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ABSTRACT

Particle Swarm Optimization is fundamentally a stochastic algo-

rithm, where each particle takes into account noisy information

from its own history as well as that of its neighborhood. Though

basic information-theoretic principles would suggest that less noise

indicates greater certainty, the momentum term is simultaneously

the least directly-informed and the most deterministically applied.

This dichotomy suggests that the typically confident treatment of

momentum is misplaced, and that swarm performance can benefit

from better-motivated processes that obviate momentum entirely.

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a stochastic hill-climbing al-

gorithm especially suitable for use in continuous domains. Several

“particles” are initialized with random positions and velocities in

a limited “feasible region” of the function’s domain. At each time

step, all particles sample the fitness function, observe the history

of their neighbors, and unilaterally reposition themselves using a

simple update equation. This is repeated for the duration of the op-

timization session. Each particle maintains its current velocity and

position, as well as the best known position and fitness [6].

An effort has been made to codify a standard for PSO that can

be used as a baseline comparison for ongoing research [2]. This

standard, basic algorithm is an impressively performant general ap-

proach when implemented correctly and thus serves as an effective

starting point. Standard PSO utilizes the symmetric “ring” topol-

ogy with 20 particles and the following update equations:

vt+1 = χ (vt + φpU ◦ (pt − xt) + φgU ◦ (gt − xt)) (1)

xt+1 = xt + vt+1 . (2)

Here φp = φg = 2.05 are the “cognitive” and “social” coefficients

[7], each U is a distinct vector whose elements are independently

drawn from a standard uniform distribution for each use, and ◦ rep-

resents element-wise multiplication. The “constriction” coefficient

χ is typically specified as χ ≈ 0.72984 [2]. The terms p and g

are, respectively, the individual particle’s best known position and

the best known position among its neighbors.
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An important alternative formulation of (1) uses an inertia weight

ω instead of the constriction factor χ [10]:

vt+1 = ωvt + φpU ◦ (pt − xt) + φgU ◦ (gt − xt) . (3)

Formulations (1) and (3) are equivalent when ω = 0.72984 and

φp = φg ≈ 1.5. Nevertheless, for our purposes the flexibility of (3)

is more convenient. When using this formulation with different

parameter settings, a per-dimension velocity cap Vmax is typically

employed to avoid velocity explosion.

In spite of the maturity of PSO, the most effective inertia setting

continues to be an area of active and not entirely fruitful research.

For a given problem it is often possible to find an effective value

or strategy, but tuning this parameter is usually a problem-specific

exercise and a matter of trial and error [1, 3, 4].

All of the terms in the update equations are both noisy and in-

formed by fitness values, except momentum. The momentum term,

while accompanied by noise in several variants of PSO, is at best

only ever indirectly informed by fitness samples. The dispropor-

tionate impact of this term on swarm exploration would suggest

that algorithmic benefits arise from a better-motivated formulation.

2. DISTRIBUTIONS AND DETERMINISM
The notation of (3) is convenient from an implementation point of

view, but for our purposes a formulation in terms of random vari-

ables will be helpful. Consider the following completely equivalent

formulation of (3):

Pt+1 ∼ U [0, φp(pt − xt)] (4)

Gt+1 ∼ U [0, φg(gt − xt)] (5)

vt+1 = ωvt +Pt+1 +Gt+1 (6)

Here, P and G are each sampled from a multivariate uniform dis-

tribution over independent variables, specified by extreme corners

of a hyperrectangle. These are then used to produce a new velocity.

We can take this one step further, producing a single distribution C

from the convolution of P and G (shaped like, e.g., Figure 1):

Θt+1 ∼ C [φp(pt − xt), φg(gt − xt)] (7)

vt+1 = ωvt +Θt+1 . (8)

Again, this is exactly equivalent to (3). Interestingly, it is somewhat

reminiscent of the “Bare Bones” PSO algorithm, which uses the

Normal distribution to position particles1 [5].

The distribution C is noisily but directly informed by locations

of historically good fitness. A closer look at (8) reveals that mo-

mentum, on the other hand, does not inform the final position dis-

1Fittingly, the Normal Distribution is approached in the limit by
multiple similar convolutions.
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Figure 1: Convolution U [(0, 0), (30, 20)]∗U [(0, 0), (10,−10)].
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Figure 2: CRIBS+SAC, Standard and Zero Momentum.

tribution, but arbitrarily moves it elsewhere. It is simultaneously

highly impactful and woefully under-informed.

3. DIVERSITY WITHOUT MOMENTUM
The rather arbitrary nature of momentum presents difficulties when

attempts are made to find consistent inertia weight tuning strategies.

Swarm exploration as controlled by ω is indirect and unpredictable,

suggesting a more direct approach. Methods like CRIBS and its

predecessors, for example, provide intuitive control over explo-

ration/exploitation trade-offs and are effective at stagnation avoid-

ance [9]. Methods like SAC, which employ fitness history feedback

to adjust social and cognitive terms, also help with appropriately-

applied diversity [8]. These can replace momentum.

Zero momentum is not new [5], but such results have not re-

ceived deserved attention, likely because such results are not typ-

ically accompanied by other diversity enhancements in the litera-

ture. In the results of Figure 2, we demonstrate the effects of re-

moving momentum while leaving SAC and CRIBS in place to im-

prove diversity and reduce stagnation. As constriction is not needed

without momentum, we restore φg = φp = 2.05 for Standard PSO.

Omitting momentum on the Sphere function (a result elided due

to lack of space) decisively improves performance. This is not sur-

prising, as the function is both convex and smooth. Any explo-

ration is likely to be wasted effort. Similar behavior was observed

on Ackley and even Rosenbrock. On Rastrigin the performance of

PSO is not harmed by complete removal of momentum; stagnation

is prevented by CRIBS and exploration is balanced by SAC.

The omission of momentum tends to reduce swarm diversity for

harder functions in the long run, necessitating additional diversity

injection, but additional diversity-increasing methods are necessary

on harder functions anyway, and the idea that the responsibility for

the remaining effects of momentum might be successfully turned

over to more directly-informed strategies is very attractive. If we

cannot find consistently motivated and effective ways to use mo-

mentum to control swarm diversity and exploration, it may well be

possible to drop it entirely in favor of something else.

4. REMARKS AND CONCLUSION
Momentum is an arbitrary and difficult-to-tune approach to swarm

exploration tradeoffs. Fortunately, when PSO is augmented with

more straightforward diversity injection mechanisms, momentum

is simply not needed. As these mechanisms are needed on diffi-

cult and highly multi-modal functions regardless of the presence of

momentum, this does not impose any greater burden on developers

or practitioners than was already present. The performance of mo-

mentumless PSO can be dramatically improved by further simple

changes to existing PSO terms, to appear in future work.
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