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ABSTRACT

REINFORCEMENT LEARNING IN THE JOINT SPACE: VALUE ITERATION

IN WORLDS WITH CONTINUOUS STATES AND ACTIONS

Christopher Kenneth Monson

Department of Computer Science

Master of Science

Continuous space reinforcement learning algorithms frequently fail to address the

possibility of a continuous action space, presumably because of the difficulty of dis-

covering the best action for a particular state. This can, in some cases, severely

limit the ability of a learning algorithm to tackle some common problems where

different portions of the state space require distinct action granularity. Näıve action

discretization does not suffice for problems of this nature, so traditional reinforcement

approaches that consider only the continuous state space fail to solve these kinds of

problems.

JoSTLe (Joint Space Triangulation Learner) addresses the need for a reinforce-

ment learning approach that can handle a continuous action space by means of in-

telligent discretization. It employs the variable resolution discretization techniques

of Muños and Moore [MM02], but in an augmented “joint” space, one that includes

actions as well as states.



The algorithm is shown to work on a problem that requires the treatment of a

continuous action space, as well as one that does not. The efficacy of the algorithm as

well as its sensitivity to parameter tuning are shown through mathematical arguments

and experimental data.
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Chapter 1

Introduction

The idea of learning computers has captured the attention of a number of researchers.

Though it is debated whether or not practical success can be attained in the develop-

ment of programs that learn, the admittedly small successes achieved in the growing

field of machine learning seem to indicate a promising future.

Control problems appear to be a good fit for learning machines because many very

difficult nonlinear control problems arise in common and realistic situations. Many

of these problems are difficult to solve directly or are completely unsolvable using

current direct approaches. Even so, a number of them lend themselves to a high level

description of desired outcomes. Theoretically, a computer could use such a high level

description, coupled with the right approach, to discover a solution to the problem.

Reinforcement learning (RL), on the surface, appears to be just such an approach

to developing intelligent problem-solving programs. The attraction is easily explained:

a very simple program is given access to the environment1 and minimal information

about its task, and then proceeds to learn proper behavior through a series of exper-

iments.

1An “environment” is anything that has state and can be acted upon by the agent.
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The information given to a reinforcement learner typically consists of its current

state and an immediate consequence for an action taken from that state. The conse-

quence includes the new state of the environment and a reinforcement for the action.

If it has reached a goal state, it gets a positive reinforcement. If it makes a mistake, it

may receive a negative or very low reinforcement. Given solely this information, the

learning program can develop a model of behavior that maximizes its rewards over

time.

Since a number of control problems lend themselves to formulations of this nature,

the RL approach is very appealing. While reward structures may be difficult to craft

for some problems, a large class of problems lend themselves to the generation of

these structures. For these problems, it is generally easy to obtain the information

needed to help a reinforcement learner on its way to success, though it may be much

more difficult to find the optimal solution directly.

As a RL agent explores its environment, it may or may not receive rewards for

certain actions. In the event that reward information is obtained, that information

is propagated back to the originating state and action. This information eventually

propagates through the agent’s model of its rewards (which may be incorporated into

a model of the environment or not, depending on whether a model-based or model-free

approach is used), assigning a value to every action at every state. This information

allows the agent to choose the action from every state that is most likely to maximize

its rewards.

Because of the need to propagate information throughout a model of the envi-

ronment, RL (in its most common form) is well suited to discrete problems. An

RL agent will typically store information in the product space of states and actions,

keeping information about present and discounted future rewards in a bucket for

each state-action combination. This stored information is then used to propagate

2



time-discounted reward information back to other buckets and to generate a best

action policy (denoted π?(s) for each state. The process that accomplishes this in

model-based2 settings is called Value Iteration [KLM96,AS97].

Value iteration as an algorithm is simple. An agent takes an action a from a state

s and receives information from the environment about the resultant state S(s, a)

and reinforcement R(s, a). It then uses that information to find the value V (s, a) of

taking a from s by taking into account potential future rewards. Associated with this

process is a discount factor γ ∈ [0, 1), which represents how much an agent values

future rewards in comparison to immediate rewards. In practice, values are updated

by means of dynamic programming. In discrete deterministic worlds, the following

equation is used:

V (s, a) = R(s, a) + γ max
a′

V (S(s, a), a′).

The update equation above is most easily implemented in a discrete model of the

value function for the environment. Applying it to continuous environments requires

some special consideration and results in extensions to the approach [KLM96,Moo91];

straightforward storage and lookup techniques become impossible in the continuous

domain, where the product space of continuous states and actions is uncountable even

if the space is bounded.

2In a model-based approach, the agent explicitly builds a model of its environment, then uses

that model to discover the policy. In a model-free approach, the agent attempts to learn its policy

without explicitly building a model of the environment. Sometimes the line between these two ideas

is somewhat blurred, as is the case here.
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1.1 Continuous Extensions

A number of methodologies have been proposed as means of providing the needed ex-

tensions to allow value iteration to function in a continuous setting. These methodolo-

gies employ various different techniques. Regardless of the extensions used, however,

a good continuous RL algorithm should have the following characteristics:

• Robust: converges to a good policy in various situations

• Complete: allows for continuous states and actions

• Correct: generates a useful approximation to the true value function

As will be seen, no known algorithms have all of these characteristics simultane-

ously. To aid in the discussion of the relative merits of existing techniques, the existing

approaches are divided into two basic categories: value function approximation and

spatial discretization.

1.1.1 Value Function Approximation

Global function approximators have been used in an attempt to learn the environ-

ment’s continuous value function V (s, a) over the entire state and/or action space us-

ing a finite representation. Among the many different approximators used are neural

networks, linear regression models, and polynomial approximators [KLM96,BK93].

These techniques have been used with some success in specific problem domains.

They provide advantages in that uncountable continuous spaces are represented in a

finite and well-understood way. Even so, these techniques have some problems. In the

case of a neural network representation of a fully continuous environment, for example,

it is very difficult to find an action that yields the highest reward without searching

the entire (infinite) action space at each state. Additionally, many of these methods
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not only fail to learn the value function correctly [BK93], they learn something so

wrong as to be completely unusable [BM95].

Though function approximators are complete, they are neither correct nor ro-

bust. Many implementations are not even complete (they do not allow for continuous

actions) though the underlying approach may allow for completeness.

1.1.2 Spatial Discretization

Because of their shortcomings, function approximators are not generally a good choice

when applied to the value function over the entire state-action space at once. When

applied to smaller discrete regions of space, however, a class of function approxi-

mators called “averaging approximators” can not only be useful, but provably re-

liable [Gor95]. Thus, when combined with spatial discretization, the function ap-

proximation approach becomes much more interesting as a technique for using RL in

continuous settings.

Many spatial discretization techniques exist, but the most practical have proven

to be variable resolution discretization techniques. Variable resolution techniques

generally involve learning an efficient discretization of the state space. In contrast,

fixed resolution discretization is the näıve partitioning of space into segments of equal

size. Because the number of divisions of space always increases exponentially with

dimension when using a fixed resolution (a phenomenon often referred to as “The

Curse of Dimensionality”), variable resolution is often preferred.

Variable resolution techniques attempt to sidestep the curse of dimensionality by

focusing discretization resources on the portions of space with the most complex and

“important” features, while leaving the rest of the space less finely discretized. The

definition of “important” varies widely among methods (e.g., value interpolation error,
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value change variance, influence, longest edge). Much of the work in this area has been

done by Muños and Moore, and makes use of variable resolution hypergrids, limited to

environments whose behaviors are accessible3 [Moo91,Moo94,MM02,Dav97,Rey99].

Other approaches involve less strict limitations on the structure of the model, like

unconstrained triangulation [MM98, Muñ96, Muñ97], multigrids [HA98], and more

generalized and composite methods (e.g. polynomial fitting, heuristic boundary

search, and others) [BK93, Atk94, CM, MAS95, MSBL98]. None of these other ap-

proaches appear to perform better than the simple variable resolution techniques em-

ployed by Muños and Moore, and often add complexity without improving accuracy,

speed, or memory usage (see Chapter 4 for one such example).

In fixed and variable resolution techniques alike, each segment of space is treated

as though it correctly approximates all of the points that it contains. Thus, each

segment is a discrete unit of space, and (slightly modified) discrete RL techniques

can then applied to learn the value function. A great deal of research has been done

in this area with some good success.

The variable resolution techniques applied to date are both correct and robust

in the sense that for particular problem domains, they can be proven to converge

to the true value function, given enough resources. None of them, however, have

satisfactorily addressed the issue of a continuous action space, either ignoring it en-

tirely [MAS95, MSBL98, MM98, Moo91, MM02] or severely limiting its representa-

tion [BK93], and are therefore not complete.

3It is required that the learning agent have access to the actual results of taking an arbitrary

action from an arbitrary state.
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State

A
ct

io
n Goal

3 feet away 4 feet away2 feet away

Go 2

Go 4

Figure 1.1: A näıve discretization of the action space can easily miss areas of high
reward. The shaded area is an area of high reward, and the dots represent the actions
available from the state “3 feet away”. No matter how fine the state discretization,
a reinforcement learner limited to a fixed action discretization will be unable to take
the correct action from this state since only “Go 2” and “Go 4” are available.

1.2 Adding Completeness

Extending a variable resolution approach to accommodate continous actions presents

some interesting problems. For example, how is the policy π?(s) = arg maxa′ V (s, a′)

computed? Methods that require actions to be discrete can simply search the list of

available actions at a given state to discover which action yields the highest value.

Since the policy changes over time (as it converges), it is important that the current

action space be searchable at any given state.

In a continuous action setting, this can appear to be a crippling problem. The

action space, even if it is bounded, is infinitely large, and therefore not searchable

using the brute force iteration methods often employed by discrete action learners.

Though many interesting problems can be solved with a small and discrete action

space4, a number of problems are not well suited to discrete action spaces. Problems

4Minimum time control problems can be solved with “bang-bang” control, or control that only
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where accuracy is required in a one-shot fashion (e.g., shooting basketballs, playing

golf, throwing darts) are very common in the real world, and do not mix well with

techniques which treat the action space as discrete or which discretize it näıvely.

Obtaining accurate reward information in these problems is difficult for these ap-

proaches, since a näıve discretization can easily miss areas of high reward, especially

when surrounded by large areas of low reward. This idea is illustrated in Figure 1.1

where the only actions available are “Go 2” and “Go 4”. Those actions are unsuitable

for the state “3 feet away”.

Not only can a discrete action model not allow particular actions to be taken, it

also cannot know anything about them, including information about their potential

rewards. Without adequate reinforcement information, value iteration is doomed to

fail, since at the heart of the approach is the ability to discount rewards into the past.

If areas of reward are never found, the policy can never become optimal.

Even in light of its current shortcomings, variable resolution discretization is still

a good idea. A continuous space is handled much more easily by an algorithm when it

has been discretized. What is not always appropriate is focusing our attention solely

on the state space and leaving the action space discretized näıvely. It turns out,

fortunately, that the same approach to discretizing the state space can be extended

to handle intelligent discretization of the action space as well, which is the focus

of this thesis, where the JoSTLe (Joint Space Triangulation Learner) algorithm is

presented.

involves the extrema of the action space [BH69]. For example, the Mountain Car problem is a

minimum time control problem whose optimal solution requires only two actions: “full forward”

and “full reverse” [MM02].
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Chapter 2

Related Work

This thesis builds on existing variable resolution techniques, extending them to allow

for a continuous action space. These extensions effectively add the missing complete

characteristic to some techniques that are already correct and robust. In order to

accomplish this, it addresses the problems of reward location and action selection as

discussed in 1.2.

An understanding of the workings of JoSTLe is most easily obtained by first un-

derstanding its predecessor: the variable resolution discretization approach of Muños

and Moore [MM02] (hereafter referred to as MM). A short summary of how MM works

is given next, after which the extensions that make JoSTLe work will be discussed.

To solidify the concepts and help with the clarity of the discussion, 2-dimensional

spaces will be used as examples. It should be understood that none of the concepts

described here are limited to these lower-dimensional spaces. Indeed, the algorithm

extends trivially to higher dimensionalities.

The basic idea behind MM is to begin with a very rough discretization of the state

space (e.g., a single rectangle that covers the entire space) and to refine portions of it

by progressively splitting interesting rectangles in half. The corners of the rectangles

9



Figure 2.1: A discretization of a 2-dimensional state space and its corresponding kd-
trie structure. Each node represents a region of space which may be subdivided. The
Kuhn Triangulation of each leaf node is also shown.

Figure 2.2: Interpolation of a point is performed by finding the relevant rectangle and
then finding the appropriate triangle within it. Once found, the barycentric coordi-
nates of the triangle allow interpolation to be performed for the point in question.

are vertices in the state space. Naturally, the vertices may be used to store any

useful information, including values for each action that can be taken from that

state. Because the space is split perpendicular to dimensional axes (in this case,

either perpendicular to the x or y axis), the discretization is efficiently represented

and queried in a kd-trie structure (Figure 2.1).

The corners of each rectangle (where information is stored) represent the actual

experience or knowledge of the learning algorithm. At the corners, the values are

assumed to be correct. Any value that is needed from within a rectangle is then

obtained by means of interpolation.
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Figure 2.3: The Kuhn Triangulation of a 3-dimensional cube. Kuhn Triangulations
split each d-dimensional rectangle into d! simplices.

Since multilinear interpolation is expensive when compared to simplex interpola-

tion [Dav97], each rectangle is split into triangles. Interpolation of an interior point is

then done using the barycentric coordinates of the relevant triangle. Figure 2.2 shows

a point in a triangle. The value of this point may be obtained via linear interpolation

over the vertices of the shaded triangle.

The triangulation used is a Kuhn Triangulation, which effectively splits each d-

dimensional rectangle into d! triangles. An example of a 3-dimensional triangulation

is shown in Figure 2.3. The factorial explosion of triangles is not a problem for MM

because they are not explicitly stored. The properties of Kuhn Triangulations allow

the appropriate triangle (which may be viewed simply as a strict subset of the corners

of a rectangle) to be efficiently computed for any given point in the space.

Kuhn Triangulations have several other interesting and useful properties, including

the ability to efficiently find the barycentric coordinates of interior points. This

property allows for very efficient interpolation. For a more detailed treatment of how

Kuhn Triangulation is used, the reader is referred to Appendix A and [MM02].

The discretization of the state space allows value iteration to be performed. In

MM, value iteration is performed for each corner. Each action is chosen in turn and

11



Figure 2.4: Value iteration is shown for a given point. Each action is taken from the
point until the new state enters a new triangle. Then the value is interpolated in that
new triangle and discounted back. Rewards are integrated over each trajectory.

taken until the trajectory has exited the current triangle as shown in Figure 2.4.

Rewards are integrated over the trajectory, and the value of the point is updated by

the value iteration update equation

V (s, a) =

∫ τs,a

0

γtR(s(t), a) dt + γτs,a sup
a′

V (s(τs,a), a
′) (2.1)

where s is the state represented by the corner’s coordinates, s(t) is the state after

taking action a for time t, τs,a is the total length of time for which action a is taken

from initial state s to get to a new triangle, γ ∈ [0, 1) is a discount factor, R(s, a)

is the reward for taking a from s, and V (s, a) is the value of a particular action and

state combination.

Value iteration is performed until convergence. Once the values have converged,

the model is tested for rectangles that need to be split in order to improve the dis-

cretization of the value function. Value iteration and splitting are performed alter-

nately until the model reaches some satisfactory performance level. A number of

different splitting criteria are employed by MM, the discussion of which is beyond the

scope of this document. For full details, see [MM02].

12



Chapter 3

JoSTLe: Joint Space Triangulation

Learner

MM works with a given a priori discretization of the action space and dynamically

learns the appropriate discretization of the state space. JoSTLe uses data structures

and techniques similar in many ways to those of MM but applies them in a novel

way to the “joint space”, which is the product space of states and actions (Figure

3.1). The dimensionality of the joint space is d = ds + da, where ds is the state

dimensionality and da is the action dimensionality.

Figure 3.1 illustrates an important point. States in the joint space are not simply

points as they are in the state space. They are represented as a set of points that

satisfy a state space constraint. Thus, in the figure a state is not a point, but a line.

Conversely, as a single point in the state space represents a state, in the joint space

it represents both a state and an action.

The JoSTLe algorithm is simple in principle: value iteration is performed over all

points in the space, then the space is split where necessary. The process is repeated

until the value function is accurately represented or until some maximum splitting

13



a

s1

s2
s

Figure 3.1: The Joint Space. The state space is now just a plane in the overall joint
space. The action in this example is shown as an extension of the plane into a third
dimension. In the joint space, a state is no longer a single point, but a set of points
in the action space (shown here as a line).

criterion is reached. The basic algorithm follows.

JoSTLe: The Basic Algorithm

1. Taking each corner v in turn, decompose it into state s and action a. Take
action a from state s over time until the new state s′ does not intersect any
rectangles containing v. Update the value of v with the following equation
until values have converged:

V (s, a) =

∫ τs,a

0

γtR(s(t), a) dt + γτs,a sup
a′

V (s(τs,a), a
′) (3.1)

2. Evaluate each rectangle for splitting. A rectangle R is split if the maximum
interpolation error within it is above a threshold ε (the interpolated value is

given as V̂ (s, a)):

ε ≤ sup
(s,a)∈R

∣∣∣V (s, a) − V̂ (s, a)
∣∣∣ (3.2)

Choose the dimension in which to split by evaluating which split will yield the
new rectangle with the smallest maximum error. When all relevant rectangles
have been marked, split.

3. Repeat steps 1 and 2 until the model is satisfactory.

At the heart of the algorithm is the alternation between value iteration and re-

finement. Value iteration is performed until convergence, after which every rectangle

in the kd-trie is evaluated and possibly marked for splitting. Once all rectangles have

14
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s1

s2
s

Figure 3.2: The state line crosses a tetrahedron at two points, both lying on boundary
facets. Since interpolation is linear, only these points need to be considered as possible
maxima.

been evaluated, all of the marked rectangles are split, and the whole process starts

again. It terminates when the algorithm fails to mark any rectangles for splitting.

The details of value iteration and splitting, in addition to other algorithmic con-

cerns like convergence, are discussed in the next sections.

3.1 Value Iteration

Equation 3.1 is simple to compute with a discrete action space. In a continuous action

setting, however, the sup operator is problematic. In order to perform value iteration,

the maximum-valued action must be found at the terminal state s(τs,a). This state

is no longer just a corner (0-dimensional space) in the joint space, but a hyperplane

(da-dimensional space).

JoSTLe, like MM, uses Kuhn Triangulation within each rectangle to facilitate

interpolation and point location. Since the space is discretized and value interpolation

is linear within each simplex, it is possible to exchange the problematic sup operator

of (3.1) for a more tractable max operator over a finite set of actions. This is done

by making use of some convenient properties of linear interpolation.
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Consider Figure 3.2. The state line passes through a tetrahedron in the joint space.

This tetrahedron may be one of many which the state line passes through, but one

is enough to illustrate the idea. Since the values at the interior of the tetrahedron

are interpolated linearly from its vertices, the maximum of those values along the

state line will occur at only one of two points (unless the interpolated value inside

the tetrahedron is uniform, in which case the maximum occurs at least at those two

points), both of which are at the intersection of the state line with a boundary facet

of the tetrahedron.

Any given state will cross a finite number of tetrahedra at a finite number of

boundaries. Since the maximum must occur at the boundary of a linearly-interpolated

simplex, only these intersections need to be considered for value iteration and policy

extraction.

The claim that a maximum must occur at a boundary is proven next. To prove

this claim, mathematical backing is first developed for linear simplex interpolation.

This is then used in the proof that maxima must occur at boundaries of the simplex.

Once the proof is complete, the (then justified) algorithmic details of value iteration

will be given.

3.1.1 Linear Simplex Interpolation

The d-dimensional simplex interpolation of the value of a point p can be found by

noting that the d + 1 points of a d-dimensional simplex can be used to form a set of

d basis vectors.

The vectors are formed by picking one vertex of the simplex to be the origin

and labeling it v0. All other vertices are labeled arbitrarily as v1,v2, . . . ,vd as in

Figure 3.3. Each vertex has an associated value, written as f(vi), or simply fi in
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abbreviated notation. The goal is to interpolate over the vertices to find the value at

point p, denoted fp. The vertices are used to form basis vectors for a new Euclidean

space. The vectors radiate out from v0 to the other vertices and are defined as

~vi = vi − v0, 1 ≤ i ≤ d. A vector to point p is also defined such that ~p = p − v0.

v2

v1

v0

(0,0)

(0,1)

(1,0)

ap

Figure 3.3: A point in a simplex and the same point in the space spanned by the
vectors of that simplex. In the new space, the simplex is a set of unit vectors along
dimensional axes.

The vector ~p is transformed into the space spanned by ~v1, . . . , ~vd through a stan-

dard coordinate transform, where ~vi and ~p are row vectors:

a = ~p




~v1

~v2

...

~vd




−1

. (3.3)

This transform applies to all points in the span of ~v1, . . . , ~vd, including the edge

vectors themselves. Under this tranform, the edge vectors become unit vectors along

dimensional axes. These unit vectors are denoted u1, . . . ,ud. Note that unless the

simplex is degenerate, the inverse in (3.3) is always well defined. Non-degenerate

simplices always have linearly independent edge vectors.

To facilitate interpolation, value deltas f̄i = fi − f0 are also defined. Interpo-

lation is then done by treating value deltas as extra vector coordinates in the unit

space, creating augmented vectors: a+ = (a1, . . . , ad, f̄p) and u+
i = (ui1 , . . . , uid, f̄i).
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The transform vector a+ is then constrained to satisfy the equation of a hyperplane

spanned by the augmented unit basis vectors, yielding the unknown final coordinate

f̄p.

The equation of a hyperplane is N · ~b = 0 where N is the hyperplane normal

(which is fixed) and ~b is any vector tangent to the plane. In simplex interpolation,

we have d basis vectors u+
1 , . . . ,u+

d that allow us to find N, and a vector a+ that is

tangent to the plane. The equation of the hyperplane thus becomes N ·a+ = 0, where

the only unknown value is the final coordinate of a+: f̄p.

Interpolation is easier in the transformed space because all vectors are unit vectors,

which is the motivation for the transform. It is always possible to transform a point

into the coordinate space of the triangle, do the interpolation in the normalized

coordinate system, and then transform it back.

The hyperplane normal is most conveniently expressed as a d+1-dimensional cross

product of the basis vectors (including their delta values as element d + 1), which is

often computed with a form of the determinant where the top row is a set of unit

vectors and the rest of the elements are scalars:

N = u+
1 × u+

2 × · · · × u+
d =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 u2 · · · ud ud+1

u11
u12

· · · u1d
f̄1

u21
u22

· · · u2d
f̄2

...
...

...
...

ud1
ud2

· · · udd
f̄d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since the basis vectors are all unit vectors along an axis in this transformed space,
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this reduces to the following:

N = u+
1 × u+

2 × · · · × u+
d =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 u2 · · · ud ud+1

1 0 · · · 0 f̄1

0 1 · · · 0 f̄2

...
...

. . .
...

...

0 0 · · · 1 f̄d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Breaking the determinant into minors yields:

N = (−1)1+1u1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 f̄1

1 0 · · · 0 f̄2

0 1 · · · 0 f̄3

...
...

. . .
...

...

0 0 · · · 1 f̄d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)1+2u2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 f̄1

0 0 · · · 0 f̄2

0 1 · · · 0 f̄3

...
...

. . .
...

...

0 0 · · · 1 f̄d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
...

+ (−1)1+dud

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 f̄1

0 1 · · · 0 f̄2

...
...

. . .
...

...

0 0 · · · 1 f̄3

0 0 · · · 0 f̄d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)1+(d+1)ud+1 |I| .
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All but the final determinant may be expanded down the right column. Each of the

minors thus generated will have a determinant of 0 except for the f̄j minor, matching

the uj vector that is multiplied by it. In this case, the value of the determinant will

be (−1)d+j f̄j. This yields the following simpler formulation of the cross product of

these vectors:

N = (−1)d+2ud+1

+ (−1)1+1u1(−1)d+1f̄1

+ (−1)1+2u2(−1)d+2f̄2

...

+ (−1)1+dud(−1)d+df̄d.

This may be further simplified by combining the powers of −1:

N = (−1)d(−1)2ud+1

+ (−1)d+1(−1)2u1f̄1

+ (−1)d+1(−1)4u2f̄2

...

+ (−1)d+1(−1)+2dudf̄d.

The second power of −1 is always even and can thus be discarded. A (−1)d may also

be factored out of the entire expression, yielding:

N = (−1)d
[
ud+1 − f̄1u1 − f̄2u2 − · · · − f̄dud

]
.

In other words,

N = (−1)d(−f̄1,−f̄2, . . . ,−f̄d, 1).
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Because f̄p is the last coordinate of a+, the equation of the hyperplane may be used

to solve for this unknown:

N · a+ = (−1)d
(
−a1f̄1 − a2f̄2 − · · · − adf̄d + f̄p

)
= 0.

The (−1)d does not affect the outcome of the equation, yielding

f̄p = f̄a = a1f̄1 + a2f̄2 + · · · + adf̄d.

The interpolated delta value at point p is thus the weighted sum of the values at

the vertices. The actual value is found by adding back the value of the origin:

fp = f0 +

d∑

i=1

aif̄i.

Though this formulation was developed by myself from basic principles, the result

is not new. That it fits intuition as well as the well known definition of barycentric

interpolation serves to indicate that the derivation is correct.

Armed with the definition of linear interpolation in a simplex, it is possible to

prove that maxima must occur at the boundary. In fact, the derivation given here

is in a convenient form for the development such a proof, which follows. The formal

treatment of the above development of interpolation is also given to facilitate later

proofs.

3.1.2 Boundary Maxima Proofs

Definition 3.1.1. An arbitrary simplex Sd in d dimensions is a tuple (v0,v1, . . . ,vd),

where each vi is a point in Euclidean space. The vector simplex ~Sd corresponding to

simplex Sd is a tuple (v0, ~v1, ~v2, . . . , ~vd) where ~vi = vi − v0.

Definition 3.1.2. The unit vector simplex ∆d is a vector simplex such that

v0 = [0, . . . , 0]
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and

~vij =





1 i = j

0 otherwise
.

Definition 3.1.3. The transformed normal vector a = (a1, . . . , ad) of a point p =

(p1, . . . , pd) into the space spanned by ∆d is given by

a = (p − v0)




~v1

~v2

...

~vd




−1

where each ~vi is a row vector of the matrix.

Definition 3.1.4. The value of a vertex vi is fi. The value fp of a point p that lies

on the interior of a vector simplex ~Sd and whose transformation is a is given by

fp = f0 +
d∑

i=1

f̄iai

where f̄i = fi − f0.

Definition 3.1.5. A point p is contained within the vector simplex ~Sd if and only if

its transformed point a obeys the following:

[∀i ∈ {1, . . . , d} : ai ≥ 0] ∧

[
d∑

i=1

ai ≤ 1

]
.

Definition 3.1.6. A point p is on the boundary of the vector simplex ~Sd if and only

if its tranformed point a obeys the following:

[∃i ∈ {1, . . . , d} : ai = 0] ∨

(
d∑

i=1

ai = 1

)
.
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Definition 3.1.7. A point p is strictly inside of the vector simplex ~Sd if and only if

it is not on the boundary of the simplex. Formally:

[¬∃i ∈ {1, . . . , d} : ai = 0] ∧

(
∃δ ∈ (0, 1] :

d∑

i=1

ai = 1 − δ

)
.

The theorem that follows states that a maximum cannot occur uniquely in the

interior of a simplex. This is useful because it allows the search for a maximally

valued action to be limited to a finite number of points, specifically the points where

the state hyperplane intersects the boundaries of simplices in the joint space.

Theorem 3.1.8. Given a point p that is strictly inside of a simplex Sd, there exists

a point p′ that is on the boundary of Sd such that fp′ ≥ fp.

Proof. Let a be the transformed normal vector of p and a′ be the transformed normal

vector of p′. From Definition 3.1.4, the value of a point p is given by

fp = f0 +
d∑

i=1

f̄iai.

Also, because p is strictly inside of the simplex, Definition 3.1.7 dictates that

∀i[ai > 0] and
d∑

i=1

ai < 1.

In other words, there exists a δ ∈ (0, 1) such that

∀i[ai > 0] and
d∑

i=1

ai = 1 − δ.

The rest of the proof requires the treatment of two cases.

Case 1: ∃i, j; i 6= j : f̄i < f̄j

Let a′
i = 0, a′

j = ai + aj, and a′
k = ak for all k 6= i, k 6= j. Since f̄i < f̄j:

f̄iai + f̄jaj < f̄i0 + f̄j(ai + aj) = f̄ia
′
i + f̄ja

′
j.
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It follows that

f̄iai + f̄jaj < f̄ia
′

i + f̄ja
′

j

f0 +

d∑

i=1

f̄iai < f0 +

d∑

i=1

f̄ia
′
i

fp < fp′

where p′ is on the boundary, since ai = 0. This shows that it is always possible to

find a larger value on a boundary satisfying ∃i : ai = 0.

By further constraining f̄j > 0 and letting a′
j = aj +δ and a′

k = ak, k 6= j it can be

shown that it is also possible to find a maximum on a boundary satisfying
∑d

1 ai = 1.

Given these additional constraints, we know that

f̄iai + f̄jaj < f̄iai + f̄j(aj + δ) = f̄ia
′
i + f̄ja

′
j.

It follows that

f̄iai + f̄jaj < f̄ia
′

i + f̄ja
′

j

f0 +

d∑

i=1

f̄iai < f0 +

d∑

i=1

f̄ia
′
i

fp < fp′

where p′ is on the boundary because

d∑

i=1

a′

i = δ +
d∑

i=1

ai

= δ + 1 − δ

= 1.

Case 2: ∀i, j : f̄i = f̄j

Since the point p is strictly inside of the simplex and f̄i = f̄j:

f̄iai + f̄jaj = f̄i0 + f̄j(ai + aj).
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Letting a′
i = 0, a′

j = ai + aj, and a′
k = ak for all k 6= i, k 6= j, we have

f̄iai + f̄jaj = f̄ia
′
i + f̄ja

′
j

f0 +
d∑

i=1

f̄iai = f0 +
d∑

i=1

f̄ia
′

i

fp = fp′

where p′ is on the boundary, since ai = 0.

Similar to Case 1, further constraints may be imposed to force the maximum

onto a different boundary. Specifically if f̄j = f̄j > 0 and we let a′
j = aj + δ and

a′
k = ak, k 6= j then

f̄iai + f̄jaj < f̄iai + f̄j(aj + δ)

f0 +
d∑

i=1

f̄iai < f0 +
d∑

i=1

f̄ia
′

i

fp < fp′ .

where p′ is on the boundary because

d∑

i=1

a′
i = δ +

d∑

i=1

ai

= δ + 1 − δ

= 1.

Corollary 3.1.1. Given a point p that is contained within the simplex S, there exists

a vertex v such that fv ≥ fp.

Proof. The boundary of a simplex is itself a simplex. Since the maximum value must

not occur uniquely in the interior of any simplex, it follows that the maximum must

occur at the boundary of a boundary simplex. The lowest-dimensional simplex that

can exist is 0-dimensional, or a point. Thus, the maximum must occur at a vertex.
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3.1.3 Execution and Practical Considerations

The knowledge that maximum values always occur at simplex boundaries is very

useful. Given this result, we can change a continuous piecewise linear approximation

of a problem into a discrete problem, confident that maxima in the continuous action

space will not be overlooked when we restrict our search to a finite set of well-chosen

actions.

The space is discretized using hypercubes and Kuhn Triangulation. Value iteration

is done exclusively in the discretized space, updating the values at each corner of each

hypercube until convergence is reached.

Each corner v is decomposed into its state s and action a. The action a is applied

once, yielding a new state s1. This state represents a line (or hyperplane) within

the joint space, and will intersect with a finite number of simplex boundaries. The

simplices are searched for intersections. If s1 intersects with any hypercube that

contains the corner v as a vertex, a is applied again, yielding s2. This continues until

the final state sN is reached, where one of the following must be true:

• sN is an absorbing state

• sN does not intersect a hypercube containing v as a vertex.

Once a suitable final state sN has been reached, the value at v may be updated

using the following discrete version of the (3.1):

V (s, a) =
N∑

0=1

γi∆tR(si, a)∆t + γN∆t max
a′∈A(sN )

V (sN , a′). (3.4)

The set A(s) is found by finding all simplex boundary intersections with the s hy-

perplane. This set is finite in a bounded continuous space. Equation (3.4) shows an

implementation of Euler integration, but other techniques, like Runge-Kutta, could
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be used as well. ∆t is generally set to a value appropriate for the dynamics of the

environment. If fine-grained control is needed, a small ∆t may be used, and vice-versa.

It is assumed that reward information is available upon request for any state/action

pair. This is easily achieved in offline learning environments or in simulation, but is

not so easily achieved in the real world. For this reason, like MM, JoSTLe is currently

a strictly offline technique.

A final note is in order regarding the choice of a suitable N . The criteria above do

not tell the entire story. It is possible for an agent to get endlessly “stuck” doing the

same action over and over again. An example of this is a “do nothing” action. Since

new actions are not chosen over a trajectory, it is possible that the agent will never

find a hypercube that does not contain v. This can also happen during the beginning

stages of the algorithm when the space is not yet discretized.

To alleviate this problem, an upper bound can be set on the value of N that

is reasonably high. In practice, this value can be chosen rather arbitrarily without

causing the algorithm to degrade noticeably. That it be chosen at all is crucial,

however, since otherwise the algorithm may get stuck. In all of the experiments in

this paper, the maximum value of N was set to 100 and 1000, without any noticeable

difference between the performance of the two.

3.2 Joint Space Splitting

Ideally, splits would be performed based on JoSTLe’s ability to approximate the true

value function. Since the true value function is not known, and thus cannot be used

to determine approximation error, the model is refined based on a revised criterion:

maximum interpolation disappointment. Let V (p) be the value at a point p obtained

by discounting and V̂ (p) be the value obtained by interpolation over the simplex Sd
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containing p. The point disappointment qp is given by

qp =
∣∣V (p) − V̂ (p)

∣∣. (3.5)

The value V (p) is simply V (s, a) from (3.4), where s and a come from the decompo-

sition of p. The only difference is that in this case p is in the interior of some simplex,

rather than at a vertex.

Since the interior of each rectangle is itself an infinite continuous space, the max-

imum interior disappointment must be approximated. This is done by generating a

random set MR of Monte-Carlo points within the rectangle R and calculating the

disappointment for each of the points. If the highest of the point disappointments is

above a minimum threshold ε, the rectangle is marked for splitting. The algorithm

for calculating disappointment is summarized here.

Calculating Disappointment

The calculation of the disappointment involves running through (3.4) for each
Monte Carlo point p ∈ MR. As is the case with value iteration, this is done
until the point’s containing hypercube is no longer intersected by the state (for
some N such that the state at time N∆t satisfies the above). This provides

V (p). Then the interpolated value V̂ (p) is found at each point (using the Kuhn
Triangulation, as explained in Appendix A and [MM02]) to get the point disap-
pointment qp. The set of these disappointments is then analyzed to determine
whether a split must occur and in which dimension.

The best dimension in which to split is chosen by hypothetical splitting in each

dimension. Each potential split will yield two new rectangles, each with its own

disappointment properties. The dimension in which a split yields a rectangle with

the smallest maximum disappointment (minimax) is chosen as the best candidate

since it will improve the model the most. More formally, the split that creates a

rectangle satisfying

arg min
R∈R

max
p∈MR

qp (3.6)
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Figure 3.4: A one-dimensional illustration of the splitting process. The line shows
the interpolated values, and the points are the values obtained by discounting. A
split may only reduce the error of one of its new rectangles and leave the other with
a large error.

is chosen, where R is the set of all rectangles that can be created by splitting the

original rectangle in each dimension.

In some cases the chosen split will produce one rectangle with a very small maxi-

mum error and another with a larger maximum error. Figure 3.4 shows a line segment

before and after splitting. The split is performed even though one of the final seg-

ments still has a large amount of disappointment. This is tolerable because the worst

of the two will be split in future iterations until its sub-segments also exhibit minimal

disappointment.

An important optimization can be applied to the splitting portion of the algo-

rithm. If a rectangle’s maximum disappointment is below ε, the rectangle can be

marked as “untouchable”, since splitting it will not be beneficial (it already has a low

disappointment). This practice of culling already accurate rectangles from consider-

ation gives the algorithm a real boost over time.

The algorithm stops when it decides that no more rectangles should be split. This

occurs when every rectangle either has a low enough disappointment, or a volume that

is less than the minimum feature volume. This minimum feature volume is explained

in the next section.
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3.3 Parameters

The algorithm as given requires some initial parameters to be set for it to function

properly. In this section the way these parameters are chosen and the algorithm’s

sensitivity to them is discussed. The parameters of interest are

• Vmin: The volume of the smallest feature of interest

• ε: The largest disappointment allowed

• MR = |M|: The number of Monte-Carlo points to scatter in a rectangle R

3.3.1 Parameter Values

The volume of the smallest feature of interest in the space is Vmin and is given to the

algorithm as an initial parameter. This is a best guess as to how detailed we want

the discretization to get. No rectangles will be split that are less than this volume.

In many interesting problems, this volume can be computed by assuming that the

smallest reward feature is the smallest feature of interest.

The smallest feature volume of interest can actually be found more simply by

defining the smallest feature of interest in each dimension li. This can be done because

all splits are perpendicular to a dimension, and only rectangles are ever created. From

this parameter, the volume is easily found from Vmin =
∏d

i=1 li. These parameters are

often much easier to come up with initially than a volume would be, since a minimum

dimensional feature size is fairly simple to visualize.

Take, for example, the problem of balancing an inverted pendulum. The reward

is defined as being 1.0 if the pendulum is balanced, and 0.0 if it is not. The reward

is a step function with a finite width (“balanced” is usually defined as −δ < θ < δ,

with some small and previously determined δ). No feature of the value function can

be less smooth than the reward itself, so the size of the interesting reward features
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(in this case 2δ) is a good starting point. In offline techniques like this one, the

reward information is almost always known beforehand, so this is not an unreasonable

heuristic.

The maximum allowable disappointment can be more difficult to determine de-

pending on the problem at hand. For problems that have a terminal reinforce-

ment only, it is often practical to set it based on the maximum range of rewards

∆R = Rmax − Rmin, the time step ∆t, and the discount factor γ. With terminal

reinforcements, an upper bound on the disappointment is given by ε ≤ ∆R∆t since

an integral of reinforcments will always end once a nonzero reward is received, and

the best value acheivable occurs when a reward is one step away.

Problems with non-terminal reinforcements can use an altered upper bound, deter-

mined by accounting for an infinite string of discounted rewards (and taking advantage

of the fact that when γ ∈ [0, 1),
∑∞

i=0 γi = 1
1−γ

)

∆R∆t

1 − γ
.

These upper bounds can be used to define a more intuitive disappointment thresh-

old. The threshold becomes a percentage of the upper bound in these cases, making

it easy to come up with reasonable values. For example, 1% of the maximum error is

often a reasonable error threshold.

The number of Monte-Carlo points MR of a rectangle R whose volume is VR can

also be easily computed. This value is computed from the minimum feature volume

thus:

MR =

⌈
VR

Vmin

⌉
.

The formulation of MR ties it directly to the minimum feature size. This number

starts out large for large rectangles and decreases with the size of the rectangle. The

smallest allowable feature will be allocated exactly one Monte-Carlo point. This fact
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makes it easy to determine when to stop splitting a rectangle. If MR becomes 1, then

the rectangle can no longer be split, since no interior points will ever be tested for

the smaller resulting rectangles.

3.3.2 A Note on Parameter Sensitivity

In the problems of Chapter 6 (coming up), the algorithm showed surprisingly little

sensitivity to the parameters. Often what seemed reasonable according to the defini-

tions above was well within a window of workability. The disappointment threshold

and the minimum feature size could be varied quite widely without adverse effects on

the quality of the result.

Often the first thing tried was as good as any hand tuning that was done subse-

quently. That is very encouraging and shows the potential robustness of the technique.

More detailed analysis of parameter sensitivity will be given in Chapter 6.

3.4 Computation of Intersections

The computation of intersections is central to JoSTLe, but has not yet been treated

with the care it deserves. This section describes how the intersections are computed

during the execution of the algorithm.

Finding the intersections of a 1-dimensional line with the boundaries of a 2-

dimensional triangle is relatively easy to visualize and to code. Finding such an

intersection when faced with arbitrary dimensionalities is much more difficult. The

challenge is to develop an algorithm that extends easily into any number of dimen-

sions.

The intersections are computed for the purpose of finding maximum values. For-

tunately, the fact that these maxima occur at the boundaries of simplices allows us
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Figure 3.5: The state space projection of a joint space tetrahedron is shown as a
shadow on the state plane. The state line becomes a point in the state space, and
that point is contained within the projected shadow.

to take a significant shortcut. The intersections do not need to be computed directly.

They can be derived from interpolation in the projected space. Figure 3.5 illustrates

this concept in three dimensions. The points of intersection are shown in the figure,

as is the projection of the tetrahedron’s faces onto the state plane. Note how the

state, which is a line in the joint space, is a point in the projected space.

Thus, rather than finding the points of intersection of the state line with the joint

space tetrahedron, we can project the faces of the tetrahedron onto the state space,

forming a shadow of the original. Some of the faces will overlap each other because

the projected simplex is degenerate (e.g., the shadow in the figure is actually all four

triangles, two of which project to lines, and the other two of which project to the

shaded region of the state space).

We now have two triangles that contain the state as a single point. Because it is

linear, interpolation over the intersections in the joint space yields (conveniently) the

same value as interpolation over the point in the projected space. Since interpolation

of a point in a simplex is a known quantity in multiple dimensions, this is a convenient

result, indeed.

Thus, the joint space simplices have ds-dimensional boundaries that can be pro-
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jected into the state space. In Figure 3.5, for example, the tetrahedron is composed

of four 2-dimensional triangle boundaries, corresponding to the 2 dimensions of the

state space. We could have done the same thing with a 1-dimensional state space

by projecting the edges of the tetrahedron onto a state line. In general, there are

always
(

d+1
ds+1

)
of these projections, where

(
n

m

)
= n!

m!(n−m)!
. Each projection that con-

tains the state point can be interpolated at that point to find not only the value, but

the missing action coordinates that correspond to it. One of those values will be the

maximum.

This insight allows us to approach searching the action space in a systematic

fashion. The state point in question can be used to find the relevant hypercubes, and

their triangles can be projected into the state space. Those which contain this point

are used for interpolation, and the best is chosen.

This result is crucial to the ability of JoSTLe to be implemented for problems of

arbitrary dimensionality, and is therefore worth taking the time to prove. The proof

is given in the following section.

3.4.1 Projected Intersection Proof

Lemma 3.4.1. Let ∆d be a d-dimensional unit vector simplex and s be an integer such

that 0 < s < d. Let ∆s be an s-dimensional boundary of ∆d which contains the origin

as one of its vertices. If Us is the set of edge vectors in ∆s, then any point a contained

within ∆s will have zeros for all coordinates ai where i ∈ {x : (1 ≤ x ≤ d)∧(ux /∈ Us)}.

Proof. The proof follows from the definition of a span. A point contained within

the space spanned by a basis set Us of unit vectors cannot have nonzero coordinates

in any dimension not represented by that set of vectors. If it did, then some of its

coordinates would not be representable as a linear combination of the basis vectors,
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and therefore it would not be in that space, but in a space orthogonal to the vectors

in Us.

The following theorem claims that the transformed point a of any point p in an

arbitrary boundary simplex will only have non-zero coordinates with the same indices

as the vectors in that boundary simplex. This establishes a connection between

arbitrary boundary simplices in any basis space and boundary simplices in the unit

vector space. This connection allows the results that follow to apply to any simplex

in any space.

Theorem 3.4.1. Consider an arbitrary simplex Sd in d dimensions with a boundary

simplex Ss in s dimensions where 0 < s < d. Let Us =
{
~v : ~v is a vector of ~Ss

}
.

Then for all i : ~vi /∈ Us, the transformed coordinate ai = 0.

Proof. Since from the previous proof we know that for a point in the boundary ∆s of

the unit vector simplex ∆d the coordinates corresponding to unit vectors not in the

boundary are zero, we need merely show that the vectors in ~Ss have the same indices

as unit vectors in the corresponding unit vector boundary ∆s. This is done in two

parts, one for the origin vertex, and one for every other vertex.

Origin Vertex

Without loss of generality, let the origin vertex v0 of Sd be chosen such that it is

also a member of Ss. Let p = v0 be the point for which we wish to find the transform:
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By Definition 3.1.3 and the properties of linear algebra, the following is true:

a




~v1

~v2

...

~vd




= (p − v0)

= (v0 − v0)

= [0, . . . , 0] .

For this equation to be true in general, all coordinates ai of a must be zero, which

shows that the transform of v0 is indeed the origin. Next we show that any non-origin

vertex in the boundary simplex will have the same index in the transformed space.

Non-origin Vertices

Let vi be an arbitrary non-origin vertex in Ss. By Definition 3.1.1, ~vi = vi − v0

is a vector in ~Ss. Let p = vi be the point for which we wish to find the transformed

point a.

By Definition 3.1.3 and linear algebra, the following is true:

a




~v1

~v2

...

~vd




= (p − v0)

= (vi − v0)

= ~vi.

For the above to be true in general, the following equation must hold:

aj =





1 if i = j

0 otherwise
.
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This means that a = ui from Definition 3.1.2.

Since ui in ∆s corresponds to vi in Ss, it follows that each vector ~vi of Ss will

transform to ui in the unit vector space. Since the point p is in the span of vectors

in Ss, its transform a must be in the span of the vectors of ∆s, which cannot have

nonzero coordinates outside of that span.

The following definitions and theorems establish that interpolation over a bound-

ary in the joint space yields the same result as interpolation over the projected bound-

ary in a smaller space.

Definition 3.4.2. A constraint index set is a set X such that every element is a

dimensional index. A constraint vector x is a vector of values where xi is a fixed

value if i ∈ X and a wildcard otherwise.

Definition 3.4.3. A set of constraints defines a constraint hyperplane, where all

points p satsifying i ∈ X =⇒ pi = xi are in the hyperplane.

Definition 3.4.4. Given a constraint index set X and a constraint vector x, a con-

strained projection of a point p is a point p̂ such that the following holds:

p̂i =





pi if i ∈ X

0 otherwise
.

In other words, the point p is projected onto the space spanned by the vectors ~vi :

i ∈ X .

Definition 3.4.5. The constrained projection of a simplex is a simplex such that all

vertices have gone through a constrained projection as above.

Theorem 3.4.6. Let Sd be a simplex in d dimensions. Let X and x be a set of

constraints, and let s = |X |. Let p be the point of intersection of the corresponding
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constraint hyperplane with an s-dimensional simplex Ss, which is a boundary of Sd.

Assume such an intersection exists. Let Sp be the constrained projection of Ss, and p̂

be the constrained projection of p.

Given the above, the interpolated value at p using Ss is the same as the interpolated

value at p̂ using Sp.

Proof. Without loss of generality, let us number the vertices of Sd such that the

boundary simplex Ss contains the vertices v0,v1, . . . ,vs. It follows that ~Ss = (v0,u1, . . . ,us)

and ~Sp = (v̂0, û1, . . . , ûs). Furthermore, let X = {1, . . . , s}

From the proof of Theorem 3.4.1, the coordinates of the transformed point a of

p have the property that ai = 0 if i > s, since p is contained within the boundary

simplex Ss. Interpolation of the value of a point p is done using the coordinates of

of its transform a (Definition 3.1.4), so the value at point p is given by

fp = f0 +

d∑

i=1

aif̄i

= f0 +
s∑

i=1

aif̄i

since only the first s coordinates of a are nonzero.

Discovery of the coordinates of a is accomplished through solving this system of

equations, where ~vi is a row vector taken from Sd

[a1, . . . , as, 0, . . . , 0]




~v1

~v2

...

~vd




= (p − v0) .
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which may also be expressed as

a1v11 + a2v21 + · · · + asvs1 = p1 − v01

a1v12 + a2v22 + · · · + asvs2 = p2 − v02

...
...

a1v1s + a2v2s + · · ·+ asvss = ps − v0s

...
...

a1v1d + a2v2d + · · ·+ asvsd = pd − v0d

. (3.7)

This leaves us with d equations in d unknowns. Of interest for value interpolation

is the unknown quantity a, of which only the first s coordinates are unknown. Con-

veniently, the first s coordinates of p are known, giving us s relevant equations in s

unknowns. These first s equations may be solved for a to carry out interpolation.

If we do the same interpolation using the projected point and simplex, we get the

following:

[â1, . . . , âs]




û1

...

ûs




= (p̂ − v̂0)

This gives us the following system of equations:

â1v̂11 + â2v̂21 + · · · + âsv̂s1 = p̂1 − v̂01

...
...

â1v̂1d + â2v̂2d + · · ·+ âsv̂ss = p̂s − v̂0s

. (3.8)

But, by Definition 3.4.4, the first s coordinates of each projected point and vector are

equivalent to the originals, so we have v̂ij = vij for 1 ≤ i, j ≤ s, and similarly for p

and v0.
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Therefore â is a solution to the same set of equations as a, giving a = â. Thus

the interpolated value of fp is given by the following equation:

fp = f0 +

s∑

i=1

aif̄i = f0 +

s∑

i=1

âif̄i. (3.9)

The result is the same whether using the intersection point or its projection.

From the above proof, it follows that if we are searching the joint space at a

particular fixed state, we know that the intersection of the hyperplane defined by

that constraint will intersect with a number of simplices. Furthermore, we know that

it will intersect with a set of ds-dimensional boundaries of those simplices, where ds

is the dimensionality of the state space.

Because of this fact, we can generate all ds-dimensional boundaries whose pro-

jections contain the state point in question and choose the interpolated value among

them that is the highest. We are guaranteed that we will not miss any maximums,

since we will have searched all of the boundaries and they will always occur there.

Corollary 3.4.1. Discovery of the missing coordinates in a constrained intersection

with the boundary simplex Ss is the same as treating the missing coordinates as values

and doing interpolation on them.

Proof. The d − s unused equations of system (3.7) have d − s unknowns, namely

ps+1, . . . , pd. Simplifying and making use of Definition 3.1.1 we get pi = v0i +

∑s

j=1 aj(vj i
− v0i) for s + 1 ≤ i ≤ d, which is analagous to value interpolation as

given in Definition 3.1.4.

Thus, to find the actual coordinates of the intersection, we can project the simplex

into the lower-dimensional space, find the values of a1, . . . , as using the transform for-

mula, then use those coordinates to not only interpolate the value, but to interpolate

the missing (unconstrained) coordinates of the intersection.
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This is very useful when obtaining the policy from the joint space. We can use

the very same projection insight to find out which action results in the highest value

as we do to find the value itself.

3.4.2 Generation of Projected Simplices

Knowing that a simplex projection makes interpolation easier is very helpful. This

section details how these projections are generated.

Generation of projected simplices involves three basic steps:

1. Find the hypercubes that intersect with the state constraint.

2. Generate the Kuhn simplices of each hypercube.

3. Generate the boundary simplices of each Kuhn simplex.

Hypercube Generation

The kd-trie structure allows for more than the ability to efficiently find the hypercube

containing a given point. It also allows for efficient range queries. The result of a

range query is the set of hypercubes that intersect a subset of the full space. For our

purposes, this is useful for finding those hypercubes that contain the state hyperplane.

A range query is performed by querying the kd-trie with a point where one or more

coordinates are wildcards1. At each level of the trie, the path downward represents

a split in exactly one dimension. If that dimension has a constrained coordinate in

the query, it is easy to determine which path to take. If the split occured in a dimen-

sion corresponding to an unconstrained coordinate, then both paths are taken. The

ambiguity inherent in this kind of a query results in multiple satisfactory rectangles.

1Actually, this is an oversimplification. A range query allows for value ranges as well as wildcards.

The full power of range queries is not needed for JoSTLe to operate, however, so range values are

not discussed here.
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s

a1

a2

Figure 3.6: The joint space (1 state dimension and 2 action dimensions), tesselated
with 3-dimensional rectangles, is shown as a whole, with a state constraint (this time
a plane instead of a line), and with the rectangles relevant to that constraint.

Consider Figure 3.6. The joint space is shown as being tessellated with 3-dimensional

rectangles. Also shown is the state plane (indicating that in this particular exam-

ple, the state space is 1-dimensional and the action space is 2-dimensional) and the

rectangles that contain the constraint plane. The kd-trie structure allows us to effi-

ciently find only those hypercubes that contain triangles of interest, thus narrowing

our search for useful simplices substantially.

Kuhn Simplex Generation

Once the relevant set of hypercubes is found, we can then generate the Kuhn Sim-

plices for each one. Each hypercube has d! simplices, which are easily generated (see

Appendix A for details). Many of the simplices can be immediately discarded because

they are parallel to the constraint hyperplane (the horizontal edges in Figure 3.6 will
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never intersect the constraint plane).

The factorial explosion of simplices in d is one of the unfortunate side-effects of

the use of triangulation in the algorithm. It is not unique to Kuhn, however. All

triangulation schemes known to the author exhibit factorial or exponential behavior

in dimension.

Projected Boundary Generation

Once we have the relevant Kuhn simplices, we can project them all onto the state

space. Projection of the simplices involves enumerating the ds-dimensional boundaries

of each joint space simplex and setting their action coordinates to zero. Each of these

boundaries is itself a simplex (in Figure 3.6 each boundary is a line segment, or a

1-dimensional simplex).

We can further cull the projected simplices by removing those that do not contain

the state point in question (since an intersection cannot occur in the space if the

shadow does not contain the constraint point) and by removing any duplicates (joint

space simplices will share boundaries). We then interpolate over the rest to get the

value of each one at the state point.

The boundaries are easy to generate. A simplex Sd in d dimensions will have

d + 1 vertices v0,v1, . . . ,vd. Let us assume that we are constraining ds coordinates.

To enumerate all of the ds-dimensional boundaries of the simplex Sd, we can simply

generate all
(

d+1
ds+1

)
combinations of vertices. Each combination of vertices corresponds

to a boundary of the simplex, which is itself a simplex in ds dimensions.

The reason that we know that the new boundary is itself a simplex comes from

graph theory. Every simplex is a complete graph. Any subgraph of a complete graph

is also complete. Thus, given any subset of vertices of a simplex, this subset of vertices

also defines a simplex.
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The combinatorial nature of the projected simplices is another unfortunate side-

effect of the approach taken by this algorithm. Given all of the culling that can be

done before reaching this point, however, it has not proven to be a crippling problem,

especially with the low dimensionality of the problems presented here.

3.5 Convergence

When introducing new function approximation schemes into a RL setting, the ques-

tion of convergence naturally arises. Gordon addressed the issue of convergence

in [Gor95] at length, and showed that averaging function approximators will allow

the value iteration process to converge. Among these are barycentric interpolators,

of which the linear interpolation method described here is one.

Additionally, value iteration is done separately from the refinement process. Each

state hyperplane crosses through a finite and static set of boundary facets, yielding a

finite and static set of available actions for that state. Thus the problem is reduced to

value iteration over a discrete space. That the number of actions at each state is fixed

during value iteration and averaging approximation is used solidifies the argument for

value convergence.
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Chapter 4

Delaunay: The Road Not Taken

Before settling on Kuhn triangulation and the hypercube constraint, an attempt

was made at discretizing the joint space in a free form manner. Joint space points

were added as they were explored. Interpolation was needed between these points,

and this necessitated using a tessellation technique. The Delaunay Triangulation

appeared to be the clear winner for its duality with Voronoi Diagrams, its property

of angle maximization and its relative stability in the face of vertex insertion and

deletion [For92]. Indeed, it has been used before in the state space, though not in a

completely free-form manner [Muñ97]. For several reasons, however, it was abandoned

in the joint space. This section describes some of the things that were discovered in

the process of attempting to use it.

4.1 The Incircle Property

Delaunay triangulation is defined by a deceptively simple criterion: no vertex falls

inside of the circumcircle of any triangle to which it is not incident. Figure 4.1 shows

the circumcircle of a particular triangle in a Delaunay triangulation. Note that no
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Figure 4.1: A Delaunay Triangulation showing the circumcircle of one of the triangles.

vertices outside of the triangle fall within the circumcircle shown.

This has some interesting side-effects: it tends to maximize the minimum angle

in the triangulation (though unfortunately it does not also minimize the maximum

angle) and it guarantees that the triangulation is unique as long as points are not

perfectly uniformly spaced [For92,Tan93].

The maximization of minimum angles is a nice property because it tends to make

the triangles smaller and more uniform in shape. This means that interpolation done

over the triangles will be influenced only by local points. This is a desirable property.

The uniqueness property is equally appealing. Given a set of points, the trian-

gulation is fixed and unambiguous. This is nice because it makes the triangulation

invariant under insertion and deletion order.

While at first glance these appear to be very desirable properties for spatial tes-

sellation, they can cause problems.

4.2 Boundary Triangles

Triangles in the interior of a tessellation tend to be small and fairly uniform in shape.

This is one reason that Delaunay appears to be so useful. The problem is that this
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Figure 4.2: A DeLaunay Triangulation of the golf problem of Chapter 5. Note the
very long and skinny boundary triangles.

property does not extend to the boundaries of a tessellated space. At the boundaries

things are more constrained and the triangles are almost always long and skinny

(this is allowed because Delaunay does not simultaneously minimize the maximum

angle [Tan93]). The incircle property enforces this because the boundary points must

be part of some triangle, and the only way to keep the circumcircle of that triangle

from containing any other vertices is to have it extend outside of the space. As more

points are added in the interior of the space, the boundary triangles become more

and more skinny.

Serious problems occur when attempting to do interpolation on these triangles.
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They tend to contain points on opposite ends of the space. This means that values

interpolated across these triangles are influenced unduly by nonlocal features. This

problem is compounded when learning in the joint space, since some of these boundary

triangles span huge portions of the state space, and are thus present in the calculations

for every single state.

Figure 4.2 shows a Delaunay triangulation of the golf problem described in Chaper

5. The boundary triangles are very long and skinny, and those on the top and bottom

pose particularly difficult problems, since they span the entire state space and can

throw off the value iteration process.

There are a number of things that can be done to correct for this problem, and

it is a well-known and oft-discussed issue in literature. The triangles can be made

smaller by adding new points at the boundaries. Deciding which points to add is

a somewhat thorny issue, and in order to correct for these boundary problems an

exponential explosion of points may occur.

4.3 Existence

Delaunay is guaranteed to exist in 2 dimensions, provided that the points are in gen-

eral form [Müc95]. The general form constraint is fairly rigid. Certain configurations

of points can cause some of the triangles to be degenerate (three vertices lying on a

straight line, for example) and these are not allowed in general form. In 2 dimensions,

there are only 2 kinds of degeneracy: 3 points of a triangle lying in a straight line,

and 3 points that are the same.

In 3 and higher dimensions, however, the number of ways that degeneracy can

occur increases linearly with dimension, causing an exponential increase in the likeli-

hood of hitting one of them. The triangles at the boundaries of the space tend to be
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degenerate with alarming frequency, and a small number of evenly spaced points will

also cause degeneracy to occur.

Degenerate triangles take up space without serving any useful purpose for inter-

polation, but they are necessary to make the triangulation exist. Several methods

exist for overcoming this difficulty. Software that performs Delaunay triangulations

often perturbs the offending vertices, making a very thin but nondegenerate triangle

in place of a degenerate one. Even so, in 3 and higher dimensions this does not

guarantee the removal of all degeneracies [Müc95].

In addition to all of this, deletion of points from unconstrained triangulations

in higher dimensions can generate polytopes that are impossible to triangulate (the

Schönhardt polytope is one of these [BLRG00]) with any triangulation.

4.4 Uniqueness

The uniqueness property is nice because it allows us to forget about point inser-

tion and deletion order. No matter when a point is added to or removed from the

tesselation, the triangulation will be the same for the same set of points.

This property has its costs. Deletion and insertion do not always cause purely

local changes. Any triangle whose circumcircle contains a newly inserted point must

be removed and new triangles formed [For92,Dev99]. This is not usually a problem

in 2 dimensions, but in 3 and higher dimensions the number of triangles affected by

a new point or a removed point increases exponentially due to the increased degrees

of freedom. Thus, the effect of a new or removed point is often neither predictable

nor local.

When doing value iteration over a tessellated space, stability is crucial. If the

addition of a single point can wipe out tens or hundreds of nearby triangles, the
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interpolation information that these triangles contained is lost and the new interior

values may not resemble the old ones at all. This causes large portions of the model

to take on incorrect values whenever refinement is done and introduces an instability

into the value iteration process.

This effect was most severe near the boundaries of the space, which turned out

to be extremely important because of the fact that boundary triangles span such a

large portion of the space.

4.5 Projection and Value Iteration

Fairly fast search algorithms exist that allow the triangle containing a particular point

in space to be found [BT93,Dev98]. These algorithms are not clearly extensible to

finding the set of triangles intersected by a hyperplane (range queries), however, which

is crucial to value iteration in the joint space. The obvious implementation involves

projecting all triangles in the joint space onto the state space and then performing a

search to see which subset of the projected facets contains the state point.

At first glance, the fact that a point can be located in a Delaunay triangulation

appears to solve the problem. The location algorithm, however, only applies to De-

launay triangulations, and the projection of a Delaunay triangulation onto a subspace

is not only not Delaunay, it is not even a tessellation, since it is comprised of over-

lapping facets. No efficient algorithm is known at this time that compares with the

range queries of a hypercube tessellation.
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4.6 Implementation

Implementing Delaunay in an efficient manner is anything but simple [BT93,DGH01,

Dev98]. It can be derived from the convex hull of its projection onto a hyperparabloid,

and many algorithms exist for finding convex hulls. The difficulty is that all of the

algorithms in existence work with an entire set of points and do not allow for deletions

and insertions. The ability to insert vertices into an existing triangulation is crucial

to dynamic refinement (otherwise every time a point is added or deleted everything

has to be triangulated all over again).

The algorithms for insertion and deletion in Delaunay are well-known and widely

understood in 2 dimensions. In higher dimensions, things fall apart again. Searching

for triangles whose circumcircles contain the new point is inefficient and difficult to

implement, and retriangulation in multiple dimensions is a non-trivial procedure.

Far worse is the case of point deletion. This is done when looking ahead to see if

a particular change is going to benefit the model. A point must be added and then

deleted if it is not helpful. The deletion literature treats 2-dimensional triangulations

in detail, but leaves higher dimensionalities to the observant and highly motivated

reader, saying that extension into these dimensions is “easy” [Dev99].

The incremental deletion algorithm is not easy to extend into dimensions higher

than 2. In fact, the algorithm given in the literature does not extend above 2 di-

mensions without some subtle but important alterations to the methodology, though

the motivating principles still apply. Fortunately, a correct algorithm exists (see

Appendix B for details) and was discovered and implemented by the author of this

work. The deletion algorithm developed appears to be the first successful adaptation

of [Dev99] to any dimension higher than 2.

The correct algorithm is not efficient, and it is not yet clear how to improve it. It
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seems that the complexity can be no better than factorial in dimension.

In addition to these issues, the entire triangulation must be stored. It is not

sufficient to simply store the vertices and dynamically determine the triangles per-

taining to a particular vertex, or the triangle that contains a particular point. The

triangulation must be computed and remembered. This imposes a tremendous space

constraint in comparison to hypercubic methods, which may simply store points in

some searchable structure.

4.7 Other Triangulations

The obvious question is “If not Delaunay, which triangulation should be used?” The

answer is not obvious. Many triangulations exist, and they have different features and

implementation details [AX00]. None of them are simple, and many of them share

difficulties with Delaunay (the “Greedy” triangulation, for example, can be derived

from a Delaunay triangulation).

The hypercubic tessellation of space, on the other hand, is simple, easy to store

efficiently, easy to make range queries on (and thus find hyperplane intersections),

simple to compute, well understood, stable, unique, existent, and it works well at the

boundaries. The only thing missing is the ability to tessellate space using arbitrary

points. Because of these properties, Delaunay was abandoned in favor of hypercubic

tessellation and Kuhn triangle interpolation. It remains to be seen whether tessel-

lation with arbitrary points and nice implementation properties is an attempt to

simultaneously possess and consume a cake. It appears to be likely.
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Chapter 5

Illustrative Problems

The smallest dimensionality of any useful joint space is 2, since at least one state and

one action variable must be present for reinforcement learning to occur1. The dimen-

sionality of RL environments is traditionally determined by the number of states, so

the minimalist problem presented here is called 1-Dimensional Golf. In addition, the

oft-discussed Mountain Car problem will be explained.

5.1 1-Dimensional Golf

The agent is in a 1-dimensional room with a golf iron, a golf ball, and a hole in the

middle of the room. It attempts to get the ball into the hole in one shot. If it hits

it too hard, it will go over the hole. If it hits it in the wrong direction, it may hit

a wall and get a negative reinforcement. If it goes into the hole, it gets a positive

reinforcement.

In this problem, the state space is continuous: s ∈ [−10, 10]. The action space is

1This is beside the fact that single-state no-action problems are not very interesting, since the

agent cannot act on the environment and therefore has nothing to decide. Single action no-state

problems are equally uninteresting, though more humorous to consider.
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Figure 5.1: The 1-Dimensional Golf problem. The boundaries snaking through the
middle of the joint space represent positive reward boundaries (the reward is between
them), and the other lines represent negative reward boundaries (in the corners).

also continuous: a ∈ [−10, 10]. The hole is centered at (0, 0) and is 0.5 units wide (the

positive reward is achieved when s′ ∈ [−0.25, 0.25]). The environment is deterministic

and accessible, and the resultant state (s′) from taking an action is determined by

the following formula:

s′ = s +
a

|a|

√
10|a|

If the new state is outside of the range [−10, 10], it is clipped to fit inside of it. In

other words, if the ball hits a wall, it does not bounce back. It stays up against the

wall. If the agent hits a ball such that clipping must occur, it receives a reinforcement

of −1. If s′ ∈ [−0.25, 0.25], a reward of 1 is received. In all other cases, a reward

of 0 is received. Figure 5.1 is a graphical representation of the joint space with the

positive and negative reward boundaries shown.

This problem has some interesting characteristics. The area of positive reward

is very small compared with the rest of the space, and it is not strictly a boundary
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reward, making it somewhat difficult to find (especially near the center of the space,

where it is extremely thin). Additionally, the optimal solution to this problem is

always a one-step action, and the positive reinforcement is either on or off. Either

the ball fell in the hole or it did not.

All of the above characteristics make this problem difficult to solve, especially

for techniques that näıvely discretize or require a priori discretization of the action

space. It is also minimalist, making it a very good comparison point for current

variable resolution schemes and JoSTLe.

5.2 Mountain Car

A problem that is often treated in the variable resolution discretization literature is

the Mountain Car problem. In this problem, the goal is to get a car from the bottom

of a hill to the top. Figure 5.2 illustrates the concept pictorially. A reward is given if

the car stops at the top of the hill on the right, and a penalty is given for driving off

the left side, or for going too fast off the right side.

The car in this problem does not have enough thrust to make it from the bottom

to the top without first backing up the hill on the left. This problem is minimum

time, and as such can be solved with bang bang control (only “full forward” and “full

reverse”) [BH69]. The reader is referred to [MM02] for a more detailed treatment of

the problem.
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Thrust

Gravity

Goal

Figure 5.2: The Mountain Car problem. The car must reach the top of the hill on the
right, but does not have enough power to do so without first backing up the hill on
the left. A reward is given for stopping at the top, and a penalty is given for driving
off either end.
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Chapter 6

Results

Both JoSTLe and MM were applied to the golf problem. Though MM has many

possible splitting criteria, in a 1-dimensional problem average corner value difference

works as well as any of them (more complex criteria are only helpful in higher dimen-

sions [MM02]). In MM splitting occurred if the value difference was above 0.001, and

in the case of JoSTLe the regions were split when the disappointment was worse than

5% of the upper bound on the error (Section 3.3) with ∆t assumed to be 1. Both

used a γ of 0 for this problem as a way of optimizing the experiments’ running time,

since it was known beforehand that the positive reward was available everywhere in

the state space and that discounting would not be necessary for the extraction of a

good policy.

The corners of the joint discretization rectangles are shown in Figure 6.1 and their

corresponding triangles are shown in 6.2. As can be seen from the figure, the learner

concentrated its resources on areas of sharp reward transition, and approximated

them quite well. This behavior is expected, as these areas of transition must be

represented well in order to obtain a good value function.

For JoSTLe, no a priori action discretization was required. It began with a single
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Figure 6.1: Corners of joint space rectangles. This plot shows how well they approx-
imate the true reward boundaries.

Figure 6.2: A triangulation of the joint space for the golf problem.
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Figure 6.3: The policy accuracy as relates to the number of state/action pairs (vertices
in the joint space) is shown for the two different learners. MM gets three different
graphs, each of which represents the number of actions available at each state.

joint space rectangle and learned the appropriate discretization over time. The MM

approach was given a single line segement to begin with in the state space and was

applied using several different uniform action discretizations. The performance of

three of them is shown in a later figure.

For each approach, policy accuracy was calculated after every round of splitting

and iteration. Since the optimal policy is known for this problem and always consists

of a single step, the accuracy was calculated by scanning the state space at 100 evenly-

spaced points and querying the models as to which action was most appropriate at

each point. The accuracy is the ratio of correct actions to total states queried.

Figure 6.3 shows the relationship between policy accuracy and number of state/action

pairs (vertices, in joint space terms) for each learner. Since MM requires an a priori

action discretization, its performance is shown when given 2, 16, and 256 actions per

state.

It should be noted that the numbers used in the experiments were tuned to place
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the algorithms on as equal a footing as possible. The standard MM algorithm needed

a low corner value difference threshold to approach a high accuracy in this problem,

while JoSTLe did not need as low of a value disappointment threshold. In fact, to

get the graph shown in Figure 6.3, it was necessary to explore the parameter space

of JoSTLe in some detail. Several experiments were conducted with different error

threshold and minimum feature size values. As these parameters were degraded, JoS-

TLe finished discretizing at different times and with different accuracies, exhibiting

the behavior shown.

It is also important to note that the joint space learner received absolutely no

information about the problem before it began learning. It had no idea which action

values were important but was left to figure that out automatically. The results shown

here indicate that it not only figured it out, but that it did so using fewer resources.

6.1 Complexity

One unfortunate characteristic of JoSTLe when compared to MM is its higher com-

plexity. Because the dimensionality is increased, all of the worst space and time

characteristics of MM are exacerbated in JoSTLe. Additionally, JoSTLe must enu-

merate all d! simplices for a number of nodes during its operation, and then generate

all
(

d

ds

)
boundaries of each of those. MM never performs an enumeration of its ds!

simplices in each cube. Because of the need to find intersections, JoSTLe cannot take

advantage of some of the nice properties of Kuhn Triangulations.

6.1.1 Time

Without any optimizations, the roughly worst case time complexity of value iteration

for the two systems is shown in the following table. It is assumed that each algorithm
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has L leaf nodes in its kd-trie, has to take N time steps to reach a new triangle, and

that MM has A actions available.

MM JoSTLe

2dsAL [N log2 L + ds log2 ds] 2dL
[
2NL + Ld!

(
d

ds

)
ds!d

2
s

]

= OL(L log2 L) = OL(L2)

= Od(2
dsds log2 ds) = Od(2

d d!2

da!
d2

s)

The above table deserves some explanation. MM, during value iteration, takes

2dsLA trajectories, each of which goes for N time steps. For each time step, it walks

down the kd-trie, which is basically a O(log L) operation. Once it has exited its own

triangle, it then performs interpolation, which is a Ods log ds operation.

JoSTLe, on the other hand, does a bit more work, and in a higher dimensionality.

It must do value iteration for 2dL trajectories (the action space is not prediscretized,

so there is no concept of A), each of which goes for N time steps. For each time

step, it must do a range query, which without optimization is a O(2N) operation

(since it must search the result to determine whether it is included or not in the

query). Once it has exited its own space, it then enumerates all d! Kuhn Triangles of

each node. For each of those triangles, it generates all
(

d+1
ds+1

)
projection facets. For

each facet, it must then perform interpolation, which is unfortunately more complex

than interpolation for MM since many of the facets do not have the Kuhn property

anymore. The interpolation is a O(d2
sds!) operation, since it involves a matrix inverse

and vector multiplication.

The complexity is not as bad in practice as it is on paper, fortunately. Many

nodes can be culled from the space in JoSTLe during a range query, and many of the

triangles can also be culled before doing a projection. A substantial number of the

generated facets will be duplicates or degenerate and can also be taken away before

ultimately performing the interpolation step. Perhaps more importantly, L can be an
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order of magnitude smaller for JoSTLe than for MM in practice (Figure 6.3), which

serves to alleviate the problem of increased complexity.

The interpolation step can also be sped up significantly by intelligent generation

of a vertex-to-facet mapping before value iteration begins, making the algorithm quite

practical in many cases. Still, the complexity is not good in the worst case, which

would be interesting to address in future research.

6.1.2 Space

The space complexity of JoSTLe in space is determined solely by the kd-trie data

structure, and is therefore exactly the same as MM, with two exceptions. The first

difference is in the dimensionality of the space being split. JoSTLe has a higher

dimensionality because it adds da to ds, where MM only has ds dimensions to worry

about, and a constant set of actions. The second difference is in the fact that JoSTLe

often works with a smaller number of nodes in general.

The space complexity of the algorithm was certainly not problematic in practice,

even in the higher dimensions, since it tended to learn that some dimensions were

more important than others (e.g., Mountain Car required very little action space

discretization).

6.2 Parameter Sensitivity

The parameters of interest for JoSTLe are the minimal volume Vmin and the value

disappointment threshold ε. Of interest when dealing with these parameters is not so

much how to make the algorithm perform well (one simply tolerates little disappoint-

ment and allows for extremely fine discretization), but how gracefully the performance

degrades as the parameters change for the worse.
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Figure 6.4: The accuracy of JoSTLe as the value disappointment threshold is in-
creased. Since golf is a one-step problem, the performance is still very good until it
approaches the maximum reward difference of 1.0.

The value disappointment threshold was varied from 0.01 to 1.2 as shown in Figure

6.4. As can be seen from the figure, the performance of the algorithm remained quite

good until the allowable disappointment approached the maximum reward difference

in the problem, which is 1.0.

The minimum feature size parameter was the more important parameter, as shown

in Figure 6.5. The minimum feature volume is the square of the value on the x-axis,

since that value represents the smallest feature in any dimension, and this is a 2-

dimensional problem. The algorithm degrades nearly linearly with the increase of

the minimum feature size. The other result that is encouraging is that a very high

accuracy is still achieved with a minimum feature size of 0.1, even though the reward

boundary is thinner than that in some places of the joint space.

It is also of note that the nominal value of 1% of the error bound given in 3.3 was

definitely sufficient to solve the problem, and that a far looser bound is still useful.
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Figure 6.5: The accuracy of JoSTLe as the minimum dimensional feature size is
changed. For this graph, the disappointment threshold was set arbitrarily at 0.5.

6.3 Additional Experiments

Problems with only one state and one action are not very interesting. In fact, a

control problem is often considered to be minimal when it has 2 state dimensions and

1 action dimension, like the “Mountain Car” problem. For a joint space learner like

JoSTLe, this problem is 3-dimensional.

JoSTLe was able to find a nearly optimal policy for the Mountain Car problem

without any prior action discretization. Interestingly, in many cases it also did so

without discretizing the action space, and in all cases without using the action dis-

cretization for the optimal policy. It learned that the Mountain Car problem, because

it is minimum time, can be solved with bang-bang control.

An intermediate discretization of the joint space is shown in Figure 6.6. Though

JoSTLe eventually discretized the action space, it focused far less attention on it

than it did on the state space. The figure shows several views of the discretization

corners: the state space discretization, the action space discretization, and the joint
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Figure 6.6: An intermediate discretization of the joint space for the Mountain Car
problem. Only the rectangle corners are shown. Notice that though the action space
is discretized somewhat (upper right), most of the algorithm’s attention is focused on
the discretization of the state space (upper left). It learned to do this without any
prior knowledge of the environment.
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space discretization.

Figure 6.7 highlights something even more interesting: though JoSTLe discretized

the action space while learning Mountain Car, it generally did not use any interme-

diate actions in its final policy. It learned bang-bang control. The upper left figure

shows a position-dependent projection of the policy. In several places a single inter-

mediate “do nothing” action was chosen, but for the most part attention was focused

on the “full forward” and “full reverse” actions. The upper right portion of the figure

shows the outline of the policy boundaries. The dots are in areas representing the “full

forward” action. The boundary looks very much like the policy learned in [MM02],

which is extremely encouraging. Finally, the full policy is shown in the bottom part

of the figure.

It is possible to turn JoSTLe into an algorithm much like MM by simply tuning

one of the parameters. When the minimum action feature size is set to the size of

the action space, JoSTLe is forced to not split the action space at all. In this case,

it very nearly reduces to MM with the exception that some of the simplex boundary

intersections may occur in the intermediate part of the action space.

Some artifacts do exist in the final policy, which is worth consideration. The

algorithm is not perfect. The policy shown in Figure 6.7, for example, is only 86.4%

correct. It still makes enough mistakes that more research is warranted, especially

regarding the way splitting is done.
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Figure 6.7: The policy learned for Mountain Car. Note that the two projected plots
(upper) indicate that most of the time only the extreme actions are used in the policy.
The lower graph shows a 3-dimensional plot of the policy.
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Chapter 7

Future Research

The algorithm presented here has some potential for some interesting extensions.

These areas of future research are presented here.

7.1 Time Complexity

The time complexity of JoSTLe is unfortunately worse than factorial in dimension,

and it is also currently N 2 versus MM’s N log2 N complexity. Some optimizations are

probably possible, but have not been explored in detail. Finding a way to minimize

the time complexity of JoSTLe is an area of future research.

7.2 Post-Pruned KD-Trie

When value functions have converged to something useful and correct, they are often

close to linear in large sections of the space. During the learning process (as infor-

mation propagates through the space), however, they are not. This means that areas

of the joint space must be discretized more finely during learning than is ultimately

necessary for the final policy.
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An interesting area of future study would be to examine the effects of pruning the

kd-trie, effectively recombining adjacent parts of the space that can be approximated

just as accurately within a larger portion of space. This is analagous to ID3’s reduced

error pruning, and could be an interesting area to explore.

7.3 Splitting Criteria

One of Muños and Moore’s most interesting contributions to continuous state space

RL is the idea of influence and variance as a means of discretizing only those portions

of the space that affect the overall policy. The existence of an analogue to this idea

in the joint space is not obvious, but there may be a way of accomplishing the same

thing using similar ideas.

It is certain that the splitting criterion used in this paper is not always sufficient

for problems of a higher dimensionality, since it tends to refine areas of the space

that ultimately have no effect on the correct policy, as witnessed by the very fine

discretization of negative reward boundaries in the golf problem.

7.4 Looser Splitting Constraints

Both JoSTLe and MM split regions of space in half. Sometimes it does not make

sense to merely split things into two equal pieces. Additionally, the ability to represent

oblique features (that are not perpendicular to any one dimensional axis) could allow

for more a efficient representation of some problems. Some preliminary work in this

area indicates that it could hold some promise, but that the complexity introduced

often outweighs any benefits gained. More research is needed.
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Chapter 8

Conclusion: Contribution to

Computer Science

Joint space learning is a new way of thinking about RL. It allows for a continuous

action space, which is something that has not been treated in-depth by the literature,

though a class of problems exist that require treatment of the continuous action space.

The insight into spatial projection when using linear interpolation is invaluable

in providing tools for working with joint space discretizations. It allows the admit-

tedly increased complexity to be collapsed into a problem with action space search

properties equivalent to those found in existing methods.

Additionally, the experience with Delaunay triangulation is valuable. The correc-

tion to the incremental deletion algorithm, though ultimately unfruitful for the core

of the thesis, is in itself a contribution to a different field. Additionally, the break-

ing down of undesirable properties of Delaunay may help others to make early and

informed decisions regarding its fitness for their particular problem domain.

Finally, this novel approach to the continuous action space and its supporting

ideas have opened the doors for what appears to be interesting future research.
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Appendix A

Kuhn Triangulation

The Coxeter-Freudenthal-Kuhn Triangulation (or simply the Kuhn Triangulation) is

a simple triangulation of a hypercube1.

The following is an attempt at explaining the information on Kuhn Triangulation

found in [MM02]. Much of the description and notation in this section has been lifted

from that paper, but is presented here in greater detail to facilitate other implemen-

tations.

Each d-dimensional hypercube is split into d! simplices. These simplices can be

found by doing the following:

• Label all vertices of the cube in a fixed (but arbitrary) order: (v0, v1, . . . , vd−1).

• Generate all permutations on the sequence (0, 1, . . . , d − 1).

• For each permutation p = (p0, p1, . . . , pd−1), generate a sequence of indices using
the following recurrence relation: j0 = 0, ji = ji−1 + 2pi. The vertices of the
simplex corresponding to this permutation are (vj0, vj1 , . . . , vjd−1

).

One of the great properties of Kuhn Triangulations is that given a point known

to be in a particular hypercube, it is very easy to find the simplex that contains that

1At least, it is in this case. In general, the triangulation is capable of more than hypercubic

tesselation, but for our purposes, this will suffice.

71



point. Once found, it is also simple to get the barycentric coordinates of the point

for use in interpolation.

Given a point p = (p0, p1, . . . , pd−1) whose coordinates are relative to the hy-

percube h = (v0, v1, . . . , v2d−1), the indices of the hypercube that correspond to the

point’s containing simplex are found by sorting the coordinates of p from highest to

lowest: indices z0, . . . , zd−1 exist such that 1 >= pz0
>= · · · >= pzd−1

>= 0. The

indices of the simplex are found using the recurrence relation above: j0 = 0, ji =

ji − 1 + 2zi.

Given a particular set of indices into the vertices of the hypercube, it is trivial

to find the barycentric coordinates λ0, . . . , λd−1 of the point in question: λ0 = 1 −

pj0, λ1 = pj0 − pj1, . . . , λk = pjk−1
− pjk

, . . . , λd−1 = pjd−1
.

If each vertex has value fvi
, the interpolated value at point p is simply

∑d−1
i=0 λifvi

.
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Appendix B

Correction to Incremental Deletion

in Delaunay Triangulations

Devillers gives an algorithm for incremental point deletion in Delaunay Triangulations

in [Dev99]. The algorithm is correct in 2 dimensions, but many of the assumptions

make no sense in 3 and higher dimensions. In fact, the algorithm simply falls apart in

higher dimensionalities, even though it is claimed that “generalization to d dimensions

is easy”.

The algorithm given consists of removing the point and all incident triangles,

leaving behind a polygon that must be locally retriangulated. The process used is

“ear cutting”, which is a basically correct approach. The details on how to select

which ears to cut, however, are only correct for 2 dimensions.

B.1 Finding the Ears

One of the first difficulties that arises when trying to extend the ear cutting algorithm

to 3 and higher dimensions is that of deciding which adjacent facets form ears and
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which form mouths. In 2 dimensions, both ears and mouths are formed by connecting

two adjacent line segments to form a triangle. The ears are on the interior of the

polygon, and the mouths are on the exterior. In 3 dimensions, ears and mouths are

formed by connecting adjacent facets (triangles) to form tetrahedrons. Again, ears

are interior and mouths are exterior.

Determining whether a given triangle is an ear or a mouth is easy in two dimen-

sions. Simply order the vertices of the adjacent line segments in counterclockwise

order (with respect to the polygon), form an ear candidate, and then determine

whether the vertices of that ear are also in counterclockwise order (with respect to

the triangle). In 3 dimensions, however, the concept of “clockwise” is undefined and

finding ears becomes more difficult.

To make this work, we could do complex interior tests (the polytope is not guar-

anteed to be convex, so these are not simple), or we can make use of another criterion

in the paper: the power of the deleted point with respect to the triangle must be

negative and maximal.

The power of a point is given by its distance from the circumcenter of the triangle

(the formula may be obtained from [Dev99]) and is negative inside of the circumcircle,

zero at its boundary, and positive at its exterior. The more negative the power, the

closer the point is to the circumcenter. Thus the first ear to be added will be the

one whose power is negative and closest to zero. That ear is then removed from

consideration, new ears are formed, and the process is repeated until the polytope is

triangulated.

It turns out that we don’t need to worry about which triangles are ears and which

are mouths because mouths aren’t the best triangles to add according to this criterion.

That problem, therefore, is easy to solve. There is one other problem, however, that

is somewhat thorny.

74



Figure B.1: A 2-d polygon and a candidate ear. The polygon is contained completely
within the interior of the triangle. The triangle is not an ear, even though the vertices
of the “ear” are in counterclockwise order.

B.2 Which Ear to Add

As stated above, the appropriate ear to add is the one that gives a negative but

maximal power for the point in question. This idea comes from shelling the convex

hull [Sei86] of the point set when lifted onto a hyperparabloid [For92]. The details

of shelling are not discussed here. However, we may consider what happens when we

add the ears to a polytope: it becomes increasingly small, and the edges begin to

creep inward until there is nothing left to cut (the polytope itself becomes a simplex,

and we are finished).

The algorithm given in the paper states that we always add an ear whose power

is negative and maximal. At any given stage of the algorithm, this consists of adding

the triangle whose circumcenter is farthest from the deleted point. This is wrong

in general, even in 2 dimensions. While cutting ears, we are sometimes left with a

polytope like that of Figure B.1. The polytope is contained completely within the

triangle formed by connecting the two lowest line segments, and according to the

paper, this is an ear! Again, we could do complex interior tests to determine which

triangles are ears, but there is a simpler approach.

What we would really like to do is to add ears with increasingly negative powers, or
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power thresho ld = 0.0
new polytope = polytope
while num vert i ce s ( new polytope ) > d+2:

cand idates = g e t a l l c a n d i d a t e s ( new polytope )
c a l cu l a t e powe r s ( cand idates , d e l po i n t )
remove above thresho ld ( cand idates , power thresho ld )
ear = get maximum ( cand idates )

power thresho ld = power ( ear , d e l po i n t )
new polytope = add ear ( new polytope , ear )

Figure B.2: The correct ear cutting algorithm.

ears whose circumcenters are increasingly close to the deleted point. Therefore, once

an ear has been cut, no ear with a less negative power may be considered. After all,

the ears that have already been cut are on the edges of the polytope, and therefore

come first in the shelling order. The shelling order is defined by ever-decreasing

power as the interior of the polygon is cut (see the paper for details). Thus, the

algorithm given, which simply places ear candidates into a priority queue and selects

the candidate with the highest negative power is wrong. Candidates such as that in

the figure can crop up all too easily and mess up the algorithm.

The correct ear cutting algorithm is given in Figure B.2. It has been implemented

successfully in high dimensionalities.
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