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ABSTRACT
Spatial Extension PSO (SEPSO) and Attractive-Repulsive
PSO (ARPSO) are methods for artificial injection of diver-
sity into particle swarm optimizers that are intended to en-
courage converged swarms to engage in exploration. While
simple to implement, effective when tuned correctly, and
benefiting from intuitive appeal, SEPSO behavior can be
improved by adapting its radius and bounce parameters in
response to collisions. In fact, adaptation can allow SEPSO
to compete with and outperform ARPSO. The adaptation
strategies presented here are simple to implement, easy to
tune, and retain SEPSO’s intuitive appeal.

Track Category
Ant Colony Optimization and Swarm Intelligence

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—
nonlinear programming, unconstrained optimization

General Terms
Algorithms

Keywords
Swarm Intelligence, Adaptation, Optimization

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a social or evolu-

tionary optimization algorithm that was discovered during
experiments with simulated bird flocking [6]. Its discovery
has led to an algorithm which has gained popularity in re-
cent years for its simplicity, relatively small number of tun-
ing parameters, and surprising effectiveness on a large class
of functions.

Classical PSO begins by scattering particles in the func-
tion domain space, often by means of a uniform distribution
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bounded by a function-specific region of feasibility. Each
particle is a data structure that maintains its current posi-
tion x and its current velocity ẋ. Additionally, each particle
remembers the most fit position it has obtained in the past,
denoted p for “personal best”. The most fit p among all
particles is written g for “global best”.

A valuable variant on classical approaches is constricted
PSO, where each particle updates its state using the follow-
ing equations (written in a slightly non-traditional way to
accentuate the role of acceleration):

ẍt+1 = φ1 U() ⊗ (p − xt) + φ2 U() ⊗ (g − xt) (1)

ẋt+1 = χ (ẋt + ẍt+1) (2)

xt+1 = xt + ẋt+1 (3)

where φ1 = φ2 = 2.05, U() is a vector whose elements are
drawn from a standard uniform distribution, and ⊗ repre-
sents element-wise multiplication. The constriction coeffi-
cient χ is in this case defined to be

χ =
2κ

|2 − φ −
p

φ2 − 4φ|
(4)

where κ = 1.0 and φ = φ1 + φ2 [3].
Though effective, PSO sometimes suffers from premature

convergence on problems with many local minima. Conver-
gence is in general a desirable property, allowing the swarm
to search regions near the global minimum at increasing lev-
els of detail as time progresses. Unfortunately, in the con-
text of many local minima, the convergence property may
cause a swarm to become trapped in one of them and fail to
explore more promising neighboring minima.

Designers of optimization algorithms therefore face a fun-
damental tradeoff: search the current local minimum in de-
tail through quick convergence, or consume resources ex-
ploring other areas of the domain [9]. In an effort to handle
this tradeoff more explicitly in PSO, some notable diversity-
increasing approaches have been proposed. One such ap-
proach, the Spatial Extension PSO (SEPSO), involves en-
dowing each particle with a radius, then causing particles
to bounce off of one another [7]. A related approach, called
Attractive-Repulsive PSO (ARPSO), measures the global
diversity of the swarm, triggering modes of global attrac-
tion or repulsion when it crosses predefined thresholds [9].
Though effective when well-tuned, finding good function-
specific tuning parameters for these methods is non-trivial.

The tuning parameters in SEPSO and ARPSO alike rep-
resent a threshold that dictates when diversity will be arti-
ficially added to either a single particle or to the swarm as
a whole, respectively. Especially in the case of SEPSO, the
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Figure 1: Spatial Extension PSO (SEPSO) with multiple radius settings

threshold is easier to tune and the algorithm’s performance
improves when a simple adaptation strategy is applied.

We begin by describing SEPSO and demonstrating the
issues implicit in setting its radius parameter. We then de-
scribe the proposed adaptation methodology used to im-
prove robustness of parameters and performance on multi-
modal functions. We then briefly describe ARPSO, a suc-
cessor to SEPSO that is less amenable to improvements us-
ing our adaptation strategy and that rarely outperforms the
easily implemented SEPSO extensions presented here.

2. SPATIAL EXTENSION PSO
The Spatial Extension PSO (SEPSO) is a simple method

of artificially injecting diversity into a swarm. While in clas-
sical PSO, particles are conceptually volumeless and there-
fore never collide with one another, the basic premise of
SEPSO is that particles have a spherical volume that is de-
fined by a radius r. Two particles i and j collide when

‖xi − xj‖2 ≤ 2r . (5)

In the event of a collision, the involved particles “bounce”
backwards, effectively moving to a point that is formed by
reflecting the intended current position about the previous
position, optionally reversing the velocity as well to create
a post-bounce position x′

t+1 and velocity ẋ′
t+1:

ẋ′
t+1 = −ẋt+1 (6)

x′
t+1 = xt − (xt+1 − xt) . (7)

This approach is simple to implement and has intuitive
appeal: if a particle is very close to its neighbors, it is likely
to be duplicating work by exploring regions that are cov-
ered by other particles and should therefore move away from
them. The combination of a radius with associated notions
of collisions and bouncing is an effective and intuitive way
to accomplish this goal.

This method of increasing diversity is also appealing be-
cause it can be applied to nearly any variant of PSO, includ-
ing those that do not have an explicit notion of velocity (e.g.

Bare Bones PSO [5]): the new location is calculated accord-
ing to the specified PSO algorithm, then tested against all
other new locations; if a collision occurs, that location is
reflected before the particle’s state changes. Again, velocity
may optionally be reversed when present.

The choice of radius r, though not addressed in the orig-
inal SEPSO work [7], is critical to the performance of the
algorithm. Consider Figure 1, which illustrates the relative
performance of different radius settings. The radius is set to
a constant fraction of the length L of the longest diagonal
of the feasible regions for Sphere and Rastrigin (defined in
Table 1). Unless otherwise stated, all figures are generated
by averaging 30 runs with constricted PSO as the baseline
motion, D = 30 dimensions, a fully-connected swarm of size
20, and velocity reversal in the event of SEPSO collisions.

The figure matches intuition. On the simple unimodal
function Sphere, for which PSO is already an efficient opti-
mizer, bouncing can only slow down desirable convergence,
thereby hurting performance. As the collision radius is de-
creased, performance gets closer to that achieved by the
baseline motion. On the highly multimodal Rastrigin, how-
ever, bouncing can be helpful, avoiding the stagnation to
which PSO is generally prone for such functions. In this
case, a setting of r = .01L represents an improvement over
baseline PSO, and the trend that is evident in the radius set-
ting seems to indicate that a smaller radius would provide
even better performance. This trend cannot continue indefi-
nitely, however, as setting the radius to 0 simply reproduces
the behavior of classical PSO. Finding a good setting for
the radius is therefore a problem-dependent exercise; multi-
ple runs may be required to obtain a useful value.

2.1 Adaptive Radius
Convergence, as previously discussed, is a desirable prop-

erty for PSO, since particles will tend to explore small re-
gions in greater detail as they begin to move more slowly
and to converge on a single point in space. This detailed
exploration can be important since the scale of the global
minimum may not be known before PSO is applied. SEPSO,
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Figure 2: Contracting Radius SEPSO (CRS) with fixed and adaptive(?) radius settings

unfortunately, frequently prevents not only premature con-
vergence but useful and appropriate convergence as well.

This is entirely due to the fact that the radius is fixed:
whatever else the particles may be doing, they always bounce
when within a predefined distance (2r) of one another, effec-
tively limiting the scale of the space that may be searched: if
they are trying to explore a detailed region of space but are
thwarted by collisions, that region will remain unexplored
unless a fortunate accident occurs.

Both problems are addressed by giving each particle an
individual, adaptable radius. In this case, the detection of a
collision causes particles to bounce as before, but the radius
of colliding particles is also decreased to make bouncing less
likely in the future. This allows particles to escape local min-
ima into which they may become trapped while admitting
exploration at increasing levels of detail as time progresses.
This idea can be implemented by defining a global adapta-
tion constant γ ∈ [0, 1] and an individual bounce count b for
each particle. Each particle’s bounce count is initialized to
0 and is incremented whenever the particle is involved in a
collision. Collision between particles i and j occurs when

‖xi − xj‖ ≤ (γbi + γ
bj )r . (8)

No change is made to (6) or (7), leaving bouncing mechanics
intact and introducing negligible computational overhead.
Adapting the radius in this way results in a new algorithm:
the “Contracting Radius SEPSO” (CRS). Results of this ap-
proach with γ = 0.8 and various radius settings are demon-
strated in Figure 2, and more will be given later. The su-
perscript ? indicates an adaptive result.

Note that when applied to Sphere, CRS performs more
closely to the baseline (r = 0), which is not unexpected. The
radius decreases every time a particle bounces, making it less
likely to collide with other particles as time progresses. As a
result, the swarm regains the ability to converge, though it
does so more slowly than before. Notice also that on Rastri-
gin the adaptive versions all perform better than the baseline
and are clustered more closely (note especially the log scale)
around lower values than their non-adaptive counterparts.

Unfortunately, the adaptive version still suffers from pre-
mature convergence on Rastrigin. Standard SEPSO with
r = 0.01L not only eventually overtakes all of the adaptive
versions, it also continues on a downward trend.

2.2 Adaptive Distance
CRS’s observed premature convergence behavior is present

in other multimodal functions, prompting an additional ex-
tension to CRS: the “Contracting Radius, Increasing Bounce
SEPSO” (CRIBS), where individual bounce distance is also
adapted. Although various bounce distances have been at-
tempted by the SEPSO authors without noticeable improve-
ment [7], individually increasing particle bounce distance
while decreasing collision radius has merit; as particles con-
verge, their diversity decreases and the locations to which
they bounce will tend to be in the same local minimum.
Therefore, as the adaptive radius decreases, a good indica-
tor for convergence, the bounce distance should increase to
make the act of bouncing more effective. This is accom-
plished through a simple change to (7):

x′
t+1 = xt − γ

−b(xt+1 − xt) (9)

In other words, while the radius is decreased via multiplica-
tion by γb, the distance is similarly increased by γ−b. Em-
ploying a bounce distance that is inversely proportional to
collision radius may be expected to hurt performance on uni-
modal functions by wasting function evaluations on distant
points; however, it should be expected to improve perfor-
mance on multimodal functions by increasing each parti-
cle’s odds of escaping a local minimum. These predictions
are verified in Figure 3 where it is shown that performance
suffers for Sphere while significantly improving for Rastrigin.

It should be noted that while only one radius setting is
shown for CRIBS to avoid clutter, far more data were col-
lected than can be presented in this setting. Those data
make it clear that the initial radius becomes less impor-
tant when adaptation is present; on Rastrigin, for example,
CRIBS always outperformed CRS by a large margin.
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Figure 3: Contracting Radius, Increasing Bounce SEPSO (CRIBS) with adaptive radius(?) and distance(??)

2.3 Remarks and Additional Results
The robustness of the initial parameter settings is affected

by adapting those parameters over time. In the case of
SEPSO, the radius setting has a dramatic impact on the
performance of the algorithm, and it is clear in Figure 1
that the parameters selected for the experiment are not low
enough for Sphere but are beginning to approach appropri-
ate values for Rastrigin. Adaptation, however, makes the
choice of initial radius far less important, as illustrated in
Figure 2. In each case, adapting the radius evens out the
differences between the initial parameter settings, allowing
them all to perform reasonably well.

In the case of multimodal functions, adapting the dis-
tance is productive because it allows a slow-moving, nearly-
converged particle to jump out of its current local mini-
mum, facilitating search in other areas of the domain. Sig-
nificantly, even CRIBS retains the ability to converge, but
does so more slowly than CRS or baseline PSO.

Results for the benchmarks defined in Table 1 are found in
Figure 4. DeJongF4, like Sphere, is smooth and unimodal.
Griewank, while multimodal, begins to appear unimodal as
the dimensionality increases. Ackley, SchafferF6, and Schaf-
ferF7 are highly multimodal and symmetric like Rastrigin;
Rosenbrock is multimodal and asymmetric but appears uni-
modal when not in the region of the global minimum.

As expected, CRS and CRIBS are less effective on uni-
modal functions than baseline PSO. The Griewank function
is interesting because it is unimodal until the proper level
of detail is achieved, a fact that is evident in the slow ini-
tial drop but eventual good performance of CRIBS. With
the possible exception of Rosenbrock, CRIBS works best on
multimodal functions, and even on Rosenbrock it remains
competitive.

Clearly, if it is known that the target function is smooth
and unimodal, any kind of bouncing is a bad idea. When
working with multimodal functions, however, using bounc-
ing with both adaptive collision radius and bounce distance
serves to improve performance while retaining reasonable
convergence properties.

Table 1: Common benchmark functions
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Figure 4: Additional results for CRIBS



3. ATTRACTIVE-REPULSIVE PSO
SEPSO is one of many diversity-increasing methods for

PSO. The same authors later introduced the “Attractive
and Repulsive PSO” (ARPSO), which uses a global diversity
metric to guide a swarm’s exploratory behavior [9]. The
diversity of a swarm S is

diversity(S) =
1

|S|L

|S|
X

i=1

‖xi − x̄‖2 (10)

which is essentially a measure of the average Euclidean dis-
tance of each particle from the center of mass:

x̄ =
1

|S|

|S|
X

i=1

xi . (11)

Diversity is scaled by L, the length of the longest diagonal
in the feasible region. The metric1 is calculated globally
at each iteration of PSO and is used to artificially inject
diversity when needed, via “repulsion”.

When the diversity falls below η−, particles switch into re-
pulsion mode; this is intended to make them fly away from
each other, increasing diversity and allowing them to es-
cape local minima. When the diversity has exceeded η+,
the particles are switched back to their normal behavior of
attraction and the swarm begins once again to converge.

Attraction is the default behavior of PSO, so repulsion
is achieved by adding a sign coefficient to the acceleration
term in (2):

ẋt+1 = χ (ẋt + sẍt+1) . (12)

Letting s = −1 switches the swarm into repulsion mode
while s = 1 restores normal attraction behavior. Note that
repulsion generally only has an effect on moving (less con-
verged) particles.

Because ARPSO attempts to quantify the amount of clus-
tering of the swarm in order to detect appropriate times to
inject diversity, the use of Euclidean distance as the core
of the diversity measure is not, in general, appropriate [1].
This issue is less of a concern with SEPSO because it makes
local decisions rather than detecting global clustering, but
it nevertheless merits future study.

Figure 5 shows a direct comparison with the published
ARPSO results for several 50-dimensional problems, aver-
aged over 50 runs. The underlying algorithm for CRIBS is
constricted PSO with default constriction parameters as de-
scribed in the introduction, effectively eliminating problem-
dependent parameter tuning. The initial radius and adap-
tation factor are in all cases set conservatively at r = 0.5L

and γ = 0.9, respectively. All other results are reproduced
directly from the ARPSO paper, including the use of a linear
scale instead of the log scale ubiquitously employed in this
work; all that is known about the published ARPSO results
is that a variant of constricted PSO was used as the under-
lying motion methodology, and problem-dependent parame-

1The published definition uses p instead of x in (10)
and (11), but this is unlikely to be correct: in order for
diversity to increase, at least one particle must quickly find
a better p while accelerating away from g, a highly unlikely
event; implemented this way, ARPSO behavior is equiva-
lent to that of standard PSO until entering repulsion mode,
where it remains indefinitely without re-entering attraction
mode or improving further over time.

ters such as swarm size, and maximum velocity, and inertia
weights were carefully tuned for each function [9].

The initial radius r and adaptation constant γ for the
ARPSO comparisons in Figure 5 are intentionally different
than those reported elsewhere in this work; the way that
they were determined illustrates an important point: they
were set conservatively (huge r, large γ, and standard con-
stricted PSO) with no exploratory tuning. It was assumed
that adaptation would adjust for any problems with the ini-
tial parameter settings, and it did. This characteristic of
CRIBS makes its successful application to problems easy
because it is robust to various parameter settings.

Even though ARPSO is reported to be using optimized
parameter settings for each experiment, the untuned CRIBS
performed at least as well on all problems but Rosenbrock,
and on that benchmark CRIBS exhibits the same behavior
that makes ARPSO itself attractive: it is avoiding prema-
ture convergence and is continuing on a downward trend.

It is natural to ask whether it is useful to adapt η− and η+

in the same way that r is adapted in CRS and CRIBS. While
our efforts in this regard did result in some improvement,
results were not consistent and even the improved versions
of ARPSO failed to reliably outperform CRIBS.

4. CONCLUSIONS
Artificial diversity injection for a convergent algorithm

like PSO is an interesting idea, but can require the ma-
nipulation of parameters that are nontrivial to tune. In
addition, care must be taken to avoid eliminating desirable
convergence that allows a swarm to explore the domain at
decreasing scales, thereby gaining increasingly detailed in-
formation about a local minimum over time.

These issues are simultaneously addressed by allowing di-
versity to be injected less frequently as time progresses. In
SEPSO, this is achieved by reducing the radius after ev-
ery collision (CRS). The algorithm has the advantage of
being simple to implement and more effective than its non-
adaptive counterparts early in a run, especially on unimodal
functions. Adapting the bounce distance (CRIBS) improves
performance on multimodal functions while continuing to
ensure eventual convergence. ARPSO does not appear to
benefit from adaptation in the same way, and initial re-
sults suggest that CRIBS is a more robust approach in any
case. Other diversity injection approaches (e.g. charged
swarms [2]) may benefit from adaptation, an interesting
topic for future research.

The adaptation of diversity parameters is simple to im-
plement and has intuitive appeal, providing an effective way
of increasing the exploration capabilities of PSO while re-
taining its desirable convergence properties.
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