
A Bayesian CMAC for High Assurance Learning

James L. Carroll and Kevin D. Seppi
3350 TMCB Brigham Young University, Provo UT 84602, USA

jlcarroll@gmail.com and kseppi@cs.byu.edu

Abstract— We analyze the drawbacks to using ANNs in
high assurance systems and propose a solution based upon
a Bayesian approach with a specific network topology that
can be solved in closed form. The Bayesian approach leads
to better answers in the traditional sense, while also allowing
us to quantify risk and deal with it in a reasonable manner. We
demonstrate this approach on several synthetic functions and
the Abalone data set.

I. I NTRODUCTION

Artificial Neural Networks (ANNs) are a common tech-
nique for learning classification and control from examples.
However, there are several drawbacks to using ANNs in high
assurance systems. These drawbacks involve issues with out-
put uncertainty, weight interpretability, output generalization,
expert knowledge inclusion, and the sufficiency of training
data. We will discuss each of these problems in greater detail,
and then propose solutions based on a Bayesian adaptation
of the CMAC [1] network topology.

The most common complaint about ANNs in high as-
surance systems isoutput uncertainty. It is tempting to try
and remove all uncertainty in situations where the wrong
response can have disastrous consequences. Unfortunately,
this is not always possible. There are many sources of
uncertainty including: an inappropriate learning algorithm,
intrinsic non-determinism in the function to be learned, and
insufficient or inappropriate training data. Since it is usually
impossible to remove all uncertainty (whether or not an ANN
is being used) we believe that the best solution to these
problems is to reduce uncertainty where possible through
user input, and to quantify the uncertainty that can not be
removed. Then it is possible to compute the risk involved in
each decision when made in the context of that uncertainty
using the principles of decision theory.

Traditional ANNs return only the answer that they con-
sider most probable, but do not provide measures of their
confidence in that answer. This makes traditional ANNs espe-
cially inappropriate for high assurance systems. For example,
if an ANN were trained on the mushroom dataset [2] to
predict whether a mushroom will be edible or poisonous
given its appearance, how could that network be used to
make decisions about eating a given mushroom? This is
an example of a high assurance system since if you ate a
poisonous mushroom you can get very sick, even die. If the
network predicts that the mushroom is edible should you eat
it? Of course that depends on how hungry you are and on
how certain the network is in its prediction. Thus, in order to
be effective at aiding decision making ANNs should provide

more than just the output that they consider most probable,
they should return a distribution over possible outputs.

Another major drawback to using ANNs for high assur-
ance control involvesweight interpretability. ANNs form
function outputs by passing input values through a network of
nodes, each with a set of interconnections and weights. The
output is formed by summing the weights of interconnected
nodes. Such a structure can be extremely difficult to interpret,
and although we can query the network with a specific input
to see its output, it is difficult to understand exactly why
the network is generating the specific output. Thus, it can be
difficult to look at a given network and determine that it has
found a “correct” or “safe” policy.

The next major drawback to using ANNs for high as-
surance control involvesoutput generalization. The weights
of an ANN are learned through training examples rather
than by specifically specifying what the outputs should be.
This can actually result in improved performance, since
hand coded rules can be very brittle to unexpected inputs.
If the input to the network is not in its training set, the
weights will hopefully return a reasonable output based
on the similar examples that it has seen. The process of
determining appropriate outputs in areas of the function for
which there is no training data is known as generalization.
Yet, this can also be problematic in high assurance control,
since the network’s behavior is often unpredictable when
given unexpected inputs. Because the network’s policy is
not easily interpretable by looking at the weights, it can be
difficult to predict exactly how the network will respond in
each situation.

This could be solved byexpert knowledge inclusion. The
user could provide some simple safety steps such as “never
do a when b is observed” this could greatly reduce the
uncertainty of the system and thereby improve the applica-
bility of ANNs to high assurance control. Unfortunately, the
very problem that made the network weights un-interpretable,
also makes it difficult to provide the network with such
rules. Since it is difficult to determine the behavior of the
network given its weights, it is equally difficult to determine
a set of weights that will guarantee a certain behavior. Thus,
traditional ANN learning is limited by information in the
data, and it can be difficult to provide external information
to the system.

The next difficulty involves thesufficiency of training data.
ANN learning improves with training data, however it is
difficult to determine how much data is necessary to be
certain that the network is likely to perform within safety

limits. This is also due to the lack of confidence reporting in
the network outputs. Attempts to answer these questions with
PAC learnability and VC dimensions have provided some
loose bounds, but have failed to answer these questions in
an average case.

Our proposed solution to the above problems is to recast
the supervised learning paradigm in terms of decision theory
and a graphical model[3]. When ANNs are built using the
model as a guide, prior distributions can be used as a
mechanism for providing input from a human expert, and
the network will produce a true posterior distribution as its
output. This provides a measure of confidence in the network
outputs. In addition, our solution uses the CMAC network
topology. This topology for an ANN is appealing since the
weights are trivially interpretable, and since this particular
network topology allows the Bayesian approach to be solved
in closed form. The interpretability of the weights allows the
user to provide additional information in an intuitive manner,
and allows the learned policy of the network to be easily
analyzed.

We will explain the graphical model of supervised learn-
ing, the CMAC topology for ANNs, and then derive a
Bayesian ANN based on this network topology. We will
compare the traditional CMAC with our new BCMAC and
analyze the BCMAC’s ability to express confidence in its
results, and discuss the implications of the technique for high
assurance systems.

II. T HE UNIFIED BAYESIAN DECISION THEORETIC

MODEL (UBDTM)

The supervised learning problem can be modeled as a set
of random variables. These variables include feature vectors
x that are mapped to an output valuey. A list of x, y pairs
constitutes a training set. Similarly we will represent the
test set withx′, y′ pairs. Usually there is also an unknown
functionf that either maps feature vectors to output vectors
in the deterministic casef : x → y, or from feature vectors
to a distribution over output values in the stochastic case
f : x → p(y). Of special interest is that we are treating the
unknown function itself as a random variable, and this will
have significant implications in how the model is used.

Several different relationships between the random vari-
ables in a supervised learning problem are possible, but
perhaps the simplest would be the relationship representedby
the graphical model in figure 1 [4]. This set of relationshipsis
very intuitive, and implies that function outputsy andy′ are
dependent on the feature vectorsx and x′ and the function
f that maps them. Note that this model of variable rela-
tionships considersx andf to be conditionally independent
and therefore does not model the relationship captured by
unsupervised and semi-supervised learning which is based
on this relationship.

Supervised learning can be seen as the problem of deter-
miningp(y′|x′, x, y), that is, of determining the probability of
a class in the test set given its features and the training data.
If we accept the relationships among the random variables
given in the graphical model of figure 1, then the rules of

Fig. 1. Complete decision theoretic model for supervised learning.

probability provide an optimal technique for classification. It
can be shown that:

p(y′|x′, x, y) =

∫

p(y′|x′, f)p(f |x, y)df . (1)

Using Bayes law and the independence assumptions of the
model it can also be shown that:

p(f |x, y) =
p(y|x, f)p(f)

∫

p(y|x, f)p(f)df
. (2)

Equations 1 and 2 form the backbone of our Bayesian model
for supervised learning [4]. This formulation is surprisingly
versatile. To create a learning system with a desired bias
the user only has to specifyp(f), a prior distribution over
the functions of interest, and the rules of probability dictate
the rest. Specifyingp(f) usually consists of two parts, spec-
ifying the representation and the priors for the parameters
of this representation. It is possible to selectp(f) so that
we match the representational bias of a wide variety of
classical learning techniques. and has been applied to several,
including neural networks [5], support vector machines [6],
and evolutionary computation [7][8]. In all of these cases this
approach has lead to improved performance over many test
cases.

It has been traditional to separate the ideas of classification
from control/decision theory; however, in practice, classifi-
cation is not performed for its own sake. Usually we do not
classify things for the intrinsic value of putting things in
classes, rather, we classify things to aid in decision making.
As shown in figure 1, the entire decision process can be
represented as a decision network tied to the graphical model.
Y ′ is the node most commonly tied to decisions. In the
simplest case, there is some outcomeO that will depend
upon the decisionD and the value ofY ′ (see figure 1).
Then the utilityU is determined from the outcomeO. Many
more complex examples could be envisioned, for example,

the output could depend on many more things that justY ′,
however, we will only focus on this case.

If the posterior distribution fory′|x′, y, x is computed as
shown in equation 1, then it is possible to compute the
expected utility of any decisiond as:

E[U(d, O)] =
∑

y′∈Y

U(o)p(o|y′, d)p(y′|x′, x, y) . (3)

and the optimal decisiond ∈ D that will maximize the
expected utility can be found as follows:

argmax
d∈D

∑

y′∈Y

U(o)p(o|y′, d)p(y′|x′, x, y) . (4)

The degree to which the system is risk averse, risk seeking,
or risk neutral is determined by the utility function chosen.
Once a utility function is chosen, these equations allow us to
quantify the risk of using the network’s outputs for control.
This is especially important for high assurance systems.
Furthermore, this value will change as more data is acquired
and the learner becomes more confident in its outputs. We
call this graphical/decision model, and the learning algorithm
based on it the Unified Bayesian Decision Theoretic Model
or UBDTM [4].

Notice that in order to effectively use a classification
technique to make general decisions that technique must
provide a full distribution overp(y′|x′, x, y). Techniques that
simply report the most probable class are not useful for
making optimal decisions from a maximum expected utility
perspective. Returning to our mushroom example, without
a full distribution overy′ it is impossible to quantify the
risk of eating the mushroom. Since traditional ANN’s only
report what they consider to be the most likely class without
reporting the entire distribution they are dangerous to use
in high assurance systems. However, an ANN based on the
UBDTM could report a full distribution, and could be more
effective in high assurance systems.

We will propose an ANN based on UBDTM, but which
has a very specific network topology, namely the CMAC
ANN. This network is especially interesting because the
values in the network can be solved in closed form for this
network, and because its values weights are especially easy
to interpret.

III. T HE TRADITIONAL CMAC

The CMAC is a well known ANN topology which has
been shown to be useful for many applications [1]. It is
modeled on the human cerebellum, and functions by mapping
weightsw[i] to tiles which are interpreted spatially (see figure
2). Inputs are mapped to the correct bins by means of an
association functionb[i](x), whereb[i](x) = 0 whenx does
not fall within the spatial region assigned to bini and where
b[i](x) = 1 when it does.

The output of the system can be simply computed by

fCMAC(x) =
∑

i

w[i]b[i](x).

Fig. 2. Tile structure for a CMAC with three layers, and four tiles per
layer.

The error at location x is:

e(x) = fCMAC(x) − fobserved(x).

Traditionally the weights can then be intuitively updated as
follows:

∆w[i] = α
e(x)

∑

i b[i](x)
,

where α is a learning rate. The output y of the network
at any position x is the sum of the weights for the tiles
that overlap that position. It can be shown that this update
rule iteratively approximates a maximum likelihood solution
for the weights given the training data. Unfortunately, like
any maximum likelihood technique, this approach does not
produce a full distribution over outputs.

IV. A B AYESIAN LEARNING PROCEDURE FOR THE

CMAC

We will create a Bayesian technique for computing the
parameters ofF whereF is a CMAC. First, we assume that
the function that we are trying to approximate is stationary,
and that our observationsy have linear Gaussian noise
with covarianceΣy. For this work we will assume that
all observations are of equal quality. We initializeΣy as
ΣΣΣy = σ2

yI whereσy is a constant which models how much
we should expect the output of eachy to vary from the
true value of the function (for example, this can account for
sensor noise). We also assume that the training and test sets
are identically distributed, and thusP (y|x, f) = P (y′|x′, f),
a common assumption in Machine Learning.

Since a CMAC models functions using a sum of weights,
it is convenient to model the prior forF as follows:

p(f) =

p(w) if f ∈ {λx.g(x, w)|∀x ∈ R
D.g(x, w) =

∑

i∈T
w[i]b[i](x)}

0 otherwise

p(w) = N(w|µµµ0,Σ0)

where T is a list of all tiles in the CMAC and where
w is a vector-valued random variable with a multivariate

normal distribution with prior meansµ0µ0µ0 (corresponding to
the weights of each tile) and prior covarianceΣΣΣ0.

The distribution ofX does not need to be modeled since
its values are given. Then, the relationship betweenX, Y ,
andF can be modeled as follows:

p(y|x, f) = N(y|f(x),Σy).

At this point it is helpful to note thatp(y|x, f), and similarly
the predictive distributionp(y′|x, f), can be rewritten as
follows:

p(y|x, f) = N(y|Hw,Σy),

whereH can be thought of as an association matrix.Hi,j = 1
if tile j influences the training examplei. That is, Hi,j =
b[j](xi). Notice that x is used to constructH, and then
drops out of the equation. Arbitrarily complex kernels can
be represented by simply modifying theH matrix such that
Hi,j = k[j](xi), wherek[j](xi) is not binary but rather is a
function of the distance fromxi to the center of tilej. Thus
H encodes the amount of influence each tile has on a given
xi.

The weights are related to our observations according to a
multivariate normal model [9] with prior parametersµµµ0 and
Σ0. The parameters of the posterior distribution are then

µµµ1 = µµµ0 + K1(y − Hµµµ0),

and
ΣΣΣ1 = (I − K1H)(ΣΣΣ0),

where
K1 = (ΣΣΣ0)H

T (H(ΣΣΣ0)H
T + ΣΣΣy)

−1.

In the more complex case where the function can change over
time in a linear manner with Gaussian noise these equations
become identical to the Kalman Filter Equations.

This observation means that, given a prior over CMAC
weights and some training data, a well known and widely
studied filtering technique can be applied to solve in closed
form for both the posterior distribution over the CMAC
weights, and for the posterior predictive distribution forthe
CMAC outputs. We call this technique the Bayesian CMAC
or BCMAC. Learning in theBCMAC is simply Bayesian
inference.

Perhaps most importantly, this technique can simply pro-
duces an actual posterior distribution over possible outputs
given the training data,p(y′|x′, x, y). Equation 1 tells us that
this is a large and often difficult integral. However, because
in this case we are dealing with the sum of a set of normal
random variables this can be solved simply in closed form:

p(y′|x′, x, y) = N(y′|Hw, HtΣΣΣH). (5)

This makes it possible to know how much to trust the
BCMAC’s outputs in each part of the function. This can
reveal when more data is needed, and where such data would
be most useful. Such a confidence is also essential in order
to use the outputs of the algorithm to make optimal decisions
from a decision theoretic standpoint.

TABLE I

SUM2 ERROR OF THE ACTUAL FUNCTION OUTPUTS AND THE

TRADITIONAL CMAC OUTPUTS, OR THE MEAN BCMAC OUTPUTS OVER

THE TEST SET. WE ALSO PRESENT THE RATIO BETWEEN THESE ERRORS

Run Simple CMAC BCMAC CMAC/
Sum2 Error Sum2 Error BCMAC

1 1,857.654 1,459.136 1.27
2 1,917.688 1,412.675 1.36
3 1,323.653 1,141.215 1.16
4 1,593.757 1,326.135 1.20
5 1,728.339 1,401.232 1.23
6 1,660.846 1,327.345 1.25
7 1,621.135 1,292.013 1.25
8 1,472.336 1,273.971 1.16
9 1,271.723 1,121.361 1.13
...

100 1,950.859 1,534.583 1.27
Average 1,581.205 1,305.917 1.21

Priors can come from many places. If detailed information
is known a-priori concerning the function, then a detailed
prior can be provided, allowing the system to perform well
with low amounts of data. This is possible because of the
interpretability of weights in the CMAC topology. If less
is known, then a wide subjective prior can be chosen. If
the prior is sufficiently wide, it will have little effect on the
posterior. This will cause the system to require more sample
points before it becomes confident in its outputs. Although
the data in a specific tile may be sparse, the cumulative
data over the entire function will often be more rich. By
analyzing the cumulative data, it is possible to use that
information to produce an “empirical” prior for each tile
which can often improve performance over a wide subjective
prior. Theoretically a hierarchical model would be more
statistically correct, but at the expense of a more complex
model, which is unwarranted in this case.

V. RESULTS

To test the power of the BCMAC, we performed several
experiments. First, we attempted to determine if the BCMAC
outperformed the standard CMAC on the sorts of functions
we might expect to encounter by comparing their results
on several synthetic functions, and on a variant of the
UCI Abalone data set. We also explored the ability of the
algorithm to express confidences in its outputs.

A. BCMAC and CMAC Compared

First, we chose to illustrate the algorithm’s behavior with
a simple two dimensional function called step2d because the
results could easily be visualized. The function was designed
to be difficult for a CMAC representation. Ifx12 +x22 < 10
the function returns 1 otherwise it returns -1. This causes a
steep transition, and a curved boundary to that transition,
both of which are difficult features for a CMAC to capture.
Points in the function fall in the domain between 0 and
5 for both x1 and x2. We created 100 different training
sets by drawing 100 different sets of 500 examples each
from the function, drawn uniformly. We then trained both a
traditional CMAC and the BCMAC (with a wide subjective

prior meanµo = 1 and covarianceΣΣΣo = 20I) on these
training sets, and computed the difference between the mean
of their outputs to a single test set of size 20,000. The results
are summarized numerically in Table I. Although the error
can vary substantially from one run to another depending
on the quality of the small random training set chosen, the
ratio of the standard CMAC error over the Bayesian CMAC
error is consistent. This means that although the quality of
the training set is an important factor in obtaining a good
result on this function, the BCMAC always outperformed
the standard CMAC no matter what training set it is given.

-3
-2
-1
 0
 1
 2
 3

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3
-2
-1
 0
 1
 2
 3

’simples2d500.dat’

Fig. 3. CMAC output, viewed from the side to show the jagged overshoot
artifacts.

-2.5
-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2
 2.5
 3

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-3
-2
-1
 0
 1
 2
 3

’s2d500.dat’

Fig. 4. Bayesian CMAC output, notice that there are less jagged overshoot
artifacts.

This process was then repeated for a variant of the two
dimensional egg carton functiony = sin(x1∗2.5)+sin(x2∗
2.5), 2dEgg, and its three dimensional varianty = sin(x1 ∗
2.5) + sin(x2 ∗ 2.5) + sin(x3 ∗ 2.5), 3dEgg. These results
are summarized in Table II. In the interests of space, only
the averages will be reported here, however, the full tables
were much like those shown for step2d, where the individual
values varied greatly depending on the random training set
chosen, but where the ratio between the results of the various
methods was consistent. Parameters for these functions were
tuned using the “empirical” technique discussed above.

We also compared the CMAC with the BCMAC on the
UCI Abalone data set [2]. This problem was chosen because
of its continuous features and ordinal output which can be

TABLE II

AVERAGE SUM2 ERRORS FOR THESIMPLE CMAC AND THE BAYESIAN

CMAC AVERAGED OVER 100DIFFERENT TRAINING SETS ON SEVERAL

DIFFERENT BENCHMARK FUNCTIONS.

Function CMAC BCMAC
step2d 1581.205 1305.917
2dEgg 510.409 499.885
3dEgg 483.814 481.560

Abalone 0.9063 0.7543

0
 0.5
1

 1.5
2

 2.5
3

 3.5
4

 4.5
5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

0
b.

Fig. 5. a) Training points for the BCMAC, selected from a function
exponentially biased towards the center. b) Tile variance after training with
data points in a, darker areas represent regions of less variance. Note that
the algorithm is more confident in areas where more data has been observed.

treated as continuous. All nominal features were dropped,
as well as the many redundant features, leaving the most
informative weight measurements (shell weight) and the
most informative size measurements (diameter). The first
1500 examples were used as test data, while the remaining
examples were used as training data (see Table II). The
BCMAC priors were again set “empirically.”

B. Expressing Confidence

We have seen that when the BCMAC reports its most
likely output values it consistently has a lower mean squared
error than the traditional CMAC on all the functions that
we tested. However, the real power of this technique is not
in its lower error alone. Because the training technique for
the BCMAC is Bayesian in nature, a full distribution is
available for the predictive posterior. If more data has been
encountered in one region, then the algorithms will be more
confident in their answers in that region. If less data has been
encountered in another region they will be less confident in
their answers in that region.

To illustrate, we again used the step2d function to demon-
strate BCMAC’s ability to return confidences in its results.
We generated data that is exponentially skewed towards
the center of the domain. After training we then graphed
the algorithm’s confidence (see figure 5). This ability to
report confidence in a statistically meaningful way is an
important advantage of our algorithms. Such a confidence
is essential in decision theory in order to make optimal
decisions with respect to maximum expected utility [9].
Because this value quantifies risk, it is an essential part of
any high assurance system. Furthermore, the distributional
output can be extremely useful in situations such as active
learning [10].

VI. D ISCUSSION

Notice that the posterior predictive of the BCMAC (equa-
tion 5) is a normal distribution. Having a full distributionis
extremely important for high assurance systems. Returning
to our mushroom example, assume that mushrooms with
toxicity levels below 10 are harmless, but with levels over 10
their negative effects begin to grow rapidly. Assume that we
have been lost in the forest for 10 hours, and are beginning
to be hungry. Now we come across a patch of mushrooms.
Whether or not we should eat the mushrooms depends on
our utility function. Because we are hungry there is a slight
negative utility (-1) if we don’t eat the mushroom. If we eat
the mushroom, the utility will depend on the toxicity level
of the mushroom as follows:

U(notEat, tox) = −1

U(eat, tox) =

{

1 if tox < 10

−5 ∗ tox + 51 if tox > 10

Now, if our mushroom toxicity predicting algorithm only
returns the maximum likelihood result, as most neural net-
works do, and if it returns 10.1 as the most likely toxicity. If
this were the true toxicity, the utility of eating these slightly
toxic mushrooms would be .5. The utility of not eating the
mushrooms is -1. At first glance it would seem that the best
thing to do would be to eat the mushrooms. However, this
all depends on how sure the algorithm is in its prediction. If
the most likely toxicity is 10.1, then there is some chance
that the actual toxicity is 15, or perhaps even 20, in which
case eating the mushrooms would be very dangerous. The
problem here is not that we are uncertain, but that we are
unable to quantify our uncertainty and risk. It is impossible
to effectively make this decision without more information.

If we used our BCMAC, the posterior predictive value
would be a normal distribution. Suppose that our algorithm
returned a mean of 10.1 with a variance of 3 for the
toxicity of the mushroom. Now the expected utility of eating
the mushroom can be computed by integrating as given in
equation 3. The expected utility of eating the mushroom can
now be computed and is -5.2, and the best action is to not
eat the mushroom even though the utility at the maximum
likelihood value would seem to indicate that we should eat
the mushroom. If we had been lost longer, the utility of
not eating the mushroom could drop considerably as the
likelihood of starving increases. Once this value drops below
-5.2, the optimal decision will be to eat the mushrooms
despite the risk.

If we were designing the ANN for mushroom toxicity
detection, we might have noted that for many common
mushrooms the variance returned was simply too high in
too many common cases. This could be cause by a naturally
noisy function, but if the amount of intrinsic noise in the
function is such that the designer believes that the ANN
should be able to do better, then this would indicate that
either more data is needed, or else the resolution of the

BCMAC needs to be increased. Furthermore, if there is more
variance in one part of the output than in another, then this
could indicate not only that more data is needed, but where
data would be most useful. This can be helpful in active
learning situations. Thus, because the network reports its
confidence, the risk of using the system can be evaluated
beforehand and improvements made when appropriate.

Another way of lowering the variance of the predicted
outputs would be to provide the algorithm with expert human
knowledge. If a human expert knows that dark mushrooms
of a certain size are always very poisonous, while light
mushrooms of the same size are never poisonous, then that
information can easily be introduced into the priors for the
weights. Because the weights are spatially interpretable,it is
clear which weight priors need to be adjusted to achieve the
desired effect. Furthermore, the strength of the prior is deter-
mined by the variance on the weights, allowing our experts
to express how confident they are in their information.

This ability is illustrated by the above step2d experiments.
In those experiments we set the mean to 1 and the variance
to 20 because we did not want to give the BCMAC an
unfair advantage. However, since we knew beforehand that
the values would vary between -1 and 1 we could have
selected a more informed prior with a mean of 0 and a
standard deviation of 1. It would have been possible to do
even better by setting the prior mean of all tiles with centers
x12 + x22 < 10 to 1 with all others set to -1, and then
lowering the variance accordingly, in which case little or no
learning would have been necessary because of the accuracy
of the prior.

VII. C ONCLUSIONS

By modeling the regression and classification process as
a graphical model we have produced a Bayesian variant of
the CMAC that can be solved in closed form. We call this
technique the BCMAC. We have shown that these techniques
outperform the traditional training techniques for learning the
weights of a CMAC for several example functions including
step2d, 2dEgg and 3dEgg, as well as for the Abalone data-
set. Furthermore, the BCMAC not only can determine the
most likely weights, but it can also give a statistically correct
estimate of how certain it is of its values at every position,
which is essential for making good decisions from a decision
theoretic perspective.

We have shown that the BCMAC has several advantages
in high assurance systems. Its weights are interpretable, the
priors can be used to introduce expert knowledge, and the
distributional output can be used to quantify risk, has enough
data, and determine if the algorithm is sufficiently accurate
to be used in a given context. This can greatly improve the
applicability of ANNs to high assurance situations.

REFERENCES

[1] J. S. Albus, “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),”Journal of Dynamic Systems,
Measurement, and Control, vol. 97, no. 3, pp. 220–227, 1975.

[2] D. J. Newman, S. Hettich, C. Blake, and C. Merz, “UCI
repository of machine learning databases,” 1998. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[3] F. V. Jensen,Bayesian Networks and Decision Graphs. New York:
Springer-Verlag, 2001.

[4] J. L. Carroll and K. Seppi, “No free-lunch and bayesian optimality,”
IJCNN Workshop on Meta-Learning, 2007.

[5] J. de Freitas, M. Niranjan, A. Gee, and A. Doucet, “Sequential monte
carlo methods for optimisation of neural network models,” 1998.
[Online]. Available: citeseer.ist.psu.edu/freitas98sequential.html

[6] C. M. Bishop and M. E. Tippling, “Bayesian regression andclassifi-
cation,” Advances in Learning Theory: Methods, Models and Applica-
tions, vol. 190, pp. 267–285, 2003.

[7] C. K. Monson, “No free lunch, bayesian inference, and utility:
A decision-theoretic approach to optimization,” Ph.D. dissertation,
Brigham Young University, Department of Computer Science,2006.

[8] C. K. Monson, K. D. Seppi, and J. L. Carroll, “A utile function
optimizer,” in The Proceedings of the IEEE Congress on Evolutionary
Computation (CEC) (accepted). IEEE Press, Sept 2007.

[9] M. H. DeGroot, Optimal Statistical Decisions. New York, NY:
McGraw-Hill Book Company, 1970.

[10] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,”
proceedings of the Fifth Annual ACM Workshop on Computational
Learning Theory, pp. 287–294, 1992.

