurs because PSO is essentially greedy: only the best
position is remembered by each particle, and the swarm
is generally attracted to the best of those (assuming the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.5 1 1.5 2 2.5 3 3.5 4

R
ev

en
ue

Price

Example Demand Model

Fig. 1. Log-linear demand model, α = 8.0, β = −1.5 with no noise

commonly used fully-connected sociometry). Noise alone is
sufficient to cause problems for a particle swarm, but the
situation worsens further in the presence of dynamic demand
parameters. Adaptations to PSO must therefore be considered
in the context of dynamic pricing.

This work begins with a more detailed description of the
dynamic pricing problem, including the formulation of a
demand model. Approaches employing the Kalman Filter are
then described prior to a discussion of popular adaptations
of PSO to noisy and dynamic environments. This discussion
motivates the creation of a new algorithm, the P-Best Decay
PSO (PBDPSO). After presenting the experimental setup, the
results of applying these various algorithms are shown and
discussed.

II. PRICING MODEL

Various economic models are in common use, and this
work will focus on Kalyanam’s log-linear demand model [6].
In this model, demand is represented using the parameters α
and β, and the equation

d = eα+pβ+ε (4)

where d is the quantity demanded for the chosen price p,
β is strictly negative, and ε represents Gaussian noise with
parameters µ and σ2. The noise represents small changes in
demand that occur on an irregular basis and can be due to any
factor that shifts the d, such as money spent on advertising,
competitor’s advertising, or seasonal shifts in demand.

Interestingly, in this simplified demand model the optimal
price is p∗ = −1/β and is therefore independent of α. It
should be noted that maximization is performed over the
revenue r = pd in the pricing problem, not over the quantity
demanded d (since the only requirement for maximization of
the latter is a reduction of the price p to 0). An example of
the shape of the log-linear demand curve is given in Figure 1.

While simple, the log-linear model admits more sophisti-
cated and realistic scenarios by simply assuming that α and
β vary with time. The following situations are of particular
interest in this work:

• The parameters stay close to the original values,
• An event causes a sudden shift in the parameters, or
• A long-term trend is evident in the demand.

Results will be presented for experiments in which each of
these situations is captured.

III. KALMAN FILTER AND PRICING

The Kalman Filter estimates the hidden state of a system
based on noisy observations over time using the following
equations:

µt+1 = Fµt + Kt+1(zt+1 − HFµt)

Σt+1 = (I − Kt+1H)(FΣtF
> + Σx)

Kt+1 = (FΣtF
>+Σx)H>(H(FΣtF

>+Σx)H>+Σz)
−1

Where µ = (α̂, β̂)> is the mean of the filtered estimates
of the true demand parameters, µ0 and Σ0 parameterize the
prior Gaussian distribution over those parameters, z is the
log of the observed quantity demanded, Σz is its covariance,
F is the system transition matrix, and Σx is the covariance
of the model parameters. Additionally, in this pricing model:

H =

(

1
p

)

F = I .

This choice of F and Σx assumes the demand parameters α
and β follow a random walk.

Using the filtered estimate β̂, it is possible to attempt
to maximize revenue r = pd by setting the price to the
estimate of the optimal price p̂∗ = −1/β̂. This approach
tends to select prices within a narrow range, a strategy that
provides little information about the true nature of demand;
if the initial estimate of β is incorrect, this strategy will
never discover the error because β essentially defines a
slope, requiring more diverse samples to achieve a good
estimate. Choosing sufficiently diverse samples, however,
incurs opportunity cost: the difference between what might
have been earned through exploitation (letting p = p̂∗) and
what was actually earned during exploration (by setting it to
something else).

Carvalho and Puterman address this information issue by
using a one-step look ahead function [3]:

Ft(pt) = pte
αt−1+ptβt−1Mt−1+

G(t)

2

Mt−1e
αt−1−1

β3
t−1

σ2
Bt

(pt) .

(5)

The price is chosen to maximize the objective function:
pt = arg maxp Ft(p), where the first term is interpreted as
the present estimated revenue and the second term defines
the future estimated revenue (corresponding to minimizing
the variance) given the price pt. The variables αt−1 and
βt−1 are set to α̂ and β̂ from the Kalman Filter, respectively.
Furthermore, the value Mt−1 = eσ2

t−1
/2, where σ2

t−1 is the
estimate of σ2 for time t before demand is observed.

This algorithm assumes the availability of data points
for t ∈ {−2,−1}. Even given these, however, at t = 0
sufficient information is lacking for a good estimate of σ2.
It is therefore initially set to a value known to be wrong for

the purposes of experimentation: σ2
0 = σ2/2 at t = 0. The

algorithm is not particularly sensitive to this choice [3].
After observing the revenue at t = 1, the ordinary

least squares method is used to estimate σ2
t = 1

t [ε̂−2 +

ε̂−1 +
∑2

k=1
ε̂2k where ε̂k = log(dk) − αt − βtpk, k =

−2,−1, 1, . . . , t. The term G(t) in equation 5 defines the
weight given to exploration, and several different functions
are used in the original work [3]. In this paper the piecewise
linear function is used

G(t) =

{

Tc − t if t < Tc

0 otherwise
. (6)

Note that Tc is not necessarily the end of the considered time
horizon, and G(t) = 0 produces the myopic pricing strategy.

IV. PARTICLE SWARMS AND PRICING

The unmodified Kalman Filter has some obvious deficien-
cies in this setting. First, it does not naturally explore: in
using (5), Carvalho and Puterman were able to address this
issue to some extent, forcing the Kalman Filter to explore.
Second, the Kalman Filter requires precise knowledge or
assumptions about the demand function: since it estimates
the demand parameters, it must know exactly how those
parameters relate to the quantity demanded; success within a
log-linear model will not translate into success within other
models (which may have many more parameters).

These particular deficiencies are not shared by PSO, which
explores naturally and does not require explicitly-stated
prior information about the target function for successful
operation. Assuming that the revenue curve (e.g., Figure 1)
is generally unimodal and smooth, PSO can be expected
to work well in a variety of demand environments without
problem-specific tuning. Even so, standard PSO has its own
deficiencies in dynamic and noisy contexts, and these must
be addressed before it can be successfully applied to the
dynamic pricing problem.

Standard PSO has occasionally been tested in noisy envi-
ronments, particularly in comparison with other evolutionary
algorithms and differential evolution on common benchmarks
[7], as well as with non-linear least squares algorithms on
problems of determining parameters for traditional system
identification tasks [8]. In both cases PSO was competitive
with existing methodologies for solving those problems. Par-
sopoulos and Vrahatis claim that noisy environments allow
particles to avoid local optima while converging on the global
optimum. Their study, however, uses very small amounts of
additive noise [9]; the pricing problem, in contrast, is subject
to much larger amounts of noise.

Another study by Parsopoulos and Vrahatis applies PSO
in situations with higher noise levels, but PSO requires
thousands of iterations to converge even on two-dimensional
problems [10]. The dynamic pricing problem requires signif-
icantly more agility than this, where convergence is expected
to occur in a much smaller number of price settings or
function evaluations (< 1000).

One adaptation stands out that improves PSO perfor-
mance in noisy environments: Noise-Resistant PSO [11].

This algorithm re-evaluates all ~p locations after each iteration
and either averages or takes the min of the new values. It
appears to work well in a robotic obstacle avoidance setting
but requires too many additional function evaluations to be
suitable for dynamic pricing; another approach is needed.

Two things must be detected by PSO in a noisy and
dynamic environment:

• Premature convergence due to noise, and
• Environmental changes that move the global optimum.

Once detected, an appropriate response to these changes must
be developed that allows PSO to track the location of the
optimum [12].

A. Detection Methods

Several detection strategies have been developed for dy-
namic environments, all of which make use of a variable
N , describing a number of iterations. One approach triggers
tracking if ~g has not moved but its value has changed after
N iterations (NewGN), while another triggers if the location
of ~g has not changed after N iterations (FixedGN) [13]. Yet
another approach employs specialized sentry particles in the
same manner as NewGN , re-evaluating these points during
search to detect changes in the function [14]; two variants
of this approach involve choosing random points as sentries
(SentryN) and choosing the ~p of a random particle as a sentry
point (SentryPN). A simpler but more blunt detection tool is
sometimes applied, triggering a change notification after N
iterations without regard to the state of the swarm (FixedN).

In consideration of the noisy pricing environment in which
the algorithms will be running, these detection algorithms
have been altered. When employing NewGN , SentryN , or
SentryPN in noisy environments, it is highly unlikely that re-
sampling a position will produce the same value twice even
if the environment has not changed, making the unmodified
re-evaluation technique trigger too often. Therefore, instead
of merely detecting a change in value, notification is only
triggered when a value change exceeds some minimum per-
centage of variation, here taken to be 20%. Additionally, the
addition of the N parameter is new to many of the previously
described methods (with the exception of FixedGN), as by
default they do their evaluations after every iteration. These
altered approaches are outlined in Table I.

B. Response Methods

Response methods vary as well, but generally fall into one
of two categories. The first involves recalculating the value at
each ~pi: if the value is better at the particle’s current position
~xi, then ~pi is replaced with ~xi (Reset) [14], [15]. Another
strategy is to re-randomize a subset of particle locations and
velocities (possibly including a reset of ~p), thereby selectively
erasing some particles’ memory (Rand) [13], [16]; a variant
of this method only re-randomizes particle i if ~pi = ~g
(RandG). These approaches are summarized in Table II. In
this table a ’+’ is used when the reset methodology is used in
conjunction with other response techniques. For comparison
purposes we also include NoResp where no changes are
made to the swarm.

TABLE I
METHODS USED TO DETECT CHANGES IN THE PRICING ENVIRONMENT

Label Detection Method Description
Fixed1 No Detection Method, Response called

every time
NewG10 Re-evaluate global best, check every 10

iterations, 20% threshold
NewG20 Re-evaluate global best, check every 20

iterations, 20% threshold
FixedG10 Monitor time since global best changed, 10

iterations without change triggers response
FixedG20 Monitor time since global best changed, 20

iterations without change triggers response
FixedG30 Monitor time since global best changed, 30

iterations without change triggers response
Sentry10 Sentry, check every 10 iterations, 20%

threshold
Sentry20 Sentry, check every 20 iterations, 20%

threshold
SentryP10 Sentry-p-best, check every 10 iterations,

20% threshold
SentryP20 Sentry-p-best, check every 20 iterations,

20% threshold
Fixed10 Fixed-iteration, 10 iterations
Fixed20 Fixed-iteration, 20 iterations
Fixed30 Fixed-iteration, 30 iterations

TABLE II
METHODS USED TO RESPOND TO CHANGES IN THE PRICING

ENVIRONMENT

Label Response Method Description
NoResp No Response Method
Rand1 Re-randomize 1 particle
Rand2 Re-randomize 2 particles

Rand1+ Re-randomize 1 particle, reset others
Rand2+ Re-randomize 2 particles, reset others
Reset Reset all particles

RandG Re-randomize g-best
RandG+ Re-randomize g-best, reset others

While interesting and useful in many dynamic situations,
these approaches still suffer in the presence of noise; as
mentioned above, re-evaluation of any location will almost
always produce a different value. Additionally, if the loca-
tions in need of re-evaluation are far from the optimum, re-
evaluation can incur significant opportunity cost with little
potential for acquiring useful information. Worse still, in the
pricing environment the majority of changes are gradual, so
resetting the particles in the system discards all previously-
obtained information about the state of the system; given the
short time constraints under which the swarm is operating,
throwing away so much information is unwise: the new
optimum is likely to be near its previously location, implying
that previous information may still have value. These issues
are addressed by a new PSO variant, described below.

V. P-BEST DECAY PSO

The P-Best Decay PSO (PBDPSO) is designed to address
the issues with adaptations of PSO for noisy and dynamic en-
vironments. It is essentially constricted PSO with the addition
that the stored value y~pi

of each ~pi is decayed by multiplying
it by a decay rate γ. In the case of maximization, γ is within

the interval (0, 1). PBDPSO will replace each stored y~pi

with γy~pi
(thus automatically decaying ~g) when response is

triggered by any of the various detection algorithms (Table I).
The assumption behind this approach is that each y~pi

is
likely to be either abnormally favorable or invalid because
the function has changed. By decaying y~pi

, PBDPSO allows
particles to be attracted to new areas of the space even though
the noisy samples in those areas may not appear to be as good
as the previous, potentially abnormal values. This allows the
particles to simultaneously make use of previous information
while discounting possibly noisy or dynamic data.

VI. EXPERIMENTAL SETUP

The experiments that follow require the selection and
setting of various strategies and parameters. The true demand
(as well as the Kalman demand model, whose parameters are
learned over time) is log-linear, and its equation is initialized
with α = 8.0, β = −1.5, µ = 0 and σ2 = 4.0. To
this model, one of the following four dynamic contexts is
applied to the parameters of (4), described below. In all of
the following scenarios, α and β vary with time and have a
random component represented as additive Gaussian noise,
parametrized by (µα, σα) and (µβ , σβ). Unless otherwise
specified, this is represented by the following equations:

αt = αt−1 + N(µα, σα) (7)
βt = βt−1 + N(µβ , σβ) . (8)

In all cases, σ2
α = .05 and σ2

β = .015. The scenarios follow.

Parameters remain near original values:

µα = µβ = 0

Large change at t = 300:

α300 = α299 + 1 + N(µα, σα)

β300 = β299 + 0.4 + N(µβ, σβ)

Overall upward trend:

µα = 0.025 µβ = 0.0075

Overall downward trend:

µα = −0.025 µβ = −0.0075

Sellers usually have a prior belief about the optimal price
for their products. They also know the lowest price at which
they are willing to sell and generally have a reasonable
estimate of a maximum supportable price in their market, and
these data will be supplied to the algorithms where needed.
It is also assumed that revenue observations for the latter two
price points are available, supplying the Kalman Filter with
needed seed values and the particle swarm with necessary
initialization bounds. The upper and lower bounds are always
set at 3.0 and 0.33, respectively.

Parameters for (5) are taken from Carvalho and Puterman
[3], with exploration time Tc = 30. They found that after the
exploration period is complete, some random exploration of
the pricing system can improve the Kalman Filter’s ability

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
iti

ve
 M

ea
n

R
ev

en
ue

Time Period

PSfrag replacements
KF

KF-OSL
Fixed10-PBDPSO99
Fixed20-PBDPSO90
Fixed30-PBDPSO98

Sentry10-PBDPSO98

Fig. 2. Mean cumulative revenue earned with demand parameters changing
with time

to track the parameters. Therefore, when t > TC a price
is chosen according to a uniform distribution between the
established bounds with probability 0.01.

Given the short time horizon, the PSO swarm size is set to
4 in all PSO algorithms, and a fully-connected sociometry is
used. The chosen swarm size is large enough to admit testing
responses that require more information while being small
enough to avoid too many function evaluations. Additionally,
ϕ1 = ϕ2 = 2.05 in all PSO experiments.

Each simulation proceeds for 1000 function evaluations,
and all results shown are the mean of 1000 independent
experiments. While total revenue for each algorithm is par-
ticularly important, in the interests of space the cumulative
mean revenue is depicted instead, defined as

∑t
n=1

rn/t,
where t is the current time step and rn is the revenue
earned at t = n. For PSO, each detection method was
run in conjunction with each response method, and these
results are compared to the one-step look ahead function and
unmodified Kalman Filter.

VII. RESULTS

In the graphs presented here, the use of a Kalman Filter
is denoted “KF”, and the Kalman Filter employing the
one-step look ahead function is denoted “KF-OSL”. The
remainder of the lines are indicated using the detection and
response abbreviations in tables I and II. The additional
notation PBDPSOn indicates that PBDPSO is applied with
γ = n/100. In order to simplify the presentation, only the
best-performing PSO algorithms are presented in each graph.
For the curious reader more complete cumulative results are
included in Tables III, IV, and V for all experiments except
those involving trends.

PSO is able to overtake and surpass the performance of the
Kalman Filter in the majority of the dynamic environments.
Figure 2 indicates that the Kalman filter is able to quickly
identify the demand parameters, but once the parameters
begin to deviate from their original values the particle swarms
are better equipped to adapt. The best response algorithms in

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
iti

ve
 M

ea
n

R
ev

en
ue

Time Period

PSfrag replacements
KF

KF-OSL
FixedG20-PBDPSO90
FixedG20-PBDPSO98
FixedG20-PBDPSO99
FixedG10-PBDPSO90

Fig. 3. Mean cumulative revenue earned with demand parameters jumping
at t = 300

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 50 100 150 200

C
um

ul
iti

ve
 M

ea
n

R
ev

en
ue

Time Period

PSfrag replacements

KF
KF-OSL

Fixed10-Reset
Fixed30-Rand2+
Sentry10-RandG

FixedG30-PBDPSO99

Fig. 4. Mean cumulative revenue earned with demand parameters changing
with time with overall upward trend

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
iti

ve
 M

ea
n

R
ev

en
ue

Time Period

PSfrag replacements

KF
KF-OSL

Fixed20-RandG
FixedG10-RandG

NewG20-PBDPSO98

Fig. 5. Mean cumulative revenue earned with demand parameters changing
with time with overall downward trend

TABLE III
COMPLETE PSO RESULTS FOR STATIC DEMAND. NUMBERS ARE AVERAGE HUNDREDS OF DOLLARS EARNED AT EACH TIME PERIOD.

Fi
xe

d1

N
ew

G
10

N
ew

G
20

Fi
xe

dG
10

Fi
xe

dG
20

Fi
xe

dG
30

Se
nt

ry
10

Se
nt

ry
20

Se
nt

ry
P1

0

Se
nt

ry
P2

0

Fi
xe

d1
0

Fi
xe

d2
0

Fi
xe

d3
0

Av
g.

NoResp 40 39 38 36 38 39 39 38 38 39 38 37 40 38
Rand1 32 33 33 33 33 31 32 32 33 31 33 32 33 32
Rand2 31 31 32 32 33 30 31 31 32 31 32 31 31 31
Rand1+ 33 34 33 33 33 34 34 33 34 33 33 33 34 33
Rand2+ 32 32 32 32 32 35 33 33 32 32 34 32 31 32
Reset 38 40 40 39 39 41 42 39 39 39 40 40 40 40
RandG 29 29 31 29 30 28 29 27 28 29 29 30 29 29
RandG+ 31 31 31 31 31 31 31 30 32 30 30 31 31 31
PBDPSO99 41 38 39 41 37 39 42 41 39 42 39 39 40 40
PBDPSO98 39 39 41 41 41 40 39 41 40 40 43 38 41 40
PBDPSO90 41 42 39 41 40 42 41 44 41 40 43 41 41 41
Avg. 35 35 35 35 35 35 36 35 35 35 36 35 36

TABLE IV
COMPLETE PSO RESULTS FOR CHANGING DEMAND WITH TIME. NUMBERS ARE AVERAGE HUNDREDS OF DOLLARS EARNED AT EACH TIME PERIOD.

Fi
xe

d1

N
ew

G
10

N
ew

G
20

Fi
xe

dG
10

Fi
xe

dG
20

Fi
xe

dG
30

Se
nt

ry
10

Se
nt

ry
20

Se
nt

ry
P1

0

Se
nt

ry
P2

0

Fi
xe

d1
0

Fi
xe

d2
0

Fi
xe

d3
0

Av
g.

NoResp 75 60 67 104 70 67 77 98 74 93 92 76 86 80
Rand1 62 59 69 61 76 76 72 78 68 72 80 62 66 69
Rand2 76 69 60 74 65 54 95 58 70 55 79 64 48 67
Rand1+ 79 69 81 64 63 62 61 60 74 67 71 89 66 70
Rand2+ 73 56 73 86 62 57 95 76 68 53 69 68 54 68
Reset 72 100 72 78 72 75 76 89 70 78 65 78 87 78
RandG 73 53 84 55 69 60 72 62 80 77 65 72 81 70
RandG+ 73 71 54 68 82 62 63 63 93 51 82 62 75 69
PBDPSO99 74 83 103 102 84 87 87 77 95 73 129 75 96 90
PBDPSO98 66 94 114 90 101 87 72 82 69 91 96 70 95 87
PBDPSO90 64 92 85 64 65 93 100 108 68 93 75 94 75 83
Avg. 72 73 78 77 74 71 79 77 75 73 82 74 75

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
iti

ve
 M

ea
n

R
ev

en
ue

Time Period

PSfrag replacements
KF

KF-OSL
Fixed10-PBDPSO90
Fixed10-PBDPSO99

Sentry20-PBDPSO90
Sentry10-PBDPSO90

Fig. 6. Mean cumulative revenue earned with static demand

this scenario are those employing the PBDPSO as a response
methodology. The best-performing detection algorithms are
the FixedN and SentryN methods.

Figure 3 depicts the results of applying various algorithms
to “sudden shift” scenario, where parameters change sharply
at t = 300. In this case FixedGN is the best detection method
and PBDPSO provides the best response. It is interesting to
note that immediately after the parameter shift the particle
swarm quickly overtakes the Kalman Filter algorithms.

In the presence of a constant upward trend, PSO signifi-
cantly outperformed the Kalman Filter variants, as shown in
Figure 4. Different response methods appear to be appropri-
ate in this setting than in the previous experiments. Among
response methods, the top performers are variations on Rand
and Reset, with PBDPSO remaining highly competitive.
When tested on the downward trend scenario, Figure 5 shows

TABLE V
COMPLETE PSO RESULTS FOR CHANGING DEMAND WITH TIME AND SUDDEN SHIFT IN DEMAND AT TIME PERIOD 300, REPORTED IN AVERAGE

HUNDREDS OF DOLLARS EARNED AT EACH TIME STEP.

Fi
xe

d1

N
ew

G
10

N
ew

G
20

Fi
xe

dG
10

Fi
xe

dG
20

Fi
xe

dG
30

Se
nt

ry
10

Se
nt

ry
20

Se
nt

ry
P1

0

Se
nt

ry
P2

0

Fi
xe

d1
0

Fi
xe

d2
0

Fi
xe

d3
0

Av
g.

NoResp 289 303 327 326 294 312 341 320 299 306 345 323 313 315
Rand1 256 259 287 257 254 267 271 255 247 257 279 251 259 262
Rand2 266 288 242 272 243 277 286 287 329 257 264 281 277 274
Rand1+ 313 279 265 270 289 307 269 253 250 300 269 247 296 277
Rand2+ 283 266 264 280 275 264 288 288 278 256 239 274 245 269
Reset 309 283 291 279 322 297 300 322 309 288 276 312 296 299
RandG 256 247 231 234 262 236 263 256 275 250 237 245 242 249
RandG+ 280 256 270 258 285 263 259 264 247 276 262 255 254 264
PBDPSO99 351 314 291 309 356 320 325 311 310 318 291 312 310 317
PBDPSO98 342 344 323 320 334 308 340 326 285 326 297 317 319 322
PBDPSO90 325 307 309 350 384 327 312 313 336 297 302 332 330 325
Avg. 297 286 282 287 300 289 296 290 288 285 278 286 285

that PBDPSO does no better nor worse on average than
any of the other top performers. In fact, none of the top
performers are easily distinguished in this scenario.

Figure 6 displays the results in a noise-free and purely
static demand context. In this scenario, PBDPSO is unable to
approach the performance of the either of the Kalman Filter
variants. It does, however outperform the other response
algorithms in this setting.

Table III shows the result of applying the PSO variants to
a static demand scenario, and has some interesting charac-
teristics. In general, PBDPSO is the best response method
applied, but unmodified PSO (Fixed1-NoResp) performs
surprisingly well in comparison.

VIII. CONCLUSIONS

PBDPSO performs well against the Kalman Filter vari-
ants as well as outperforming existing PSO adaptations for
noise and dynamic functions, except in the static scenario.
While Carvalho and Puterman developed the one-step look
ahead Kalman variant with the express purpose of improving
performance in a dynamic setting, their published results are
limited to a noisy but purely static environment. Unchanging
demand parameters, while providing a good algorithm testing
ground, do not represent a realistic pricing scenario, and
this is the only setting in which the Kalman Filter variants
dominate the results.

The results in this work indicate that PBDPSO is a well-
rounded algorithm for application to the dynamic pricing
problem. The exploratory nature of particle swarms, espe-
cially with the proposed adaptations, allows them to track
changes in this noisy and dynamic system, thereby earning
higher total revenues over time.

That no PSO variant’s performance is distinguishable from
that of the other methods outlined here for the case with a
downward trend is unsurprising after deeper consideration.

Even with the proposed decay method, PSO remains a fun-
damentally greedy algorithm: it continues to favor attractors
with higher value, and therefore struggles with functions
whose maximum is constantly decreasing. In an attempt to to
improve the performance of PBDPSO in this situation, more
aggressive detection and response methods have been imple-
mented, including lower thresholds and iteration constants for
the detection methods, and larger re-initialized subsets and
decay values as low as 0.75 in the response methods. None
of these approaches improved performance. Additionally,
drawing random ϕi values from a uniform distribution on the
interval [1, 3] at each time step failed to improve its ability
to track a downward trend.

Many promising directions are under consideration for fu-
ture research. The first relates to the dynamic pricing problem
itself. More experiments are needed in the downward trend
scenario to determine whether any kind of particle swarm
may be effectively applied. For example, rather than com-
pletely re-randomizing particles, it may help to retain their
current positions while randomizing only their velocities.
The problem of the downward trend is especially interesting
because improvements to PSO in that environment are likely
to extend to the others; noise as defined in these experiments
is symmetric about the true revenue, and PBDPSO was
designed exclusively for the overly optimistic case. That
noise represents abnormally favorable and abnormally unfa-
vorable values suggests that improvement in the presence of
a downward trend will translate to improvement elsewhere.

Another opportunity for future research is a more direct
and less application-centric comparison of PBDPSO with
other PSO variants designed to cope with noisy or dynamic
functions.

ACKNOWLEDGMENTS

This work was supported in part by the BYU bookstore
and the Rollins Center for eBusiness at Brigham Young
University.

REFERENCES

[1] A. X. Carvalho and M. L. Puterman, “Learning and pricing in an
internet environment with binomial demands,” Journal of Revenue and
Pricing Management, vol. 3, no. 4, pp. 320–336, 2005.

[2] A. C. Harvey, Forecasting, Structural Time Series Models and the
Kalman Filter. Press Syndicate of the University of Cambridge, 1989.

[3] A. X. Carvalho and M. L. Puterman, “Dynamic pricing and learning
over short time horizons,” 2003.

[4] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space.” IEEE Trans.
Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[5] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks (ICNN 1995), vol. 4,
Perth, Australia, 1995, pp. 1942–1948.

[6] K. Kalyanam, “Pricing decisions under demand uncertainty: A
Bayesian mixture model approach,” Marketing Science, vol. 15, no. 3,
pp. 207–221, 1996.

[7] T. Krink, B. Filipic, G. B. Fogel, and R. Thomsen, “Noisy optimiza-
tion problems - a particular challenge for differential evolution?” in
Proceedings of the 2004 IEEE Congress on Evolutionary Computation
(CEC 2004). Portland, Oregon, USA: IEEE Press, 20-23 June 2004,
pp. 332–339.

[8] M. S. Voss and X. Feng, “A new methodology for emergent system
identification using particle swarm optimization (PSO) and the group
method data handling (GMDH),” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2002), New York,
New York, USA, July 2002, pp. 1227–1232.

[9] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
for imprecise problems,” in 5th international workshop on mathemat-
ical methods in scattering theory and biomedical technology, Corfu,
Greece, 2001.

[10] ——, “Particle swarm optimizer in noisy and continuously changing
environments,” in IASTED International Conference on Artificial In-
telligence and Soft Computing, Cancun, Mexico, 2001, pp. 289–294.

[11] J. Pugh, Y. Zhang, and A. Martinoli, “Particle swarm optimization for
unsupervised robotic learning,” in IEEE Swarm Intelligence Sympo-
sium, 2005, pp. 92–99.

[12] X. Li and K. H. Dam, “Comparing particle swarms for tracking
extrema in dynamic environments,” in IEEE Congress on Evolutionary
Computation (CEC 2003), vol. 3, Newport Beach, California, USA,
2003, pp. 1772–1779.

[13] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimisation:
Detection and response to dynamic systems,” in IEEE Congress on
Evolutionary Computation (CEC 2002), vol. 2, Honolulu, Hawaii,
USA, 2002, pp. 1666–1670.

[14] A. Carlisle and G. Dozier, “Tracking changing extrema with adap-
tive particle swarm optimizer,” in 5th Biannual World Automation
Congress, Orlando, Florida, USA, 2002, pp. 265–270.

[15] ——, “Adapting particle swarm optimization to dynamic environ-
ments,” in International Conference on Artificial Intelligence (ICAI
2000), Las Vegas, Nevada, USA, 2000, pp. 429–434.

[16] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems
with particle swarms,” in IEEE Congress on Evolutionary Computation
(CEC 2001), Seoul, Korea, May 2001, pp. 94–97.

