
Introduction to Programming for the Independent
Student:

A Self-Starter’s Course on the Principles and Practice of
Bending Computers to Your Will

Second Edition (2022)

Christopher K. Monson

ii

Copyright © 2020, 2022 by Christopher K. Monson

All rights reserved.

The moral rights of this author have been asserted.

Cover art Copyright © 2020 by Catherine E. Monson

iii

About This Book
Learn the basics of Computer Science and programming by building
interactive programs—including simple animations and games—that run in a
standard web browser.

This book uses the ubiquitous and popular JavaScript (ECMAScript)
programming language as a basis for teaching, covering sufficient syntax and
idioms to build simple interactive animations and games.

It highlights fundamentals of computer science along the way, such as
boolean algebra, recursive algorithms, and event-driven programming. All
concepts are taught with beginners in mind. It has also been designed for
teacher who have no prior exposure to computer programming, making this
an excellent choice for homeschoolers: complete, detailed explanations are
given for every exercise, lab, and test question.

If using this book as a high school text, it is designed to have a workload
appropriate for a 1-credit, 1-semester course. It will work best for students
who have completed enough pre-algebra to have been introduced to the
concept of functions.

When used as a curriculum, each chapter should take about a week to get
through, with plenty of reading and hands-on learning every week. A midterm
is provided at the end of weeks 5 and 10. Every chapter has a set of exercises
to complete, again, with full solutions provided at the end of the book.

I hope you enjoy what has been a fun book to write. The concepts taught here
are sometimes simple, sometimes mind-bending, and always powerful
enablers for anyone who wants to learn to do just a little more with the devices
we have all around us.
I think it’s worth the journey. I hope you do, too.

iv

About The Author
Dr. Chris Monson has been writing software and designing systems since
1992. He received degrees in both Electrical Engineering and Computer
Science from Brigham Young University long ago: before the invention of
either electricity or computers, if his children are to be believed.

He has a Ph.D. in Machine Learning and Optimization, with a focus on
Bayesian techniques and modeling. After obtaining his final diploma, he
worked at Google for about 11 years as a senior software engineer, 3 years as
the CTO at Data Machines Corporation, and as of 2022 is working at Meta in
the field of Augmented and Virtual Reality. On the side, he occasionally
teaches the Cloud Computing Security course at Johns Hopkins University.

He still writes code and loves it.

v

For CC, who is better at math than she thinks, and more
inspiring than she knows.

vi

Contents

Introduction and Installation 1
Why JavaScript? . 1
What You Need . 2
The Browser, the Web, and Programming . 6
You Fetch and Interpret Stuff . 11

1 Programming and Developer Tools 13
Your First JavaScript Expressions . 13
Programs in Files . 19
Your First JavaScript Program . 21
More JavaScript Syntax . 27
Putting It All Together . 33
Exercises . 33

2 Function Calls and the Debugger 37
Functions in Algebra . 37
Calling Functions in JavaScript . 45
Functions That Produce Values . 46
A Debugging Interlude . 48
Exercises . 55

3 Writing Functions and Handling Events 59
Writing Functions . 59
Variable Scopes . 65
Functions Are Values . 71
Summary . 78
Exercises . 79

4 Objects 83
Objects Are Containers . 83
The Console . 87
The Standard Library . 89

vii

viii CONTENTS

Drawing Pictures . 94
Listing . 101
Exercises . 102

5 Reacting Logically 105
Boolean Logic . 105
Conditional Expressions . 120
If and Else . 124
Else If . 128
Exercises . 134
Midterm 1 . 138

6 Iteration Through Recursion 143
Gauss and the Sum of Integers . 143
Recursive Dumb Sums . 145
Drawing Lines . 150
A Recursive Grid . 154
Onward . 160
Exercises . 160

7 Arrays, Loops, Switches, and Randomness 163
Arrays . 163
While Loops . 166
Do-While Loops . 173
For Loops . 173
Tiling a Canvas . 176
Nested Loops . 178
Color Cycling Using Else-If . 179
Switch It Up . 181
Arrayed in Color . 184
Random Numbers . 187
Exercises . 190

8 Timers, Closures, and Animation 199
One Thing At A Time . 199
Timeouts Revisited . 200
Closures . 203
Simple Timeout-Based Animation . 206
Summary . 210
Exercises . 211

9 Smoother Animation Using Time and Animation Frames 215
Animation Frames . 215
Smoothness and Time . 218

CONTENTS ix

Another Wrinkle In Time . 223
Exercises . 226

10 Click and Key Events 227
Are We There Yet? . 227
Adding a Button . 228
Actually Pausing Stuff . 231
Changing Button Text . 236
Canvas Clicks . 238
Key Events . 240
Summary and Full Listing . 241
Exercises . 243
Midterm 2 . 244

11 Behavioral Abstractions and Multi-File Programs 247
More Files . 247
Hiding the Plumbing . 248
An Animation Function . 250
Animating With Abstraction . 251
Abstractions That Provide Behavior . 259
Summary and Listings . 264
Exercises . 266

12 Our First Game: State, Configuration, Clocks, and Winning 269
A Matter of State . 270
Where To Store State . 271
Animation Augmentation . 273
Writing the Game . 279
Listings . 293
Exercises . 297

13 Snakes On a Page 301
Game Scaffolding . 302
Designing the Game . 303
Positions Are Picky . 304
Representations . 310
Drawing the Snake and Food . 311
Moving the Snake . 312
Changing Directions . 317
Limiting Motion . 318
Eating . 319
Crash . 321
Listings . 323

x CONTENTS

Exercises . 327

14 Abstractions With Classes and Objects 329
Objects as Data Containers . 329
Animation Class . 333
Using Instances With Events . 340
Keep it Classy . 343
Exercises . 344

15 Practical Web Programming 345
A More Complete Document . 345
Head Scripts . 346
Adding Elements Dynamically . 350
Countdown . 351
Dates . 352
Summary and Conclusions . 356
Listings . 356
Exercises . 358
Final Exam . 360

16 Answer Key 361

Solutions 363
Chapter 1 Solutions . 363
Chapter 2 Solutions . 370
Chapter 3 Solutions . 378
Chapter 4 Solutions . 383
Chapter 5 Solutions . 389
Chapter 6 Solutions . 411
Chapter 7 Solutions . 419
Chapter 8 Solutions . 445
Chapter 9 Solutions . 452
Chapter 10 Solutions . 455
Chapter 11 Solutions . 465
Chapter 12 Solutions . 467
Chapter 13 Solutions . 474
Chapter 14 Solutions . 478
Chapter 15 Solutions . 481

Introduction and Installation

Welcome to the amazing world of computer programming! This text will teach you
foundational concepts for programming, and then you will start writing basic games. You
know enough to get started if you can already

• Touch type on a computer,
• Manipulate basic algebraic expressions, like “solve for 𝑥 in 𝑥 + 3 = 4”, and
• Understand what an algebraic function is, often written like 𝑓(𝑥).

Even if you are a little rusty with typing, or have forgotten some algebra, don’t worry too much;
we will review the important parts as we need them. By the time we’re through, you will be
able to create your own computer programs completely from scratch using the JavaScript
programming language, and they will run in a web browser.

This book is all about laying foundations while getting stuff done. Because it is an introductory
text, this is one of those times when skipping around won’t usually work: every concept builds
on those before it, and with rare exception, every chapter assumes that you have successfully
completed the previous ones. Remember, you are essentially learning a new language, and
that takes practice, not just memorization. If you choose to do the exercises and labs in this
book, they will really help you get the kind of practice that will lead you to success.

The exercises are neither plentiful nor mind-numbingly diabolical, like they can be in some
classes. Here they are straightforward and purposeful, designed to help you feel more
comfortable with what you have learned. It’s worth giving them a try, in order. A complete
answer, with a detailed explanation of how to arrive at that answer and—when
applicable—why it’s a good answer, is given for each one. Nothing is left as an exercise for
the reader. The answer key is detailed and informative.

Why JavaScript?

Why would we use JavaScript instead of another popular programming language like Python?
Python is indeed a lovely language for learning programming, but JavaScript has the
advantage of already being everywhere in a way that no other language is right now. If you
have a phone, it contains a JavaScript interpreter (possibly more than one!). If you use a web

1

2 CONTENTS

browser, you are running JavaScript all the time. That means a couple of things for you, the
most important of which is that you probably already have everything you need to get started.
You really can’t say that about many other programming languages.

The key here is this: you can learn to program using what you probably already have: a web
browser and a text editor.

By the way, little asides set apart from the text, like this one, can often be ignored. They
are just additional information, but do not contain anything critical to your success in the
course. This particular aside is a good example of that: feel free to ignore it.

Web Assembly (WASM)a is changing things here, but is not quite ubiquitous and stable
enough to warrant using a transpiled language for this text, at least not yet. It’s a very
exciting technology that is opening up all kinds of fun language choices in the browser,
and I look forward to that continuing, but for now we’re keeping things simple, using the
browser’s native programming language.

ahttps://webassembly.org

The enormity of JavaScript’s success was probably not anticipated when Brendan Eich1
created it in 1995 in order to give web browsers the ability to do things more interesting than
just display text, links, and images. That small, hastily-assembled invention ended up
transforming the way the entire world consumes information and creates applications, and it is
now the world’s most used programming language by a substantial margin.

In many respects, it’s not the most endearing language, though it does have some great
qualities. It has its share of warts, it sometimes isn’t the most expressive thing to be working
with, and it can make certain things harder than they need to be (not unlike English, really). It
is, however, powerful enough, expressive enough, and easy enough to give us a running start
on programming games, which will give us a running start on computer science and
programming in general.

Another extremely important reason for using it as a starting language is the huge set of
built-in browser facilities that it gives us ready access to. Web browsers are incredibly
capable programs. They can process speech, produce music, draw graphics, do animation,
respond to keyboards and game controllers, and on and on. JavaScript is still (for now) the
main gateway for interacting with all of that.

What You Need

The short version:

1. Install Chrome or use a Chromebook or similar device.
1https://en.wikipedia.org/wiki/Brendan_Eich

https://webassembly.org
https://en.wikipedia.org/wiki/Brendan_Eich

WHAT YOU NEED 3

2. Install a programming text editor like VSCode, or if you want one in Chrome, install
Text (search for “chrome text editor” to find this).

That’s it. That’s the short version. If you can do the above without help, you now have all of
the necessary tools. Get those two things and you can skip to the next chapter. Or you can
read the rest of the introduction. I hear it can be entertaining and informative.

The slightly longer version includes details about how to accomplish the above, what options
you have, and why.

To get set up for programming in JavaScript in principle, you need

• A programming text editor, and
• A web browser with developer tools (like Chrome or Firefox).

Note that as of the time of this publication (late 2022), a browser on a mobile device like an
iPhone, iPad, Android tablet (or phone) will not work as smoothly for you; they don’t have
developer tools. You can get by without them, but you will need to skip the section on
debugging, and will need to employ some workarounds for looking at the values of variables.
The first chapter or so might be extra confusing without them.

When you write programs while reading this book, you will follow these basic steps:

• Write code in a file and folder of your choosing, then
• Open that file in your browser and see it work.

You will also need a physical—not on-screen—keyboard. An on-screen keyboard leaves
programmers feeling frustrated and empty inside.

Why do you need a physical keyboard? It turns out that programming uses a lot of
symbols, and most virtual on-screen keyboards lack them; they are short on space and
the symbols used all the time in programming are usually hard to get to. That includes
simple things like the Tab key and curly braces. Furthermore, they are much slower to
type on in general, usually supporting a maximum of two thumbs (I have way more than
that), and that affects your ability to get your thoughts into a file.

Programming is all about communicating what’s in your head to the computer, and that
communication is greatly aided if you can type on a physical keyboard. It’s also best if you
can do so without looking at your hands all the time. If you want to learn to program but
can’t touch type without peeking, now would be a great time to practice that skill a bit.
Most people can get a lot better at typing after just a couple of days of practice, using one
of the many freely available online tutors, some of which don’t require an online account
and don’t have adsa. It is absolutely worth it to spend time on this.

ahttps://www.bouncingchairs.net/entrotype

We obviously can’t cover all possible setups together in this book, so I am presenting just one
way to do things here. Don’t let that stop you from exploring other options, and of course you

https://www.bouncingchairs.net/entrotype

4 CONTENTS

can always change later.

A Web Browser

Install Chrome2 if you don’t already have it. If you are using a Chrome OS device like a
Chromebook, you’re already done. Enjoy a refreshing beverage.

Chrome on Android or iOS is not recommended because it is limited in various important
ways, including the inability to install extensions like a text editor, access to developer tools,
and other surprises. Some of these limitations, unfortunately, also apply to student
Chromebooks and machines with family protection installed, so the book has been designed
to make it possible to proceed even if you are in a restricted environment. It just won’t be quite
as easy. If you can, get access to an unrestricted computer for the purposes this course. If
not, carry on, we’ll call out places where you can proceed even if restricted, it will just take a
little more effort.

A Programming Text Editor

Text editing is at the heart of most programming, so we obviously need a text editor. What
might be less obvious is that not all text editors are equally good for this task. Programming
languages are a lot more structured than the text we write to one another in emails and essays
and online flame wars, so it is far more useful to have a “smart” text editor for programming:
one that helps readers to understand code at a glance, and that handles some repetitive tasks
for you. This course recommends a couple of editors below, but if you already have an editor
that understands JavaScript and HTML, then by all means use what you’re comfortable with.
Otherwise, the setup section below assumes you need to install one and are using Chrome as
your browser for this course. If you are unsure, just follow instructions below to get started.
You can always change later! You’re just writing text and loading it into a browser, after all.
The actual tools used to do so are generally interchangeable.

Here I have two recommendations depending on your situation:

• Text3 or something similar. If you are using a Chromebook, it might already be
installed. If you are just using Chrome and want to install it, you can: a web search for
“chrome text editor” produces results for an editor called Text. Text’s github page
has a link to a stable version on the Chrome Web Store.

• VSCode4: If you are using a general-purpose computer (like one running Mac OS,
Windows, or Linux, for example), VSCode is your best bet.

If you can’t install a text editor, and you don’t have one already, you really are stuck. The text
editor is absolutely required. Install one now if you haven’t, already!

2https://chrome.google.com
3https://github.com/GoogleChromeLabs/text-app
4https://vode.visualstudio.com/

https://chrome.google.com
https://github.com/GoogleChromeLabs/text-app
https://vode.visualstudio.com/

WHAT YOU NEED 5

Once you are done, make sure you can do the following:

• Create a new file,
• Save it somewhere memorable, and
• Open it again later to edit it.

If you can do all of that, you are ready to continue.

What’s so special about a text editor tailored to programmers, anyway? Are programmers
really that special? Well, yes, yes we are! Also, there are two major features that really set
programming text editors apart from others: syntax highlighting and auto indent. Syntax
highlighting means certain language constructs are given different colors and text formatting
to make them stand out. Auto indent does basically what it says: when moving to the next line,
you start at the same indent level as the previous line, which is usually what you want (some
editors are even smarter than this). These are incredibly useful—even essential—tools for
programmers.

Oh, and text editors just produce text. That’s it. They do not produce a lot of formatting
information like word processors do: the text you see is exactly the text you save. That is
extremely important . If you are thinking of using a word processor for programming, run
away fast, then install a good text editor. Google Docs, Word, OpenOffice, and others like
them are simply not going to work.

If you just can’t wait to get started programming now, by all means turn straight to the first
chapter and go for it! You might find that some of the information below about how the web
works to be interesting, maybe even helpful, but you can always come back to it. Books are
pretty amazing that way.

Access to the Internet

It is possible to work through this entire course—after ensuring that you have a suitable
browser and text editor—without ever accessing the internet again. That’s by design, since
some people have restricted access and this course is meant to be for everyone.

That said, there is at least one internet site that you will appreciate having access to if
possible, and that is the Mozilla Developer Network (MDN)5, where the official JavaScript
documentation resides. There are other popular sites that pop up if you do a web query for
various JavaScript topics (like W3 Schools6 or Stack Overflow7), but the official
documentation is what we’ll rely on in the text.

5https://developer.mozilla.org
6https://www.w3schools.com
7https://www.stackoverflow.com

https://developer.mozilla.org
https://www.w3schools.com
https://www.stackoverflow.com

6 CONTENTS

The Browser, the Web, and Programming

Let’s get our mental models straight for the internet and how browsers work before we go
further into setup, starting with this question: what is a “web browser”?

At its most basic, a web browser is just another computer program, one that fetches stuff you
ask it to fetch, then interprets what it receives for your benefit. Let’s talk about each of these
“fetch” and “interpret” steps in turn.

Browsers Fetch Stuff

The browser gives you the ability to get information from other computers connected to your
network. For many people, that network includes what we call “the internet”, a whole bunch of
computers (similar to yours in many ways) that are connected in such a way that they can talk
to one another.

What does it mean that they “talk to one another”? Let’s use a Google search as an example.

Suppose you open up a brand new blank tab in your browser, and nothing is in it. If you go to
the location bar and type in google.com/search, the familiar Google logo and search
box appear. What just happened? It turns out that a mind-boggling amount of stuff happened
just so you could see this search box.

First, your browser had to figure out what to do with the text google.com that you typed.
Computers don’t really access each other by name on the internet, instead, they access one
another by address. The browser thus has to first figure out what Internet Protocol (IP)
address corresponds to the domain name google.com. It does this by asking a set of
name servers to resolve the name for it. These name servers are listed somewhere in your
network configuration, usually put there without your help. If you were to go into your
computer’s network settings, you might see one or more addresses under a “DNS” section:
those are the “Domain Name Servers”. Often they are addresses owned by your internet
service provider, the company you pay to let you see cat pictures.

Thus, the browser first tries to connect to one of those DNS addresses. If successful, it sends
over the name you typed, google.com, and the name server looks it up. If it finds it, it
returns an address for it, say 74.125.29.138 or 2607:f8b0:400d:c0a::64. These
IP addresses (version 4 and version 6, respectively) each represent a single computer
somewhere, and your computer now knows how to send messages to it.

After the lookup step, your browser has an address instead of a name so it can finally do what
you really wanted it to do, which is to get the data available at google.com. What data
should it get? The stuff that comes after the domain name is called the path, which is sent
(approximately) as typed to the computer at the address we recently got. That computer, the
one we’re talking to, decides what information to send us based on that path. In our case, the
path is /search, so whichever Google-owned computer we are talking to checks to see if it

THE BROWSER, THE WEB, AND PROGRAMMING 7

knows what /search means (it does), then sends us the appropriate content, which
happens to be the search page.

If a computer on the internet doesn’t recognize the path we gave it, like if we say
google.com/notarealpath, it will send us back an error code, one of the most
common of which is “404”. That error means the computer we’re talking to has no idea what
we’re talking about; it doesn’t recognize the path, which is /notarealpath in this case.

Figure 1: How a browser looks things up.

To summarize, when you type an address into the location bar of your browser, say
example.com/path/to/data, the browser

1. Contacts one of its name servers to look up the address for example.com,
2. Receives the address for that name and attempts to contact the computer at that

address,
3. Asks for the data indicated by the path after the domain name, in this case

/path/to/data, and
4. Interprets what it receives so that it can present something useful to you.

You can think of this as akin to trying to get a book from a library, when all you have is the
name of the library and the name of the book. Let’s explore that metaphor a bit and see where
it leads us.

Suppose you want to get the book Computational Fairy Tales (ISBN 9781477550298, highly
recommended reading) from the Baltimore County Public Library. If you were to write that out
as a fictional internet location, the parts might look like this:

baltimore-county.library/Computational Fairy Tales

8 CONTENTS

The name part is the place you want to get the book from, and the path part is the book title. In
order to get there, though, you first need a location. You do the same things a browser does:

1. Look up the location of the library,
2. Navigate to it in your choice of transportation,
3. Ask for the book at the front desk, and
4. Go home and read it.

Figure 2: A library analogy for how the browser looks things up.

That’s what a browser does. It finds the address of the domain you ask for (e.g.,
google.com), asks the computer at that address for some content, and then displays the
results to you.

If you go to the library and ask for a book that isn’t there, the librarian will give you an “error
message”, something like “Sorry, it isn’t here.” Just like a browser, but with more sympathy
and less “404 Not Found”.

Browsers Can Get Things From Right Here

Importantly, browsers don’t have to go out onto the internet for everything they display. They
can also pull information directly from your computer’s local storage. We will make extensive
use of that fact in this course, since we will be writing code, storing it on the computer, then

THE BROWSER, THE WEB, AND PROGRAMMING 9

asking the browser to interpret what we’ve written. The difference is in the protocol part of
the address. When we access things online, we typically see a prefix like https: (or
http: for insecure sites). In this course, we will be using the file: protocol, which pulls
data from local storage.

Figure 3: No address lookup for local files.

HTTPS stands for “HyperText Transfer Protocol Secure”. We won’t get further into what the
protocol section of a location means in this course, except to say this: when using the
file:// prefix, the browser treats everything after that as a path to a file. Since a file path is
already something the computer understands, it doesn’t have to look it up somewhere else
first. Thus, for local files there is no separate “lookup the address” step: the address is simply
“files right here”.

Many protocols are followed by // to separate them from the stuff that follows. For
HTTPS, that’s a domain name. For files, it’s a path to a file on your local system, and that
path often starts with the “root folder”, called /. Thus, with file:, we usually see three
of those forward slashes following it, after which is a familiar path. The Downloads folder
on a Mac, for example, might look something like
file:///Users/myname/Downloads because the path of interest starts with a
forward slash: /Users/myname/Downloads.

If that didn’t make a lot of sense, don’t fret. It only matters if you ever saw file:/// in a
location bar and were confused as to why. Now you know.

We will be making use of the “get files from this computer” feature of our web browser in this
course. We will write code, save it on the computer, then instruct the browser to read it and
interpret it. Basically, we will write down the dance moves, store them on disk, then the
browser will read them and cut a rug for us.

Browsers Interpet Stuff

We mentioned briefly that browsers do some interpreting of what they receive so that they can
present something meaningful to you, a human user. But what does that mean? It means that

10 CONTENTS

what you see is not actually what you get in the above process: there is an interpreter
between you and the internet, and it is making things nicer for you than they really are.

When your browser obeys a request to get something like mozilla.org/index.html,
what it receives is a bunch of text that isn’t usually very nice for people to read in raw form.
You can see this text by finding the View Source option after loading a page, often available
as a “right click” menu item, or under a View menu. In fact, you should try that right now. Part
of learning to program is learning to lift the covers off of things and peer beneath them to see
how they work:

• Open up https://mozilla.org/index.html, then
• Right-click and select View Source (or find it in the menu somewhere).

If “right-click” doesn’t make sense to you, you’re not alone. Back in ancient history, but
long after I was born, people interacted with their computers using multiple buttons on
their pointer devices (whether a mouse, a trackpad, a trackball, etc.). The left button is
the one under a right-handed user’s strongest finger (the index), so it’s the primary button
people used for clicking stuff. The right button was used for extra special but not terribly
frequent needs, like bringing up a context menu for a particular item.

OK, that’s all very boring and doesn’t help you much. Here’s what you need to know:
when I say “right-click”, I mean “tap something in the standard but alternate way”. On
computers with left and right buttons, that’s obvious (unless you have them switched
because you are fortunate enough to be left-handed). Many computers do not have
multiple buttons, or even any buttons at all. In those cases, you can try holding Ctrl
down—or if you have a Mac you can try holding Command down—while clicking. Some
trackpads let you click using two fingers at once, instead of just one, and that often does
what we want here. Finally, if none of that works, sometimes a “long press” triggers the
secondary click functionality.

There are many ways to do it, all depending on your specific computer. On Chromebooks
and Macs, I have verified that two-finger clicking does the right thing.

Back to looking at View Source : what you see there is the “source code” for your page. As
anticipated, it’s not very nice compared to what you usually see.

The “source” is what the browser uses to assemble what you see and interact with in the
browser. It’s a bunch of instructions that describe the page. The browser interprets all of this,
laying out the page as instructed, but hiding the actual instructions from you. It also runs any
JavaScript code it finds. It does that using a built-in JavaScript interpreter.

The word “interpreter” is not an accident. You can think of what the browser is doing as
speaking a set of languages that you don’t (yet) speak—HTML, CSS, and JavaScript,
mostly—and translating them into something you can use. Browsers do an awful lot of work
behind the scenes just to show us cat videos.

https://mozilla.org/index.html

YOU FETCH AND INTERPRET STUFF 11

You Fetch and Interpret Stuff

Now it is time to engage the amazing wet computer inside your head. It is time to turn the
page, fetch some text, and interpret it so that you can say you have learned something more
about programming in JavaScript. Let personal growth and satisfaction begin!

12 CONTENTS

Chapter 1

Programming and Developer Tools

Let’s get this browser to dance for us. Not literally, of course: that might be terrifying. Let’s
make it do something that we tell it to do.

You learned in the introduction that you need a text editor and a modern browser with
developer tools. If you don’t have those things, or you’re not sure whether you do, stop now
and go get that taken care of.

Oh, and you should probably bring your brain along for the ride, too.

Your First JavaScript Expressions

Are you ready to write some code? Excellent. Let’s jump in. Cue anticlimactic introduction in
3, 2, 1….

Developer Tools

With an appropriate browser installed, you also have access to some powerful developer
tools. These can be accessed by finding them in the appropriate menu. You might need to
poke around to find these, including looking in Chrome’s “overflow menu”. This is usually
located to the far right of the location bar, and usually looks like three vertical dots ⋮ , though
it can sometimes look different if your browser has an update ready.

Let’s find that now. In Chrome, go to the overflow menu, then follow this path: ⋮
More Tools Developer Tools . Then select the Console tab. You can also use the menu at

the top of the screen if there is one (like on a Mac): View Developer JavaScript Console .

If you don’t see a console item, or can’t get to it, you might be using a version of Chrome that
doesn’t support it, such as on a mobile device like an Android or iOS phone or tablet. Or, your
account might have family or school restrictions that disable developer tools; Google’s Family

13

14 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

Link, for example, disables the console in the browser. You can do many things in this course
without the console, but you may find it somewhat limiting in the very beginning.

If there is no way for you to get access to the console, that’s probably okay, but you will need
to write more code in text files and load it with additional alert outputs. This will make sense as
you continue reading. Don’t despair, even the console is optional here, it’s just really, really
helpful. What is absolutely not optional, however, is access to a real text editor. If you are
denied that, you will either need a different kind of computer or more privileges on the one you
have.

You might notice some symbols near the final menu entry for “Developer Tools”. These
are the keys you can press to get to the tools quickly without traversing the menus every
single time. On my Mac, for example, the symbols say I should press + + I
(meaning Command + Option + I) to turn the tools on and off. If you memorize the
keystrokes that get the developer tools open, you’ll have a better time, but the menu
works fine.

We are all set up to use the developer tools, so let’s write some JavaScript!

Even though it is assumed that you will use Chrome for this course, you can use
something like Firefox, as well. Here are a couple of useful Firefox tidbits, then you’ll be
on your own with getting to and using the developer tools (but it’s all pretty similar):

• Developer Tools: Tools Web Developer Web Console
• Console typing area: always at the bottom of the console.
• Programming Editor: you pick. If you’re running Firefox, there’s a good chance
that you can install non-browser-related software. VSCodea is a solid choice if
you are unsure where to begin.

ahttps://vode.visualstudio.com/

The Console

If you don’t have access to a console, read along anyway, and skip the exercises until the text
editor is introduced.

For now, start by opening the console as described in the previous section (from the overflow
menu, or by pressing the indicated key sequence for your machine). The console can do a
number of things, but we’re just going to focus on one of them right now: you can type short
JavaScript expressions and see their results immediately. It is very useful for fiddling around
and testing ideas.

We will use the console as a simple calculator at first. Find the spot in the console that lets you
type, typically prefixed with >. In Chrome, you can type at the first empty space in the console.

https://vode.visualstudio.com/

YOUR FIRST JAVASCRIPT EXPRESSIONS 15

Did you find a place where you can type something? Type in the following and hit Enter :
:console:

> 10 + 10

What do you see? If you’re using Chrome, you should see something that looks like this:
:console:

> 10 + 10

⋖ 20

Here is an image of what this looks like on my machine:

Figure 1.1: The Chrome Developer Console evaluating 10 + 10

A Simple Calculator

Let’s play around with some other numeric operators. If you type the prompts below, you
should see the answers given:

:console:

> 10 + 10

⋖ 20

> 10 * 10

⋖ 100

> 5 - 2

⋖ 3

> 2 - 6

⋖ -4

> 3 / 2

⋖ 1.5

16 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

Every time you type something in the prompt and hit “Enter”, the browser’s JavaScript
interpreter springs to life and attempts to compute the value of what you typed. In some
browser consoles, answers will begin to appear while you are typing, which is fun. When it
succeeds at interpreting what you wrote, the value is displayed. If it doesn’t know what to do,
it displays an error. Try this in the console:

:console:

> 2 @ 2

⊗ Uncaught SyntaxError: Invalid or unexpected token

What does it produce? You should see a syntax error of some kind (it may be different
than the example here), meaning that what you typed doesn’t look much like JavaScript to the
browser; it doesn’t follow the prescribed patterns of the language. Those patterns, in natural
human languages like English as well as computer languages, are called “syntax”. In this
particular case, the JavaScript interpeter in the browser has no idea what it means to apply @
between two numbers; that’s not an operator that it recognizes, so it’s a syntax error.

There are many other things you can do with numbers, but for now we will stick to the basics:
addition (+), subtraction (-), multiplication (*), and division (/). If you are using a modern
browser, you can also use ** to compute powers (exponentiation). Go ahead and play
around with those for a bit.

Parentheses also work in the way that you might expect: they force certain operations to go
first. Try this:

:console:

> 3 * 2 + 3

⋖ 9

> 3 * (2 + 3)

⋖ 15

Just like familiar arithmetic expressions, JavaScript respects an order of operations:
multiplication and division take precedence over addition and subtraction, except when you
force the issue by adding appropriate parentheses, as above.

Congratulations! You have written something in JavaScript! Yes, those arithmetic
expressions are actually valid JavaScript, and executing them produces the answers just like
a calculator would.

Variables

One of the first things you will need to know is how to work with variables. In JavaScript,
variables behave a lot like they do in algebra. There are three things that you can do with a
variable:

• Assign: give it a value.
• Evaluate: get its value.

YOUR FIRST JAVASCRIPT EXPRESSIONS 17

• Declare: make a new variable without a value.

The difference between mathematical variables and programming variables is usually
rooted in the meaning of =. In math, it defines a relationship between the things on either
side of the = sign: they are equal to each other. In programming JavaScript and similar
languages, it is an operation that stores the value on the right into the variable on the left.
In math, this means you can have anything on the left, but in programming, you can only
have a single variable. The consequences often feel the same for simple expressions, so
this difference is not typically a problem for new learners.

In JavaScript the act of assigning a variable also declares it at the same time, so we will skip
the idea of declaring things for now and just focus on assignment.

To assign a value to a variable, you name it and set it equal to some expression, like this: x
= 15 or y = 1 + 2 + 3 + 4.

:console:

> a = 10

⋖ 10

As you can see, the result of this assignment is the value assigned. Now you can get that
value back any time you want by just mentioning the variable name by itself:

:console:

> a

⋖ 10

When we “mention” a variable like this somewhere other than the left side of an assignment,
we are evaluating it. That means we are “getting its value”. In general, the concept of
evaluation is exactly that: turning an expression into a value. Anything that can become a
value can be on the right side of an assignment, and anything that can be assigned (like a
variable) can be on the left.

Note—and this is extremely important—that variables and other identifiers in JavaScript are
all case-sensitive. This means that the variable a is not the same as the variable A. For
example, the function alert exists, but the function Alert does not: they are completely
different words as far as JavaScript is concerned.

With that out of the way, here are a few more examples of variable assignment and evaluation:
:console:

> a = 5 * (2 + 1)

⋖ 15

Here we assign the value of the expression 5 * (2 + 1) to a. The console helpfully tells
us that a was assigned to contain 15. We can be sure about that by just asking it to evaluate
a afterward:

18 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

:console:

> a

⋖ 15

Yep, that’s what we want. But we can also evaluate the variable a inside another expression.
Check this out:

:console:

> b = a + 10

⋖ 25

In case you are wondering why the console keeps showing you the value of assignments,
here’s a forgettable little tidbit: the console only shows the value because this is a pure
assignment without an accompanying declaration keyword like var. When assigning
and declaring at the same time, the console shows undefined. Don’t worry about that
right now, though. It’s unnecessarily distracting. The most important thing is that your
variables take on the values that you assign to them, and sometimes those values are
also displayed immediately in the console. If they aren’t, you can always find a variable’s
value by typing it in and letting the console evaluate it.

Now b contains the number 25. How did it get that? Let’s pretend to be the interpreter for a
moment, looking at b = a + 10:

”I see that I’m assigning the variable b.

”That doesn’t exist, so I’ll create it. What’s on the right side of the assignment?

”It looks like I need to get the value of a first. That’s 15. Adding that to 10 gives
me 25.

“I’ll assign that to b now.”

The process is more simply explained here:

• Evaluate a, get 15,
• Evaluate 15 + 10 to get 25, and
• Assign b to be that value: 25.

All kinds of combinations like this are possible, and they all rest on these twin ideas of
assignment and evaluation.

You might be tempted to think that after this runs, changing a to something else will also
change the value of b, since that’s how it would work in algebra (where = defines a
relationship that must be true all the time). It doesn’t work that way in JavaScript: we are
assigning a value to b at a particular moment in time, not defining b in terms of a. If we
change a after setting b, it doesn’t do anything to the value of b; those two variables, once set,
are completely unrelated. To illustrate this, consider the following (slightly condensed for

PROGRAMS IN FILES 19

clarity) console session:
:console:

> a = 10

> b = a + 5

> b

⋖ 15

> a = 15

> b

⋖ 15

When b is assigned, it captures the current value of any variables mentioned in the right side
of the assignment expression and uses those. It does not establish a long-term relationship
with those variables. Thus, even though the value of a was used to make b, changing a later
does nothing to the value that b is assigned.

If you wish that a would change whenever b does, then what you really want is a function,
not a variable assignment. We will talk about functions in the not-too-distant future.

Programs in Files

The console is really great for testing out simple bits of code, but we will quickly want to
graduate to files that contain more code than is reasonable to type into the console. It’s time to
start using a text editor. If you don’t have one installed, going through the introduction first will
get you prepared for the next part.

Starting a new program for this course will typically look something like this:

• Open a file in your text editor,
• Write some stuff in the file and save it, and
• Instruct your browser to open (and interpret) that file.

If you are all set up and already know how to do all of this, then you can skip ahead to “Your
First JavaScript Program”; the next sections are just very, very detailed versions of the above
bullet points. If any of the above sounds unclear or unfamiliar, read on. All will be explained.

Writing a File

You might want to create a special folder for your programs. That’s optional, though, at least
for now. As long as you can write files and find them again, you’re in good shape.

Speaking of writing files, open up your programming text editor and try these steps:

• Open your text editor (e.g., “VSCode” or “Text”),
• Write some text, like Hello, world! into a blank file,
• Save the file, naming it hello.html and putting it somewhere that you can easily
find it again.

20 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

To be sure that you can find it, try closing your text editor and opening it up again. If you can
get to your file, that’s a good sign.

Note that you need to be very careful to ensure that the only characters at the end of your file
name are “.html”. Watch out for trailing spaces, for example, as they can cause the browser
to become confused. That dot-separated suffix is an important signal to the browser,
indicating what kind of file it is reading, and it can be fairly picky about it.

File Managers and Local Files

Every operating system has a file manager of some kind. At a minimum, it will let you find and
open files that are already there. For example, in Chrome OS the file manager is an
application called “Files”. If you open that, you can navigate around places like your
Downloads directory or any external storage (like SD cards) you may have attached.
Windows has “Explorer”, Mac has “Finder”, and Linux distributions all have their own thing. If
you have access to a command shell and know how to use it, that will work great, as well.

You next need to find your file using the file manager (not just the text editor) so that we can
load it into the browser and see what it does.

Opening In the Browser

Creating and opening text files in a text editor is essential for this course, but so is opening a
file in the browser, where all the magic happens. The text editor is an author’s tool, and the
browser is a viewer’s tool: the actor that performs the author’s script for the audience. It’s
time to ask it to read what you’ve written.

If you are on a Windows/Mac/Linux machine, you should be able to use the File Open
menu in Chrome to find your file and open it. If you are using Chrome OS, there is no File
menu. You can open a file using the keyboard shortcut Ctrl + O , which just brings up the
“Files” app. Navigate to the file you created and open it in the usual way (e.g., double-tap). It
should open in the browser by default if it ends with .html, which it does if you followed the
previous steps.

If it doesn’t open in the browser from the Files app, try opening a blank tab in your browser,
then drag your file from the Files app to that new tab. That usually works.

Note that if you fail to name your file in a way that ends with .html, the browser won’t
interpret it, it will just show you code. Thus, if you drag your file into the browser and it just
shows you what you typed, you might not have named it properly. If all you typed was text
(like “Hello, World!”), then it won’t matter either way.

With the ability to create and edit text files, and to view them in the browser, you now have all
of the basic skills that you need to start writing programs. Don’t worry if this seems like a lot to
remember; we will review later.

YOUR FIRST JAVASCRIPT PROGRAM 21

If you wanted to do this the “real” way, you would run a small web server on your
computer, then access your code using the HTTP protocol. You are of course welcome to
try this approach. If you are happy sticking with “everything is in Chrome”, you can
download the “Web Server for Chrome” app from the Chrome Store. It’s nice and simple:
you tell it where your files will live, and then you can access them via a URL like this:

http://127.0.0.1:8887/myfile.html

Here myfile.html lives in the directory you told your web server about, 127.0.0.1
means “this computer” (often called localhost), and 8887 is the port number the web
server is listening on (configurable).

Why mention this here? Because if you do want to try using a web server, it can remove
some restrictions on where your files can reside. It would, for example, allow you to store
your multi-file programs in Google Drive and serve the files from there, where if you
choose not to use a web server, you are limited to single-file programs or programs on
local storage (because of strange file path behavior in Google Drive on Chrome OS).

This is not at all critical to learning to program, especially in this course. Everything in this
little aside is for those interested in trying it out. It can have benefits, but they are not
important to your ability to learn from this book.

Here are steps to get this working, if you would like to try:

• Go to the Chrome store,
• Search for and install “Web Server” under “Apps” (made by “chromebeat.com”),
• Run it.
• Use the “Choose Folder” option to select where you want all of your code to live.
This can be in Google Drive, if you want, and then you get your stuff backed up
more easily.

• Click the URL that appears (mine defaults to http://127.0.0.1:8887:
again, 127.0.0.1 is the IPv4 address for localhost, meaning “this
computer”).

What you will see at that point is a list of all of the files in your chosen directory, right there
in your browser. If you start saving your code in there, you will be able to pull it up in your
browser pretty easily.

Again, ignore this if it seems like too much, too soon. It’s not terribly important, but it can
be terribly interesting. It can also just be terrible; don’t get stuck here.

Your First JavaScript Program

With a basic understanding of variable assignment and evaluation, we can write a program in
a file, then open the console to see what the program did. That gets us most of the way
through the introductory material, and from there we can fiddle with code and learn as we go

22 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

without all of the tutorial baggage weighing us down.

Remember the text editor that you have all ready to go? Now is the time to start using it. As a
reminder, here are the steps we are going to take:

1. Start your text editor.
2. Write some code into a file and save it as firstprogram.html.
3. Load that file in the browser.

We will go over each of these steps in detail at this early phase. If they all look familiar enough
to you that you don’t need help, that’s great—skip to the Write Some Code section.

Start Your Text Editor

This is the first step (shown in bold) of the process here:

1. Start your text editor.
2. Write some code into a file and save it as firstprogram.html.
3. Load that file in the browser.

A text editor is just a program that you run, and it allows you to read, edit, and save plain text
files in permanent storage. A good text editor, as discussed previously, will also aid you in
programming by coloring syntax and automatically indenting your code for you.

Figure 1.2: Text, a Chrome-based text editor, has highlighting and auto-indent, among other
things.

YOUR FIRST JAVASCRIPT PROGRAM 23

Remember that you really cannot use a standard word processor for this. If you try, you will
curse its sudden but inevitable betrayal.

If you start your editor and see a blank file, possibly named “Untitled”, that’s perfect.

Write and Save a File

We are now at the second step (in bold) in this process:

1. Start your text editor.
2. Write some code into a file and save it as firstprogram.html.
3. Load that file in the browser.

If all has gone according to plan, you are looking at your text editor and a blank file within it.
Without worrying too much about what it means, put the following into your file:

:html:

<script>

a = 10;

b = 20;

c = a + b;

alert(c);

</script>

Once you have written that into your file, save it somewhere predictable with the name
firstprogram.html.

Did it work? If it did, you can check by going to your file manager (the “Files” app in Chrome
OS, for example) and seeing if a file called firstprogram.html shows up where you
thought you put it. You might have to search for it (if you do, try to remember where it went, for
next time). If you can find your file in the file manager, you did it! You now have a medium in
which to practice your programming arts.

Note that we wrote some JavaScript code, but we did so inside of HTML code. HTML stands
for “HyperText Markup Language”, and is the native language of web pages. This is how we
will proceed in this course most of the time: it is simpler to learn how to program if we just put
our JavaScript inside of HTML files in the beginning. This makes it simple for us to use the
browser as a programming lab.

The important thing to know for now is that anything between <script> and </script>
is interpreted by the browser to be JavaScript code, and it will be run when the page loads.

You will sometimes see a tag like this <tagname/> with the slash at the end, which just
means that there wasn’t anything inside of the opening and closing tags, so they got
smashed together. Approximately, anyway. Some tags do not allow this shorthand,
however, and the script tag is one of those. So, even though you might sometimes see

24 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

things like
, you will never see <script/> because that just isn’t allowed. It’s
too bad, really, because sometimes it would be nice.

One more thing: we have sneakily introduced the concept of a function call here by putting in
the code alert(c). We will get comfortable with that later. For now, just note that alert
causes a little window to pop up with, in this case, the value of the variable c displayed.
That’s an easy way to see if our code is doing anything. A more complete explanation of
function calls is coming very soon.

Run Your Program

We finally get to take the final step in bold below, and see our program work.

1. Start your text editor.
2. Write some code into a file and save it as firstprogram.html.
3. Load that file in the browser.

On most operating systems, opening something in the browser is pretty straightforward: you
can go to the browser’s File Open menu and find your firstprogram.html file right
where you saved it. In Chrome OS, you will need to find it in the “Files” app first (you can also
press Ctrl + O to get started), then open it by double-clicking it or by dragging it onto an
empty browser tab.

If you have succeeded, you will see a little alert window with the number 30 in it, and the
location bar should show something that looks like a path to your firstprogram.html
file, starting with the text file:///.

In Chrome OS, the real path to your file probably has a bunch of random characters in it,
presumably to make it hard to predict in the interests of security. That’s one reason we
need to use the Files app to find the file; trying to type it in directly is usually not going to
work. Other operating environments do this more straightforwardly.

Also, if you opted to run your own web server, as mentioned briefly earlier, you will go to a
different place to find your code, typically a URL of the form

http://127.0.0.1:8887/projectdir/firstprogram.html

(details will differ, depending on how you set it up).

If you don’t see a little alert window pop up with a number in it, either you didn’t put the code
into a file, didn’t save it, or didn’t successfully find and open it. If you don’t have any ideas on
how to fix your programs, you might try going back to the beginning and doing all of the steps
again. Eventually this will seem familiar and easy, but at first it can feel like a lot of steps just
to do one thing.

The good news is that once you have your program file set up like this, you can just change
the file in your text editor, save it, and then reload the appropriate tab in your browser: it’s

YOUR FIRST JAVASCRIPT PROGRAM 25

already pointing to your file, it just needs to read it again. If you refresh like that, after saving,
you will see the changes. All of this file dragging is only needed at the beginning of a
programming session. After that you will just spend time flipping between the editor and the
browser, saving in the editor and reloading in the browser every time you change something.

If you are having trouble and your program isn’t working, note that the JavaScript interpreter
will just run your code from top to bottom. Because of that, a common technique is to add
alert statements throughout the code to see which line makes them stop appearing. For
example, take a look at this buggy program:

:html:

<script>

a = 10;

b = 20;

c = a + b;

Alert(c);

</script>

This won’t ever alert because when it sees Alert(c), that function name is spelled wrong
(remember, names are case-sensitive). If you wanted to find out where the problem is, you
could sprinkle some alerts in your code like this:

:html:

<script>

alert(1);

a = 10;

b = 20;

alert(2);

c = a + b;

alert(3);

Alert(c);

</script>

In this case, you’ll see an alert saying “1”, then after dismissing it, “2”, then finally “3”. But
after you dismiss that one, nothing else will appear. This helps you to narrow down the
problem to the one offending line. If you have developer tools, there are even easier ways to
go about this, but this is still a tried and true approach to finding your own code problems.

Interpreters Are Loopy

If you have succeeded with the above, congratulations! You have officially begun. There is
still a lot to learn about this JavaScript interpreter that the browser puts to work for us, though.
What does it do, anyway?

The first thing to really get clear is this: your text editor is not running your code. It is merely
letting you type it and save it somewhere. The browser does all of the work of interpreting and
running the code you write.

26 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

The next important thing to understand is how the browser treats your code once it opens it:
when it encounters a script section in HTML, everything in there is handed off to the
JavaScript interpreter (which is part of the browser).

Loosely speaking, the JavaScript interpreter reads each statement from top to bottom, one at
a time, and evaluates it in order. Sometimes the statement it’s working on just sets things up
for later use, and sometimes it does something right away. Right now we only have
experience with stuff that happens right away, like this:

:html:

<script>

a = 10;

b = 20;

alert(a + b);

</script>

From top to bottom, the variable a is assigned a value (and created if it doesn’t already exist),
then the variable b is assigned, in that order. That’s a rather important property to be able to
rely on, since the last line alert(a + b); needs to use the previous results in order to do
its work.

This last example is a little bit different than what we saw before: it contains an expression
inside of a function call. It’s still true that a full explanation of function calls lies ahead of us,
but this brings us to another thing about the interpreter: it not only evaluates things from top to
bottom, it also evaluates them from the inside out. Basically, it has to evaluate a + b before
it can call alert with that value, so that’s the order it works in.

If you, as a human, were to evaluate a statement 𝑓(𝑥 + 𝑦), you would do the same thing:
find the value of 𝑥 + 𝑦, then evaluate 𝑓 with the result; inside out.

What the interpreter is doing is called a “Read-Eval Loop”. It reads, it evaluates, and then
does it again on the next statement. It’s kind of like shampoo bottle instructions: “lather, rinse,
repeat”, or “read, eval, loop”. It’s the same, really, with less hygiene and more internet.

Figure 1.3: The Read-Eval Loop

MORE JAVASCRIPT SYNTAX 27

When you run a file like this, all of that happens silently, without showing you anything that it is
doing, unless you explicitly tell it to with something like alert. When you tell the browser to
load your file, the interpreter processes it as fast as it possibly can, without your help.

The console is a bit different than regular JavaScript execution. It has its own special
interpreter loop, called a “Read-Eval-Print Loop” (commonly but unimaginatively called a
“REPL”, and often pronounced “repple”). When you type something into the console, it
not only reads and evaluates it, it also prints the result without you asking for it to do so,
like this:

:console:

> 10 + 20

⋖ 30

It reads 10 + 20, then evaluates it, then prints that value (30): read-eval-print. Then, if
you type something on the next line, it does it all over again.

That difference is why loading our files into the browser doesn’t show us anything unless
we do something like call alert: the normal read-eval loop has no “print” stage. That
stage is unique to the console, where every single thing we do is right there in our face.

More JavaScript Syntax

We have so far used the JavaScript console as a calculator, and even created a small
program that did some computations using variables and showed an alert with the final result.
All of the operands and results in those expressions have been numbers. Numbers are nice
and all, but we like our programs to be able to communicate with people, so text is also going
to be pretty important. There are two different kinds of text in JavaScript programs, and we
will talk about both of them here: comments and strings.

But first, an important message from your REPL.

A Semicolonoscopy

A quick note is in order about semicolons, a topic that is almost certainly already your favorite.

The simple version is this: in the same way that you would end a sentence with a period, end
all of your statements and expressions with a semicolon. An example of a program with
semicolons is here:

:javascript:

a = 10;

b = a + 5;

alert(b);

See how every expression is terminated with a semicolon? Just do that and you’ll be fine.

28 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

When we work within the console, we can only ever enter a single expression at a time,
where an expression, which we haven’t really formally defined before, is “something that
can produce a value” or “something that can be evaluated”. Once we hit Enter in the
console, our expression is complete and the interpreter tries to evaluate it immediately.
When we are writing a program in a file, however, we are giving the interpreter a whole
bunch of stuff to do, and some of our expressions will be complex and span more than one
line.

The general rule, which we will revisit and revise to be more accurate as we go, is this:
always terminate your expressions with a semicolon. JavaScript tries to be kind here
and inserts invisible semicolons where it thinks you meant to put them, but it often fails to
insert enough of them, and that can lead to all sorts of confusion. Therefore, in all of the
code examples that are in a file, you will see semicolons at the ends of expressions.
Follow that example and you’ll be far better off.

In the console, we leave them out where we can because the console evaluates things
immediately when we press Enter , avoiding this issue. The console is special, and again,
we won’t be focusing on it for the entire course, just the beginning when we are playing
around.

The reason a lot of this matters is that JavaScript has some misfeatures, things often
referred to as “warts” in programming language parlance. One of those warts is the way
that it handles automatic semicolon insertion. When first programming, you won’t run into
situations very often where it matters. Simple stuff is unambiguous enough that
JavaScript gets it right, there are few semicolons, and there is much rejoicing.

But, once your code starts getting more advanced, you start running into this problem all
the time, and by then you might have developed an unfortunate bad habit or two. Thus,
even though you might not notice the difference when you leave them off right now, always
use semicolons anyway. You’ll thank me later.

Comments

Sometimes you want to leave notes behind for your future self, or for other people who might
look at your code and want to understand it. These notes are things that you don’t expect the
computer to care about; you want to leave behind some hints for humans. After all, code is
often easy to follow while you are in the process of writing it, but can become confusing after
some time has passed and the full picture of what you were doing has long since fallen out of
your brain. Notes like these are called “comments”, and knowing when and how much to write
in them is both an art and a skill; you will get better at it by finding good examples to emulate,
and by practicing.

JavaScript has two forms of comments, line comments and block comments. They look
like this:

:javascript:

MORE JAVASCRIPT SYNTAX 29

// Line comments stop here

// Always going to the end

// Never further on.

/* Block comments go on

Without regard for endings

Except for this one: */

If you were to type those into the console, nothing would happen.

It might tell you that the expressions have the value undefined, which is confusing but
technically true—comments can be thought of as do-nothing expressions that evaluate to
nothing, and “nothing” in JavaScript is often spelled undefined.

Frequently you will see people format their block comments like this:
:javascript:

/* Block comments are seen

* With some leading asterisks

* To make them tidy.

*/

The important thing to remember about comments is this: the JavaScript interpreter ignores
them. They don’t do anything, they just sit there in your code, ready for a human to read later
when trying to fix the bugs you left behind. The interpreter just skips right over them and
continues on its way.

This is actually a little bit of a lie, though it is true enough for our purposes. JavaScript
actually lets you get at all kinds of things, including the actual text of your functions (and
therefore your comments within them), from other parts of your program. That means
some programs have comments that the computer cares about. But you shouldn’t worry
about that; those circumstances are extremely rare and usually either ill advised or
carefully documented.

We will have comments in the example code throughout this course, so you will get familiar
with them in a hurry.

Strings

Programming is not much fun if our programs can’t communicate with people. That means
processing text that, unlike comments, is used by the interpreter. Bits of text are called
“strings” because they are a representation of an ordered “string of characters”.

As is often the case with computer science ideas, particularly where they intersect with human
endeavors like language, the concept of a “character” is surprisingly deep and interesting,

30 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

much more so than even many seasoned programmers realize. For our purposes, though, it
will be sufficient to describe a string of characters as “what you are reading right now.” The
ideas on this page are expressed one sentence at a time, each sentence being formed from
words and punctuation, each word, space, and punctuation mark being formed from
characters. These include letters, numbers, spaces, and all kinds of symbols in all kinds of
languages, even emoji.

To express strings in JavaScript, we delimit them on either side with quotation marks, either
single or double; it doesn’t matter so long as we use the same delimiter on both ends. For
example, a program that sets the variable s to hold the string “Hello” might look like this,
using double quotes to delimit the string:

:javascript:

s = "Hello";

As mentioned, you can also use single quotes, like this:
:javascript:

s = 'Hello';

Use whatever you like, as long as it matches on both sides.

To “delimit” something is to “set it apart from” other things. Thus, the double and single
quote characters are called “string delimiters”; they set the string contents apart from the
rest of the code.

Strings can be a little tricky to understand at first, because they are always surrounded by
quote marks, but those quote marks are not part of the string. Rather, they are a signal to the
interpreter that it should treat the characters between quote marks as a string. To hopefully
make this extra clear, let’s talk for just a moment about what the interpreter does when it sees
the very short program above. First, it sees that we are assigning something to s, so it then
tries to evaluate 'Hello';.

Looking at 'Hello' from left to right, what does it see first? It sees a single quote '. That
signals to it that “what follows is a string”. It also tells it that “the string ends when you find
another single quote.” Therefore, it starts reading, one character at a time, keeping track of
the string’s contents, until it finds a quote just like the first one, then it knows it has the full
string. In this case, that string consists of the characters ‘H’, ‘e’, ‘l’, ‘l’, and ‘o’, in that order.
The quotes just tell it when to start making a string, and when to stop.

If you fire up the console, you can play with strings there. Let’s see how they look in that tool.
:console:

> alert("Hello");

If you run that in the console, you will see a pop-up window with Hello written in it. Again,

MORE JAVASCRIPT SYNTAX 31

the quotes are not part of the string, they just delimit the string.

Since the interpreter reads characters one at a time until it finds the ending quote mark, how
can we include a literal quote mark as part of the string itself? After all, a quote mark is a
character. What if we just try the following?

:console:

> // This won't work:

> alert("this " is a double quote");

That won’t work. The interpreter sees the first ", then starts reading characters one at a time,
looking for another " to tell it when to quit. It sees that second quote mark right after the word
“this”, and then it thinks it is done with the string. That’s a problem, because there’s more
coming.

One way to handle this is to use single quotes for delimiters around strings that contain double
quotes, like this:

:console:

> // This works.

> alert('this " is a double quote');

The interpreter sees that first single quote, then starts reading characters until it finds another
single quote, which it only finds at the very end, right where we want it to stop. That works!
The same thing works in reverse, as well: strings containing single quotes can be delimited
with double quotes.

Now, what if you can’t do that? What if you want both kinds of quotes inside of your string?
To do that you need a special character that signals to the interpreter, “Pay attention, because
the next thing you see is not a delimiter, it’s part of the string.” We call that an escape
character, and in JavaScript strings it is the backslash character \. You can use it in your
program like this:

:console:

> alert("Sometimes you \"want\" to have 'both' kinds.");

Shiny! You can tell the interpreter that you want to include a quote mark in your string by
typing \" or \' instead of just the bare quotation marks. But what if you want to include a
backslash character? How would you do that? As it happens, the backslash is its own
escape character. Check out this console statement:

:console:

> alert("Escape \" ALL \' the \\ things!");

If you were to type this into the console, it would display Escape " ALL ' the \

things! in a window. See how the first backslash is not there? It signaled to the interpreter

32 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

that the next character is literally to be part of the string, no matter how special it normally is,
and that next character was a backslash.

By the way, for the love of all that is right in the world, please know the difference between
the forward slash / and backslash \ characters. One leans forward (for languages that
read left-to-right, anyway, which is how most programming languages also work), the
other leans back. The forward slash / is often just called “slash”. It is never appropriate
to call it “backslash”. That distinction is reserved entirely for the \ character. We’re in
programming land, now, where precise communication is crucial.

This public service announcement is a backslash backlash. Know your slashes, avoid
backlashes.

The rule for string escaping is this: read characters from left to right. Any time you see a
backslash \, it is the beginning of an escape sequence, a sequence of characters that
means something special to the interpreter. Escape sequences start with \ and can contain
one or more things afterward. You have just been introduced to escaped character literals,
where the backslash precedes exactly one “normal” character: the thing you really want to
express but can’t because of string rules. There are other escapes1, as well, but we’re going
to ignore them for now.

A literal is something that you type into the interpreter that is just itself. Something like 10
is a literal, as is "hello". They are literally what they appear to be, not part of the
language syntax: just values. The first is the number 10 and the second is the string
"hello".

Strings are pretty useful. We will be seeing them a lot. In fact, we will be seeing them a lot
more than we want to, because JavaScript has a habit of trying to turn everything, including
numbers, into strings (note: it also tries to do the opposite when it thinks that’s warranted).
That can make for some interesting and unfortunate accidents if we’re not careful, because
strings can be added to each other:

:console:

> "Hello, " + "world!"

⋖ "Hello, world!"

See how we just added two strings together to make a new one? The addition operator, when
it has a string on the left, concatenates it with the string on the right. It jams them together to
make a new string.

Here’s a tidbit that we will run into later (so feel free to appreciate it and then forget it). Check
this out:

:console:

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

PUTTING IT ALL TOGETHER 33

> "5" + 10

⋖ "510"

Oops. We have a string literal on the left and a numeric literal on the right (no quote marks
around the right-hand number). JavaScript silently converts the number 10 into a string
"10" for us and then does string concatenation. This particular example is silly, but
sometimes you don’t know whether the thing on the left is a string: for example, if it’s a value
within a variable. It’s therefore relatively common practice to use the unary + operator to
ensure that strings are converted to numbers before computation is done on them, like this:

:console:

> a = "5"

⋖ "5"

> a + 10

⋖ "510"

> +a + 10

⋖ 15

That’s better. The unary + operator is not seen much in mathematics because it is sort of
redundant, but it exists in a lot of programming languages. It’s like adding the number to 0,
just like the unary - is like subtracting the number from 0. In this case, it unambiguously
instructs the interpreter that the next thing should be a number, even if it starts out as a string.

Putting It All Together

With that, we can now create what is arguably the most important program that anyone ever
writes. Open your editor, type the following into it, save it as an HTML file of some kind
(ending in .html), and open it in your browser:

:html:

<script>

alert("Hello, World!");

</script>

Congratulations! You are now officially an amateur programmer. There is still much to learn,
but you are armed with a possibly useful textbook. Don’t stop now!

Exercises

Exercise 1-1: Create a new programming session
Solution on page 363

Practice starting a new programming session from scratch. Close all of your program tabs,
then

34 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

• Start your text editor.
• Write “Testing my sanity” or some other recognizable and pithy comment, and save it
as an HTML file.

• Load that file in the browser.

Exercise 1-2: Practice loading the console
Solution on page 364

Once you have successfully loaded your new program (with your new statement inside of it),
open the Developer Tools and find the console.

Exercise 1-3: Find the source viewer
Solution on page 364

When you write the text of a program, you are writing what is called “source code”. This
means your code is the “source” of all of the instructions that the computer will execute on
your behalf. Find the developer tool that lets you view the source of the file that the browser
has currently loaded.

Note that this is not the “View Source” menu item that you might be familiar with. Rather, this
is the developer tool that shows you the source and gives you tools to work with it.

Exercise 1-4: Faster developer tools access
Solution on page 365

Developer tools are incredibly important and useful, particularly for this course, so we are
going to want to be able to get to them quickly. Find the combination of key strokes that opens
(and closes) the console and practice them. Memorize them.

Exercise 1-5: The console as a calculator
Solution on page 365

Use the console to find the value of this expression: 1 + 2 - 3 + 4 - 5 + 6 - 7 +

8 - 9 + 10.

Exercise 1-6: Definitions
Solution on page 366

Define the following:

• syntax highlighting
• JavaScript console
• text editor
• variable
• expression
• evaluate

EXERCISES 35

• assign
• delimit
• escape character
• literal
• concatenate

Exercise 1-7: Assignment practice
Solution on page 367

Show code that causes the variable x to contain the value 42.

Exercise 1-8: Evaluation
Solution on page 367

Write the result of evaluating (x - 12) * 3 + 9 where x is 42 without using a computer
- use your brain to figure out what the answer will be. Show your work.

Exercise 1-9: Using variables
Solution on page 367

Use a variable to compute the value of the polynomial 𝑥2 − 2𝑥 + 1 where 𝑥 = 3. Hint: you
can use x*x to mean “x squared”.

Exercise 1-10: Approximate Euler’s constant
Solution on page 368

If you are using Chrome or Firefox (as they support exponentiation using the ** operator),
approximate the value of 𝑒 by computing (1 + 1/1000)**1000. What value do you get?

Exercise 1-11: A non-console program
Solution on page 368

Write a program (in your text editor, not the console) that uses string concatenation to show
“Hello!” using only strings that each contain a single character.

Exercise 1-12: Escapes in strings
Solution on page 369

Write a program to create a string that shows this emoticon \o/ (backslash, ‘o’, slash) and
alert it.

36 CHAPTER 1. PROGRAMMING AND DEVELOPER TOOLS

Chapter 2

Function Calls and the Debugger

So far we’ve had occasion to draw on one concept from algebra: variables. There is another
concept from algebra that is absolutely critical for programming: functions. Functions are so
central to computer science that, combined with what we know about variables, you could
actually write complete programs using nothing else (thanks to Alonzo Church1 and Alan
Turing2). Functions are very important, and we can’t do much in JavaScript without knowing
about them.

This part is a bit more detailed than what we have done before, so be prepared to do some
thinking. Also, we will take a break from programming for a bit to do some review, as this
concept is so fundamental. Let’s dive in.

Functions in Algebra

In algebra, you have probably seen function notation, like in this example:

𝑓(𝑥) = 𝑥2 + 2𝑥 + 3.

You have probably even plotted something like it, which in this case gives you a parabola, as
depicted below.

This might seem really familiar, but it might also be deeper than you think: how exactly did we
get from 𝑓(𝑥) to that graph? A very typical approach is to just evaluate 𝑓(𝑥) at a bunch of
values of 𝑥 and plot those points, joining them afterward with curvy lines. That approach is
certainly intuitive (and is basically what the computer did to make that picture), but what does
it mean to “evaluate 𝑓(𝑥)”?

1https://en.wikipedia.org/wiki/Lambda_calculus
2https://en.wikipedia.org/wiki/Universal_Turing_machine

37

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Universal_Turing_machine

38 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

Figure 2.1: The function 𝑓(𝑥) = 𝑥2 + 2𝑥 + 3.

This is actually a very deep question, and it has a lot of answers depending on the context.
This text is not the place to discuss most of them, but you should know that functions are
anything but boring and simple: their nature and what they can express are still an active
area of research.

This whole notion of “evaluating” something is central to mathematics and to programming.
We have touched very briefly on it before, saying it is the process of getting something’s value.
But how do we do that? As an example, we evaluate expressions like 3 − 2 by simplifying
them into a single result: 1. To evaluate is essentially to produce a value. If we have an
expression like 𝑥2 + 1 and we try to evaluate it, the first question is “What is the value of 𝑥?”
If we know that value, we can “plug it in” for 𝑥 and simplify the whole expression to a number.
That’s evaluation: plug and chug.

There are a couple of ways to view algebraic functions, so you should know that the
explanation here is biased toward what we need to know to be successful at programming,
not toward mathematical completeness. As long as we are comfortable with that kind of
pragmatism, we can create a narrow but useful working definition of a function:

A function is a specification of

• steps to take
• to obtain a value
• given adequate settings
• for any parameters.

The parameters of a function are the variables mentioned within the parentheses, like 𝑥.
Their full name is formal parameters, but we will refer to them as just “parameters”.

When viewed in this way, you can think of the function as a little machine. You put parameter
settings in, and the function’s definition tells you how to get a value out. In our parabola
example, 𝑓(𝑥) has a single parameter: 𝑥. When we set 𝑥 to some known value, like in the
expression 𝑓(4), that value is called an argument to the function: the parameter 𝑥 has been
set to 4, so 4 is the argument corresponding to the parameter 𝑥. At that point all parameters
have been specified (all necessary arguments are supplied) and we can get a value out of the
function by evaluating its definition in terms of those arguments.

FUNCTIONS IN ALGEBRA 39

Figure 2.2: A basic function box.

That was a lot of words to describe what is actually a simple concept: stick stuff into the
variables in 𝑓 , do what its definition tells you, and you will get a value out. That’s how you
evaluate a function.

This summarizes the two contexts in which we see notation like 𝑓(𝑥):
• Definition, such as 𝑓(𝑥) = 𝑥2 + 2𝑥 + 3, and
• Evaluation, such as 𝑓(4).

Figure 2.3: A function box for 𝑓(𝑥) = 𝑥2 + 2𝑥 + 3.

With a definition like 𝑓(𝑥) = 𝑥2 + 2𝑥 + 3, we can easily answer the question “What is
𝑓(10)?” If we try that, we are evaluating 𝑓 at 𝑥 = 10. If this feels natural already, don’t
overthink it, you’ve got the idea. We’ll go into some additional detail below just in case it’s a
little fuzzy.

To find 𝑓(10), we start with the definition, then do some substitution and simplication:

𝑓(𝑥) = 𝑥2 + 2𝑥 + 3
𝑓(10) = 102 + 2(10) + 3

= 100 + 20 + 3
= 123

In other words, we

40 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

• Expand the function definition (𝑓(𝑥) = 𝑥2 + 2𝑥 + 3), then
• Substitute parameters (𝑥) with corresponding arguments (10), and
• Evaluate what remains (102 + 2(10) + 3 = 123).

With care taken to ensure that variables in different scopes are properly distinct from one
another, this works for all functions: expand, substitute, and evaluate.

The annotated process is shown here:

𝑓(𝑥) = 𝑥2 + 2𝑥 + 3

𝑓(10) =
𝑥2

⏞102 +
2𝑥

⏞2(10) +3

=
102

⏞100 +
2(10)
⏞20 +3

=
100+20+3

⏞123

We will frequently use these kinds of annotations for evaluation (less so for substitution, since
that’s usually pretty straightforward), to describe what is going on with evaluations. They
signal where each term comes from, hopefully allowing you to see more intuitively how each
step is performed, without getting lost.

If we only show one step per line, we can use over- and under-brackets without annotations to
show what is happening, like this:

𝑓(𝑥) = 𝑥2 + 2𝑥 + 3
𝑓(10) = 102⏟ +2(10) + 3

= ⏞100 + 2(10)⏟ +3
= 100 + ⏞20⏟ +3
= ⏞120 +3⏟
= ⏞123

Do you see how the brace beneath one line matches with the brace above the next? We will
use that when we want to do one step at a time in our evaluations, just like a computer does.
Take a few moments to be sure that these annotations make sense before proceeding.

With that out of the way, we now know that 𝑓(10) = 123. That means that 𝑓(10) has a
value. It kind of is a value, really. You can replace 𝑓(10) with 123 everywhere you see it.

FUNCTIONS IN ALGEBRA 41

If 𝑓(10) is a value, what is 𝑓(𝑥)? Because 𝑥 is unknown, 𝑓(𝑥) is not a value, it’s just
instructions for producing a value once we do know 𝑥.

In other words we can think of functions as defining a process, a set of steps. They are like
recipes. If you follow the instructions (expand the definition) with the right ingredients
(arguments), you get to eat (find the value).

And, just like with cooking, progressing from a function or expression to a value requires work.
We will be touching on that idea later on when we start writing some code.

Some expressions fundamentally require more work to evaluate than others, and it is an
important field of study in computer science: the study of complexity, essentially how
many resources are required (in both time and space) to get certain answers.

Let’s sum up a bit.

• Functions like 𝑓(𝑥) = 𝑥 − 1 are definitions. They have variable parameters, not
values, and they define a recipe for getting a value when we are fortunate enough to
know the arguments.

• Function expressions written like 𝑓(10) become values in their own right. You can do
expansion, variable substitution, and evaluation to replace them with actual values.

• Evaluating functions requires work involving actual space, actual time, and actual
energy, just like following a recipe.

Recursion

There is a really interesting and crucially important quirk of function definitions in algebra that
can be a little bit mind-bending at first, so we are going to spend some time with it here. That
concept is recursion. Recursion is basically a function that is partly defined in terms of itself.

Nested Function Expansion

Before we jump into that, though, let’s remind ourselves about functions that are defined in
terms of other functions:

𝑓(𝑥) = 𝑥 + 𝑔(2𝑥)
𝑔(𝑦) = 𝑦 − 1

What if we want to evaluate 𝑓(5)? Let’s go through the steps: expand, substitute, evaluate:

42 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

𝑓(5) = 5 + 𝑔(2 ⋅ 5⏟)
= 5 + 𝑔(⏞10)⏟
= 5 + ⏞(10 − 1)⏟
= 5 + ⏞9⏟
= ⏞14

In order to evaluate 𝑓(5), we first had to pause to evaluate 𝑔(10). So, we did that by
expanding, substituting, and evaluating 𝑔(10), then we could finish what was left in our
evaluation of 𝑓 ’s expansion. This is a very important principle: in order to evaluate an
expression, you must first evaluate any functions that it contains. Basically, you cannot finish
evaluating an expression until you have evaluated all of its parts.

That is why evaluation is done inside out: the outside depends on the result of the inside, so
the inside is computed first.

Recursive Evaluation

It turns out that you can do the same thing with the function 𝑓—it can appear in its own
definition.

While that might sound a bit weird, it actually appears fairly early on in algebra. Let’s talk a
moment about the factorial operator for integers 𝑘 ≥ 0. Note that we will call it 𝐹(𝑘) instead
of the usual 𝑘! to make it a little easier to see the recursion:

𝐹(𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2)...(1).

What does this mean? Well, if 𝑘 = 4 then 𝐹(𝑘) = 4 ⋅ 3 ⋅ 2 ⋅ 1. If you squint at it, you can
see that pattern in the formula above: multiply 𝑘 by the value one less than it, then the next
one down, and the next, all the way until you get to 1. What we have not yet said is that there
is a special case for 𝑘 = 0: 𝐹(0) = 1. This will help us in a moment. The ellipses (…) just
mean “continue as you were already going” until you get to the end, where you have 1.
This is useful enough as it is, but let’s see if we can make the definition a little easier to write
down, and notice some patterns in it while we’re at it. Look at 𝐹(𝑘) and 𝐹(𝑘 − 1) together
for a moment:

𝐹(𝑘) = 𝑘(𝑘 − 1)(𝑘 − 2)(𝑘 − 3)...(1)
𝐹(𝑘 − 1) = (𝑘 − 1)(𝑘 − 2)(𝑘 − 3)...(1)

FUNCTIONS IN ALGEBRA 43

To make it concrete, have a look at what happens if 𝑘 = 5 and 𝑘 = 4:

𝐹(5) = 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1
𝐹(4) = 4 ⋅ 3 ⋅ 2 ⋅ 1

Well, that’s interesting! It looks like 𝐹(4) gets us most of the way to 𝐹(5). Taking advantage
of that gives us 𝐹(5) = 5 ⋅ 𝐹(4). That seems like something we can use, but to really be
useful, it needs to be written in terms of not just 4 and 5, but an arbitrary integer 𝑘:

𝐹(𝑘) = {1 for 𝑘 = 0
𝑘𝐹(𝑘 − 1) for 𝑘 > 0.

Note that in the above notation there are two ways to compute 𝐹(𝑘): if 𝑘 = 0, then the
factorial 𝐹(𝑘) is defined to simply be 1. If, however, 𝑘 > 0, then you have to do a little more
work, because if 𝑘 > 0, then 𝐹(𝑘) = 𝑘𝐹(𝑘 − 1).

This is a recurrence relation: it defines how a sequence can be built using recursion. So,
how does it work? How do we use it in a practical way, for example, to evaluate 𝐹(3)? This
particular one is simple, so looking at it, you would probably just turn it into a sequence of
multiplication: 𝐹(3) = 3 ⋅ 2 ⋅ 1, which is 6. But if it were longer, you would need a more
principled strategy.

The complete strategy is to expand and substitute, then evaluate, one step at a time. Exactly
as when we introduced 𝑔 into the definition for 𝑓 above, our evaluation will not be complete
right away: it will include another function evaluation in it. Let’s take a look at the process,
starting with our two definitions, then moving on to evaluation of 𝐹(3):

44 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

𝐹(0) = 1
𝐹(𝑘) = 𝑘𝐹(𝑘 − 1)

𝐹(3) = 3 𝐹(2)⏟
= 3 ⏞(2 𝐹(1)⏟)

= 3(2 ⏞(1 𝐹(0)⏟))

= 3(2(1 ⏞(1)⏟))
= 3(2(⏞1)⏟)
= 3(⏞2)⏟
= ⏞6

We start with our definition, which now takes up two lines because we have the base case for
0 and every other case for values larger than 0. Then we substitute 𝑘 = 3 in our expansion
and do everything we can. It’s okay that we can’t evaluate the whole thing, yet. Our goal is
just to make progress.

That leaves us with another function to evaluate, so we do that over and over again until all we
have left are values. Note that eventually we evaluate 𝐹(0), which we have defined to be 1,
so we finally get a function expansion that does not result in another function. After that it is
just finishing all of the partially-completed computations that we left behind, and we arrive at
the number 6.

If you look at the pattern carefully, you can see a sort of diving and surfacing (or expanding
and contracting) effect. We continue diving into evaluation until there are no more functions in
our expansion, and then we start to surface by completing each computation that was paused
while we did those expansions, evaluating the innermost expression first (just like we would
normally do with bracketed expressions).

Many, many things in mathematics and computer science are defined in terms of themselves
like this. A function that is defined in terms of itself is often referred to as a recursive function
(because it “recurs”). As mentioned previously, you can define computation itself in terms of
variables and functions, and recursion is a big part of what makes that possible. You can bet
that this will come up again, and when it does, you will be ready to understand it.

For some reason, many programmers seem to think that evaluating a function inside its
own definition means it “recurses”. But it never was cursing, and it certainly isn’t doing it
again. What it is doing is recurring. The function recurs, it does not “recurse”.

CALLING FUNCTIONS IN JAVASCRIPT 45

Bring this up, hold your ground, and people might even recurse at you!

Calling Functions in JavaScript

Figure 2.4: The alert function.

When we evaluate a function in a programming language like JavaScript, we say that we call
that function with certain arguments. We treat it something like a robotic courier: we call it,
have an argument with it about what kind of pizza we want, and expect it to return (hopefully
quickly) to us without any errant toppings.

Our first encounter with this idea was the alert function, which is different than familiar
algebraic functions because it only does work (displays its argument), and doesn’t produce a
value (output is undefined). Nevertheless, we call it with a message argument, and it does
work before returning control (but not a value in this case) to the caller.

Let’s start a brand new program file so we can play around with this concept more concretely.
It’s time to get out the computer and do stuff!

This is still new, so here’s a quick reminder of what to do to write a new program:

1. Open your text editor,
2. Write some code and save it as prompt.html or something like that (names

are hard, enjoy!).
3. Load that file in your browser.

If you have forgotten how to do any of those steps, go back to the first chapter and refresh
your memory with the details there. We will be doing this for every new program.

Do you have your text editor open? Good. Let’s put a familiar-looking program into it:
:html:

46 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

<script>

a = 10;

b = 20;

alert(a + b);

</script>

Now, this program does not do anything new at all, but we are about to change that. First,
let’s remind ourselves of what the interpreter does:

• Reads the next statement,
• Evaluates it, and
• Repeats that process until the end of the program.

In this program that means it displays 30 in a popup window.

Figure 2.5: The alert window showing the value of a+b.

Let’s get a bit more interesting with functions that actually return a value, now.

Functions That Produce Values

What if, instead of just displaying stuff we typed into a program earlier, we want to ask the
user for input that we can use in our progarm? Well, it turns out that there is also a function
called prompt3. It accepts a message, shows that message in a pop-up window with an
empty text entry field, and it returns whatever you type in that field. Let’s look at some simple
code using prompt. Try replacing your code with this:

:html:

<script>

msg = prompt("Hello! Type something exciting.");

alert(msg);

</script>

To be completely honest, the prompt and alert functions are probably not the best
examples we could have started with. What would have been a bit more comfortable,
especially coming from a pre-algebra background, would be functions that just compute

3https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt

https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt

FUNCTIONS THAT PRODUCE VALUES 47

something and return the value of the computation. You know, functions like the square
root, which does what it sounds like: takes a value and returns its square root. So why
start with things like prompt and alert, which interact with the real world instead of
doing simple computations?

First, programs are pretty hard to understand if they aren’t doing something with the world.
We need insight into what is happening, and alert is really handy for that. Second, it’s
good to get started off with the understanding that functions are not just a description of
how to combine values to make more values, but are also things that do useful work.

Truthfully, there is a third—purely practical—reason: JavaScript doesn’t have many
interesting functions that are not tied to an object, and we haven’t talked about those, yet.
Foreshadowing is fun, but so is understanding what you are reading.

Let’s pick this apart so there is no chance of confusion. What is happening here?

That first statement actually has a lot going on! The interpreter, in its read-eval loop, reads the
statement and tries to evaluate it. It does so left-to-right, inside-out. You can imagine it
carrying out an internal dialog like this one:

• Hey, that looks like a variable assignment. OK.
• There is no msg variable, so I will create one. Done.
• Now, what are we assigning it? Hmm, that is a function call.
• I cannot assign anything until that thing returns. Call prompt with that string.
• (prompt shows a window and waits for you to finish—everything pauses until you click
a button)

• Yup, that finished, and it gave me something. Assign msg to be what the user typed
into the window.

That’s just the first line! The next line is more familiar: it just alerts the thing you typed in.

If you load this program, it will immediately ask you for input. Once you are done, it will display
what you typed.

Figure 2.6: The prompt asking for something exciting, and our cheekily compliant response.

What happens if you hit “Cancel” instead of “OK”? That displays null. The null value is
not a number, or a string, or a function, but a sort of featureless empty thing. Unlike

48 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

undefined, it is more sensible to treat it as an actual value. In the case of prompt, that
value can be interpreted to mean “Cancel was pressed”. Otherwise you get a string message.

If you look back at the algebraic discussion of functions, you will see that prompt is acting
pretty much like you might expect. You give it an argument (the message to display), and it
returns a value (what you type in the pop-up window) accordingly. This is a bit different from
algebraic functions in that it relies on what is happening in the world to produce its value, but
the fundamentals are otherwise the same. Calling a function always involves doing work; in
this case, that work is waiting for you to type something and then turning your keystrokes into
a string of characters. The alert function similarly does work in the real world: it pops up a
window that shows its argument, and waits for you to dismiss it before the code continues
from that point.

A Debugging Interlude

What is “debugging”, and why do we call it that? Because legend has it that Grace Hopper4
fixed a computer once by removing a moth from one of its relays. Ever since then our program
errors are called “bugs” and fixing them is the process of “debugging”. Grace Hopper was
awesome, by the way, and a very important pioneer in computer science. It is well worth your
time to learn about her life and contributions.

When we run our programs, we are just waiting to see what they do. We do not have a lot of
insight into what is happening under the hood, as it were, unless we use our brain as a sort of
biological JavaScript interpreter to predict what is happening. That is a very valuable thing for
us to do and to get practice with, but the computer can also help us to see what is going on,
step by step. To do that, we use the debugger, a tool that grants us a view of the inner
workings of our programs.

Note that, if you are using a locked-down student laptop, or trying to go through this course on
a mobile device, you may not have access to the debugger, or even the console. It is definitely
definitely possible to get through the course without it, but you will need to do some reading
without hands on keyboard in a few places, including below. A debugger is a very useful tool
for stepping through code and understanding what the computer is doing, but it isn’t required.
Find another way of accessing a computer with proper tools if you can, but forge ahead and
just learn about them otherwise; debuggers are helpful but optional.

If you have no access to the debugger, skim from here until the exercises, and skip those that
pertain to the debugger.

Debugging Our Programs

Let’s go back to our little program from the previous chapter. Remember that one?
4https://en.wikipedia.org/wiki/Grace_Hopper

https://en.wikipedia.org/wiki/Grace_Hopper

A DEBUGGING INTERLUDE 49

:html:

<script>

a = 10;

b = 20;

c = a + b;

alert(c);

</script>

At the risk of being a bit repetitive, let’s talk about what this does, one line at a time. The
read-eval loop, after all, is a core concept, so it won’t hurt us to see it again:

• Assign 10 to the variable a.
• Assign 20 to the variable b.
• Assign 30 to the variable c by first evaluating and adding a and b together.
• Alert the value of c.

The first three steps are invisible. When you load this file in the browser, you just see the alert
box with the number 30 displayed inside of it. Otherwise, all of the computations beforehand
are not shown anywhere. Let’s see if we can peek inside and see a little more of what
happened.

Peeking Inside

Our program created and assigned three variables: a, b, and c. That means we should be
able to see them in the console after our program is finished (they stick around). Try it!

Our variables are in what we call the global scope, meaning they are visible from
anywhere in our program. We will come back to this, but one of the features of the global
scope is that you can also see those variables in the console.

In the same tab where you loaded your program, dismiss the alert if you haven’t already, and
open the console. Type a to evaluate it. What do you see?

Note: if you really don’t have access to the console at all. For example, if you are unable
to use the console or the debugger, maybe because your account is limited or you are
using a mobile device, you can just alert things when you want to see what they are.
For example, in your program above, you could add alert('a=' + a + '\n'); to
see the value of a in an alert window. Making the alert from adding a string to the value
helps you to see what you are looking at. Also, adding '\n’ to the end of it allows you to
alert multiple things on separate lines, like this:

:javascript:

alert('a=' + a + '\n' +

'b=' + b + '\n' +

'c=' + c + '\n');

50 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

That '\n' addition sends you to the next line (it stands for “newline”). You are really
outputting a single string, it just happens to have control characters in it that break it up
across lines and make it easier to see what is happening. Again, if you have no console,
this can be an effective replacement for console.log and other console tricks used to
see what is happening.

Let’s try evaluating each of our variables in the console:

:console:

> a

⋖ 10

> b

⋖ 20

> c

⋖ 30

If that is what you get, you did it! Your program loaded, and the three variables were set just
the way you would expect. Congratulations!

The console, when used like this, can be a powerful debugging tool. It can help us to see what
our program has done, even though we have not necessarily gone out of our way to display
anything. If you find that you are flying blind and are not sure what’s happening, try assigning
a special variable and looking at its value in the console. Often things become clear after that.

The Debugger Tool

The console is just one of several different tools you can use to help with programming. We
will be using it quite a bit, but mostly for viewing results, not quite as much for executing code
like we do when using it as a calculator. When you have the console open, there are several
tabs at the top of that area of your browser that have other tools. In Chrome they are listed as
things like “Sources” and “Network”.

In Firefox you can find the debugger under a symbol that says “JavaScript Debugger”
when you hover over it with the mouse pointer. Much of what we discuss for Chrome will
apply to Firefox with some minor modifications that should be pretty clear if you are
looking at the tools. They are all called basically the same things.

With our JavaScript code in an actual file, we are able to consider using breakpoints, steps,
and watches to see what our code is doing. These are powerful debugging techniques that
we are going to cover briefly right now. In Chrome, this is found under the “Sources” tab in the
developer tools, which is why we needed to write our code into a file. Without that, we would
not have any sources to look at in the first place.

A DEBUGGING INTERLUDE 51

Figure 2.7: Chrome’s Developer Tools with the Sources tab showing, and index.html se-
lected. Your layout might look a bit different.

52 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

Find Your Code

Here are the basic steps for seeing your code in the debugger. This is the first thing we have
to do before we can use the tools; we need to see the code in the right place. These steps will
generally work with any set of developer tools, but details will be given for both Chrome and
Firefox. In general, to get to where you can see the code you want to debug, do this:

1. Load the program in the browser.
2. Open the debugger in developer tools.
3. Select your program file.

For Chrome, the above steps look specifically like this:

1. Load the program (using Files or your file manager on a non-Chrome-OS machine).
2. Open the “Sources” tab in the developer tools.
3. Select your program file from the listing on the left.

You should now see your code in a tab named after your program (like
firstprogram.html).

For Firefox, the above steps look specifically like this:

1. Load the program
2. Open the developer tools and find the tab that says “Debugger” (hover if you only see

icons). Go there.
3. If, under “Sources”, your file is not listed, reload the page with the developer tools

open. It should show up then.
4. Select your file. Note that if it is already selected, but you do not see your code, try

tapping it again.

You should now see your code in the developer tools window.

Break, Watch, and Step

If you reload the page with your code in it, it will run really fast and you won’t see what is going
on. What we need to do next is instruct the interpreter to stop time while we take a peek at it.
We do this by setting a breakpoint in our code.

Next to your code, there should be a bunch of line numbers, starting with “1”. If you click on a
line number, it will get highlighted with a pointer, indicating that execution will pause there and
await your instructions. Find the line where a is first assigned, and click on its line number. It
should be highlighted. If you click it again, it will stop being highlighted—that clears the
breakpoint.

Now, we reload the page with that breakpoint turned on. When we do, we will start seeing
some new things. Somewhere you should see something that says “Watch” (in Chrome) or
“Add watch expression” (in Firefox). A “watch expression” is something that you want to see

A DEBUGGING INTERLUDE 53

Figure 2.8: Chrome Debugger with a breakpoint on line 2.

54 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

the result of. In our case, we just want to see the values stored in our variables, so we will add
a as a watch expression, b as another expression to watch, and finally c as the last thing we
want to look at.

Figure 2.9: Chrome Debugger stopped on a line 2 breakpoint, with three variables added to the
Watch section

In Chrome, this is all done from the little “Watch” section (you might need to click on it first),
which has a big plus sign you can click to add expressions. In Firefox it is much the same: just
“Add watch expression” as many times as you want, with different variables.

EXERCISES 55

When we get into functions, we will actually be able to watch variables without saying so
first. The debugger doesn’t show us all of the global variables by default because there
are a ton of them, so we have to tell it which ones we want, like a, b, and c. When we get
into debugging functions, their local variables will show up automatically.

At first, the variables will not contain anything, and may say they are unavailable. That’s fine:
they don’t contain anything because execution is paused before anything has actually
happened. None of our code has run yet—it’s stuck on a breakpoint. What we want to do now
is step through our code and see what happens to the variables we are watching.

The symbol we want to use for stepping through code looks like an arrow jumping over a dot.
It is called “Step Over” and it means “step over this line”. Try pressing it.

What happened? You should have seen the active line of code move down one, and the
watch expression for a change to contain 10. Well, that’s cool, that’s exactly what we wanted
to see, since we just assigned a to be 10. Let’s do it again!

The next step sets b to 20, and that should show up in our watch list if we have added b as a
watch expression.

When we execute the final line, it adds a to b, so we should see that c gets 30. Take that last
step and make sure that happened.

There’s one other button that is useful here: the little play symbol (to the left of the step button
in the Chrome figures). Pressing that button causes the program to contine until the end,
getting us out of stepping mode.

There is actually a lot more that you can do with debugging, but this is as far as we take it in
this course. The debugger is a great way to get a feel for what is happening in your code by
watching how the interpreter handles it one step at a time, and can sometimes be used to find
out what is going wrong when something unexpected happens. Sometimes we just want to
log things to the console, or to a global variable, but other times we might want to step through
our code to get a good mental model of what is happening. The debugger can be a useful way
to do that.

Exercises

Exercise 2-1: Define terms
Solution on page 370

Define the terms

• formal parameter
• argument
• substitute

56 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

Figure 2.10: Chrome Debugger after stepping twice. Note the values in the Watch window and
the indicator showing what will execute next.

EXERCISES 57

• evaluate
• recurrence relation
• recursive function

Exercise 2-2: Writing functions
Solution on page 371

Using pencil and paper, write a function using algebra notation that represents all of the steps
of the following computation:

1. Square 𝑥,
2. Multiply 𝑦 by 6,
3. Add them together,
4. Subtract 7 from that, and
5. Divide the whole thing by 2.

Exercise 2-3: Defining functions
Solution on page 371

Write a function 𝑓 that accepts a non-negative integer 𝑥 (in other words, you do not need to
worry about negative values in your answer) and gives instructions to

1. Produce the value 1 if 𝑥 < 2
2. Otherwise add 𝑓(𝑥 − 1) to 𝑓(𝑥 − 2).

Exercise 2-4: Recursive evaluation, basic
Solution on page 372

Given the function ℎ(𝑥) = 𝑥 + ℎ(𝑥 − 1) where ℎ(0) = 0, evaluate ℎ(5) showing all steps.
Do not completely evaluate any subexpressions until all of their parts are available. Note that
as a result of this, you will have multiple levels of brackets during parts of the computation.

Exercise 2-5: Recursive evaluation, more advanced
Solution on page 373

Using pencil and paper, evaluate 𝑓(6) using the definition below (this is the Fibonacci
Sequence). Show all steps, and do not do any work early (do not take advantage of the
associativity of addition, for example, just systematically complete the innermost expressions
first).

𝑓(𝑥) = {1 for 𝑥 < 2
𝑓(𝑥 − 1) + 𝑓(𝑥 − 2) otherwise.

Exercise 2-6: Match terms
Solution on page 376

58 CHAPTER 2. FUNCTION CALLS AND THE DEBUGGER

Match the following terms

• substitution
• evaluation
• function
• call
• recursion
• break point
• watch
• step

with their definitions:

• A definition of a process of computation.
• The process of replacing a variable with its value.
• The process of performing a computation to produce a value.
• Supplying a function with an argument and getting a result.
• A computation that is defined in terms of itself.
• In a debugger, execute one statement of code and then stop.
• In a debugger, show the current value of a variable.
• In a debugger, where a program should pause for inspection.

Exercise 2-7: Pencil and Paper Debugging
Solution on page 376

Given the program below, pretend that you have entered it into the computer, set a debug
watch on x and y, and are stepping through it one line at a time, starting at the top. What are
the values of x and y at each step? Show them in a table like this:

x y

__ __

__ __

__ __

__ __

__ __

Hint: y will be undefined until it has been assigned something.
:javascript:

x = 10;

x = x + 1;

x = x * 3;

y = 10 + 3 * x;

x = x - 3 + y;

Chapter 3

Writing Functions and Handling Events

We’ve spent some time learning about how to both define and evaluate algebraic functions,
and in the last chapter we learned how to evaluate (call) JavaScript functions, but not how to
define them. Now it’s time for us to learn how to define them.

This chapter will cover some of the most new and foreign ideas that you will see at this early
stage. These ideas are also probably the most foundational in the language, so they can be
tricky to tackle at first. This is the point at which a lot of students think, “This is super
confusing, I’m obviously not cut out for this.” Instead, what’s really true is that this might well
be the hardest chapter in the book. Because of that, we take our time and go over things
thoroughly. That said, if you get to the end of the chapter and think “Wow, that made no sense
at all,” skim through it one or two more times, then leave it behind. It’s likely that it will make
more sense when we get into writing actual games, and there’s plenty of review later on in that
context.

If this chapter takes a little more effort or time than others, that’s okay. Get to the top of this
summit and enjoy the view! The next hill is much gentler.

Writing Functions

To really understand what is going on with functions, we need to learn how to write our own.
JavaScript, particularly in the browser, has a truckload of built-in abilities that you can access
by calling functions, and we will only cover a few of them in this course, learning as we go.
Right now, let’s dig in and try to understand how functions are structured and what they are all
about.

59

60 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

A Quick Refresher

To begin with, we will do something basic, like prompting for a number and returning its
square. To do that, we will use only things that we have learned thus far. Here is a small
program that does this if you type in a number:

:html:

<script>

num = prompt("Enter a number:");

sq = num * num;

msg = "The square of " + num + " is " + sq + ".";

alert(msg);

</script>

Let’s review every part of this script, just to be sure it’s clear.

First, we are in a file whose name ends in .html. That’s very important. This is an HTML
document, written in a text editor, then opened in your browser. If you name your file differently,
the browser might just show you your program’s source code instead of actually running it.

Next, the program appears inside of HTML <script> and </script> tags (opening and
closing). What’s between (inside of) those two tags is our JavaScript program.

Now, looking at the program itself, we see a variable assignment. That’s the num = line. It
assigns the result of the thing on the right to the variable num. What’s on the right? A call to
the prompt function. When you see the prompt and type in a number, this line sets the value
of num to be that number.

The next line, sq = num * num, multiplies the number you entered by itself to produce its
square. It then assigns that result to sq, another variable.

Our final variable assignment is to the msg variable, and it gets a string. What does that string
look like? Here we have used concatenation to create a single string from a lot of little pieces.
Reading from left to right, we assemble the string by concatenating

• "The square of "

• num

• " is "

• sq

• "."

There are a couple of things going on here that need to be mentioned. Remember how we
talked about types earlier? Something like "hello" is a string of five characters (the quote
marks delimit the string, but they are not part of it). Something like 10 is a number that can
be divided, multiplied, added, subtracted, etc. Here are a couple of quick quiz questions, with
their answers:

Question: When you type something into the prompt window, and it gets assigned to num,

WRITING FUNCTIONS 61

what type is num?

Answer: It’s a string. Everything you type into a prompt window is always a string. You type
the digits one at a time, and their corresponding characters appear. Those characters are
returned as a single result string from a call to prompt.

OK, so num holds a string. Here’s another question:

Question: How does num * num work if num is really a string? Strings can’t be multiplied!

Answer: The JavaScript interpreter, when it sees what you are trying to do with a variable,
might also try to convert it to a new type for you first. Imagine, for a moment, that there is a
stringToNumber function built into the language that, given a string, returns the number
that it represents, so stringToNumber("10") would return the actual number 10.
When the interpreter sees num * num, it knows that num must be a number for that to work.
If num is really a string, the interpereter silently rewrites your program so that it now reads
stringToNumber(num) * stringToNumber(num). In other words, it converts it
to a number if it can.

This is called implicit type coercion, and while very convenient at times, it can also be a
source of hidden trouble. What happens, for example, if you have twoNums = num +

num? Well, num is a string, and it just so happens that + works on strings: it concatenates
them. Therefore, the interpreter doesn’t see a need to convert anything for you. That means if
num is "10", then instead of getting 20 from the addition, you will get "1010" (the string
“10” concatenated with itself), which is not what you wanted!

We have seen how to force the interpreter to give us a number from a string, when we
introduced the unary plus operator. To review, unary plus is in the same position as a
negative sign would be, as in +1. That’s legal in JavaScript, and in most cases doesn’t do
anything. But, if you apply it to a string, it will force it to convert to a number. Thus +"10"
evaulates to the number 10.

Whenever you accept input from somewhere and want to be sure it’s treated as a number,
you can use that trick. If we were to apply it to our program above, we would write

:javascript:

num = +prompt("Enter a number:");

That little plus sign is pretty helpful. We will be seeing it again.

Note that type coercion works the other way, too. If the interpreter sees "My favorite

number is " + 7, it converts 7 to the string "7" before performing concatenation,
which would produce "My favorite number is 7".

That’s the only mildly tricky part about the msg assignment above: string concatenation
(jamming all of the pieces together), results in an implicit conversion of sq to a string.

62 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

With all of that review out of the way, the final line displays our concatenation-constructed
string in an alert window by passing it to the built-in alert function.

Try running the program to see what happens. Remember, stuff insides of quote marks is all
important (including spaces) because they are the literal characters of the string. Outside of
quote marks, spaces are less important.

Figure 3.1: Prompt and result.

Our First Function

We have thus far been using built-in functions. Let’s learn to write a brand new function of our
own! We can use it to compute something from a number we enter via prompt.

To define a function in JavaScript, we use the function keyword. We give our function
three essential things: a name, a parameter list, and a body, like this:

:javascript:

function doStuff(p, q, r) {

return p + q + r;

}

The name (doStuff) and parameters (p, q, r) should look familiar from algebra.
Parameters are just variables inside the function body. That body, which in this example is the
statement return p + q + r, is the definition of what the function actually computes.
It’s like a miniature program that can produce a value. This particular function merely adds its
three arguments together and returns that result, but functions can do much more than that.
Note that we will talk about the return keyword in greater detail in just a moment.

You might have noticed that there is no semicolon after the function definition’s final closing
brace. It isn’t needed here. This is true for a few other constructs we will learn about in later
chapters, as well, such as loops, conditionals, and class definitions.

With syntax out of the way, let’s define a function we can use in our program.
:html:

<script>

// This is your function definition.

// It is setting things up for later use.

function sq(num) {

return num * num;

WRITING FUNCTIONS 63

}

// This is your program. This is where you

// actually call (use) your function definition.

n = +prompt("Enter a number:");

msg = "The square of " + n + " is " + sq(n) + ".";

alert(msg);

</script>

This should do exactly what it did before, but this time we are using our brand new function to
compute the square. It works just like you would expect: the value of sq(n) is computed by
running the statements inside the body of function sq(num). That body has exactly one
statement in it: return num * num;.

You can think of this algebraic version:

sq(num) = num ⋅ num

as being basically equivalent to this JavaScript version
:javascript:

function sq(num) {

return num * num;

}

Really they’re just different notation, different syntax for the same idea.

We glossed over the return statement, though. What does it do? It sets the value of the
function call, when it is finished.

The return statement actually does one more thing. It also always ends the function
computation immediately, no matter what. If the interpreter encounters a return in a
function, that function exits right away with the specified value, no matter what might come
later inside the function body. We will see some examples of that as we progress in this
course.

Review of Function Evaluation

If you got through the section on algebraic functions, this should feel pretty natural at this point.
If you would like a very thorough review in this new context of the JavaScript function
definition, read on, otherwise skip to the next section on variable scopes.

Let’s assume that n is 12 (because that’s what we typed when prompted). If we substitute
that everywhere in our program, we end up trying to compute something like this (simplified a
bit, since we know n is 12 already):

64 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

:javascript:

msg = "The square of 12 is " + sq(12) + ".";

Listening in on the interpreter’s imaginary internal dialog, we might hear something like this:

• It looks like this is a variable assignment because msg = something. Let’s make
space for “msg” as a variable and see what we get for it.

• Oh, that “something” is a string. It says “The square of 12 is”, but that’s not the whole
thing. It appears that we need to add it to something.

• That “something” is a function call. We can’t do anything until we have a value for that.

Here the interpreter pauses a moment to remember what it has already figured out, and what
it has not, so that it can come back to this very spot when the function call completes. Having
made a note of that, it then calls the function. This means it jumps to the function’s body with
(in this case) num set to the argument 12 that we passed into it. At this point, the interpreter
starts executing the body, which is just the return num * num; statement.

Thus, the interpreter now has the value of sq(12): it’s 144, giving it this (again, in its
imaginary internal dialog), after concatenation:

:javascript:

msg = "The square of 12 is 144.";

And that should be what we see in the alert window that pops up after we enter 12 in the
prompt. Give it a try!

Putting it all together in one place, here is how the interpreter computes the final result, one
step at a time, right up until it has to call the function:

• msg = "The square of " + n + " is " + sq(n) + ".";

• msg = "The square of " + 12 + " is " + sq(n) + ".";

• msg = "The square of 12" + " is " + sq(n) + ".";

• msg = "The square of 12 is " + sq(n) + ".";

• msg = "The square of 12 is " + sq(12) + ".";

Now it has to call sq(12) to get a result. That function returns num * num (tasty), which is
12 * 12 (gross), and the interpreter continues computing the sentence:

• msg = "The square of 12 is " + (12 * 12) + ".";

• msg = "The square of 12 is " + 144 + ".";

• msg = "The square of 12 is 144" + ".";

• msg = "The square of 12 is 144.";

Congratulations, you just wrote your very own function and walked through its evaluation in an
expression! Granted, it’s small and doesn’t do a whole lot, but this is such a critical concept
that it is worth covering with some trivial examples first. If you have understood all of this,

VARIABLE SCOPES 65

you’re in good shape. If any part of it is still uncomfortable, now is the time to go back and
deepen your understanding. Everything else in this chapter hinges on these concepts.

Variable Scopes

Now that we have a program with a function in it, we are ready to talk more about scopes.
Let’s look at our function in a new program:

:javascript:

// Here we define our function.

function sq(num) {

return num * num;

}

// Here we use it in our program.

a = sq(10);

// ** YOU ARE HERE **.

There is a lovely little comment in there that says ** YOU ARE HERE **. At that point in
the program, what is the value of a?

Now for a more interesting question, since you got that one right the first time: right there
where it says ** YOU ARE HERE **, what is the value of num?

That is kind of a trick question. The answer is “The variable num is not defined right there
because it only exists inside of the function sq.” Did you get tricked?

In other words, the variable num is “not in scope” at that point in the program. It is only “in
scope” inside the body of the sq function. It doesn’t exist outside.

Parameters Are Local

The variable num is what we call local to the function sq’s body. It is in the body’s local
scope and is thus only valid during a call to that function. When we call sq(10), the variable
num inside of sq has the value 10, but only while that function’s body is being executed that
one time.

If that all makes perfect sense, then great! You’re all done with the important parts of this
chapter. You can skip to the section on global variables.

If not, or you would like to see more examples of what the debugger can do, read on.

Debugger Scopes

If you can, fire up the debugger again and see what’s going on here. Remember, this is your
program, and you will need to type it into a file, save it, and load it in the browser before

66 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

debugging can work:
:html:

<script>

function sq(num) {

return num * num;

}

n = prompt("Enter a number:");

msg = "The square of " + n + " is " + sq(n) + ".";

alert(msg);

</script>

As a reminder, to get to the debugger, you need to open your developer tools and find the
debugger within them. In whatever browser you are using, you will need to see your source
code so you can set a breakpoint and step through that code. In Chrome the debugger is
under “Sources” and in Firefox it is under “JavaScript Debugger”. As a quick refresher, these
are the steps you want to follow for this exercise:

• Load your program in a browser tab.
• In that same tab, make sure the developer tools are up.
• Find your source code in those tools (the text of your program).
• Set a breakpoint where the msg variable is assigned (click on the number in the left
margin of your code window—it should be highlighted now).

• Reload the page and enter a number when prompted.

At this point, the debugger should look like it is waiting on the line where your breakpoint is. In
the past, we used the “Step Over” button to get to the next statement. This basically says
“treat the current line as one operation and just do it all at once.” What we really want to do
now, though, is see what happens when we step into that sq(n) function call. Before we do,
let’s use the console to find out the status of things.

If I run this program and enter the number 9 when prompted, then it stops at the msg = line
because of a breakpoint, I can enter n and msg as watch variables (or I can type them into
the console) to see what they contain. If I do that, I will see that n equals "9" and msg does
not have a value yet.

Now comes the magic. Use the “Step Into” debugger button (it is usually an arrow pointing at
a dot instead of jumping over a dot). This is called “Step Into” because, when there is a
function call on the current line, it will take you inside that function so you can see what is
happening in there. Press that button. You should see the highlighted line jump up to the
interior of the sq function. You will also see something like “Local” or “Function Scope” in the
debugger window if you click on “Scope”, and it should have your num variable in it, with the
value "9"!

This actually brings up an important point: note that the value of num is "9" (a string) instead
of 9 (a number)! Everything will still work, because JavaScript is overzealous in its desire to

VARIABLE SCOPES 67

Figure 3.2: The Chrome Debugger with our program loaded and a breakpoint on the msg line.

68 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

Figure 3.3: The Chrome Debugger, just after using “step into” to get to the body of “sq”.

VARIABLE SCOPES 69

help us out, but running this in the debugger helps us to see that we might have a mistake
waiting to happen. We ought to be calling sq(+n) to ensure that we get a number in there.
We won’t bother fixing it right now, but it’s useful to note how the debugger showed us
something that might not have been obvious without it.

That’s pretty handy! Now, we will use the “Step Out” button (an arrow pointing away from a
dot) to run the program just until this function has returned. We could also use “Step Over”
until we finish with it, but “Step Out” is a good thing to learn about, so we will use it this time.
Play around with these things. It’s kind of addictive watching your code execute one step at a
time and learning how to navigate around in it, and it is incredibly useful for gaining intuition
about what the computer is doing with your masterpiece.

When we step out and continue stepping enough to finish the assigment of msg, we can see
what it contains by adding a watch for it. It should have a message like “The square of 9 is
81.”, which it will then alert to us.

By the way, if you get sick of stepping around, you can always hit the “Play” button to run to
completion or to the next breakpoint, whichever comes first.

Global Variables

Once again, the variable num inside of the function sq is a local variable. It springs into
existence when our function is called, is only visible inside the function body, and disappears
when the function returns (either with the return keyword, or by falling off the end, which
happens to be the same thing in our tiny function).

In contrast, many of the variables we have created before now have been global variables.
This means that once we defined them, we could basically access them from anywhere in our
program. Our programs have been pretty short, and they will be short for a little while yet, but
even very long programs can use global variables from anywhere. They can be seen from
inside functions (you can see n from inside of sq as well, since it has been assigned before
the call) and from inside code loaded from other files or internet sites. They are really, truly
global to anything in the current browser window.

The global scope in the browser is actually the window object. You might have seen that
in the debugger. If you expand it, you will see a huge number of things in there, including
your very own variables. We will get into objects in the next chapter, so don’t worry about
what that means right now if it doesn’t already make sense to you.

This high level of visibility makes global variables both powerful and dangerous. You can leak
sensitive information using global variables that other code used by your website, but not
written by you, can read. You can stomp on important global values by accidentally assigning
them, and thus make some functionality disappear or act weirdly. In general, global variables
are easy to understand but hard to use safely. Local variables are much safer and easier to

70 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

reason about.

Non-Parameter Local Variables

Remember how we mentioned that there are three things you can do with variables, but we
only talked about two of them? Here are the three things:

• Assignment
• Evaluation
• Declaration

We talked about assignment and evaluation, or setting and getting values, but we deferred the
discussion of declaration until later. Well, later is now.

We can declare a variable with the keyword var1. When we use that inside of a function, it
creates a new variable local to that function’s scope, like this:

:javascript:

function poly(x) {

var y = x * x;

return 2 * y + x;

}

The function body is a small program. That program sets y to be the square of x, then uses it
in the final computation that is returned.

You will almost always see the var keyword in the context of a variable assignment, as with
var y = x * x;. It can also appear by itself, though, like this:

:javascript:

var y;

In this case it only declares the variable to be local without giving it a value at all. That is only
rarely useful, though; it is basically the same as saying var y = undefined;.

Since browsers support ECMAScript 2015 pretty uniformly by the time this is published,
the let and const keywords are better choices than var. They have nicer properties
generally, but we are sticking with var for now because it is still by far the most common
thing you will encounter in the wild. Times are changing fast, though. If you want to get up
with those times, you can use const instead of var for variables that are only assigned
when created, and let for variables that are assigned more than once. Feel free to use
them - they (mostly) work just like var, but are truly block-scoped and work better in
loops with closures.

Now, what would happen if we left off the var keyword inside our function? Our variable y
would be global. The default scope, unless otherwise specified, is the global scope. Because

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var

FUNCTIONS ARE VALUES 71

of that, from now on we will always declare our variables with var. That way they will be local
when inside of functions.

A quick note is in order: you can declare and assign multiple variables at a time, separating
their declarations (and assignments) with commas:

:javascript:

function foo() {

var x = 10, y = x * 2;

// other stuff here.

}

Multiple assignments with a single var keyword are quite common. They can be made a little
easier to read if separate lines are used, thus:

:javascript:

var x = 10,

y = x * 2;

and that is basically the same as this:
:javascript:

var x = 10;

var y = x * 2;

Either way works. Use whatever is comfortable.

The name foo is part of a long tradition of temporary names in programming tutorials. It
sits alongside its friends bar and baz (or spam and eggs if we’re talking about Python
tutorials). It is, admittedly, not the most useful name, but then again, in tutorials we aren’t
always making the most useful functions. You really shouldn’t see it in “real” code,
because if the code is doing something real, “foo” is a terrible, meaningless name.

It works here, though! We’re in temporary tutorial territory.

Functions Are Values

We have so far covered two very important things that you can do with functions:

1. You can define them, and
2. You can call them.

We define a function using the function keyword, as we have seen many times in this
chapter. We call it by mentioning its name, followed by arguments in parentheses.

If we look at functions like little machines with inputs and outputs, as we have been drawing
them, they look something like the function box containing a body of code.

72 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

Figure 3.4: A function box with code.

Functions, then, are kind of like little machines that contain a bundle of code.

Variables Can Hold Functions

If functions are like machines, let’s see how far this analogy takes us. You can build a
machine, you can operate a machine, and you can move a machine from one place to another,
not unlike a toaster.

Functions are like that, too. You can define (build) functions, you can call (operate) functions,
and you can move functions around just like strings or numbers or any other value in
JavaScript. This means, among other things, that you can assign them to variables and pass
them into other functions, not entirely unlike tossing your toaster into an industrial shredder to
make tiny metal pieces: one machine operating on another.

This all comes down to a simple fact: functions are also values! Crucially, that means
variables can not only hold numbers and strings, they can also hold functions.

Values (things you can stash into variables) that you have encountered thus far are things like

• 10: a “number”
• "Hi there": a “string”
• prompt: a … wait, what is that anyway? It’s a function!

To drive this home a bit more, let’s remind ourselves of what happens when we define a
variable in the console:

:console:

> x = 10

⋖ 10

> x

⋖ 10

We assign x, then (second-to-last line), we ask the console to show us its value. It dutifully
replies 10. Now try this with prompt, which is already defined:

:console:

FUNCTIONS ARE VALUES 73

> prompt

⋖ function prompt() { [native code] }

Note that we didn’t include the parentheses when we typed prompt above. If we wanted to
call it, we would have done something like prompt('hello'): putting parentheses after a
function triggers a call. But just mentioning it without those parentheses treats it a lot like a
variable: it tells us what it refers to.

You could also have tried this:
:console:

> alert(prompt)

You are basically saying “prompt is a thing - please alert what it is”. If you tried that, you
would see an alert window pop up showing you something about the prompt function
(because you passed it as an argument). Here we again see the difference between calling a
function and just mentioning it like a variable: we’re calling alert (it has parentheses after
it), but just mentioning prompt (no parentheses) as we pass it to alert.

Figure 3.5: Alerting the prompt function.

Okay, then: the word prompt acts an awful lot like a variable, because if you mention it, it is
evaluated. It just so happens that its value is a function. That’s interesting! Can we assign
variables to functions in general? Yes, we can. If you assign f to be whatever alert is, then
call f(), you get an alert window, like this:

:console:

> var f = alert

> f("hi");

And the alert window pops up!

Basically, f and alert both contain the same function, now. You can call it either by its
original name alert or by the variable that holds it, f. They both “point to” the same little
machine we call a function.

Not all function names behave exactly like variables, but every variable can hold a
function. Some function names are considered very special and cannot be reassigned,
because that would mean that programmers could overwrite essential system code and

74 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

mess things up for other programmers. Most web sites contain code written by numerous
people who did not cooperate with each other to write their little piece. The cooperation
they do have is implicit: it assumes that essential functionalty can be relied upon to be
there under common names. Some stuff cannot be mucked about with in this way, so it
does not quite act like a variable. But most of the time a function name is exactly like a
variable.

On the other hand, some critical system functions can be overwritten in JavaScript,
reminding us once again that every language has warts, and sometimes it is far too late to
freeze them off.

Anonymous Functions

Since we can assign a variable to refer to a function, that means that the function does not
really need to have a name. We can get it by going through the variable that holds it. Let’s
consider a new simple poly function that computes 2𝑥2 + 𝑥:

:javascript:

function poly(x) {

return 2 * x * x + x;

}

This is pretty straightforward. We accept one parameter, which becomes the variable x when
the code inside is running. Then we basically compute 2𝑥2 + 𝑥 and return it. We had to give
this thing a name, so we did. But, it is also possible to create a function in place without giving
it a name. This will become important in just a moment, but first let’s see a different way of
writing this:

:javascript:

var poly = function(x) {

return 2 * x * x + x;

};

The difference is perhaps a bit subtle, but very important: the function itself has no name.
What we have here is a variable assignment with an anonymous (no name) function
expression. Remember how expressions are “things that have a value”? A nameless
function expression has a value: it is an anonymous function. You can set variables equal to
any expression, including one of those.

It turns out that all function definitions are expressions in JavaScript, including those with
names. It is valid to assign a variable to a named function definition, and it is even
sometimes useful to do so. We will not make use of it here, at least not yet.

That means that after the above code runs, poly points to a function that we defined right
there, in place. This has some far-reaching implications when you think about all of the things
you can do with values. So far, for example, we have seen that not only can you assign

FUNCTIONS ARE VALUES 75

variables to them, you can also pass them in as function arguments. The next section will
show a common and very useful example of that, where it is likely to make more sense in
context.

Functions That Take Functions

Here’s a fun little bit of code to study, but not worry too much about understanding fully, at
least not yet:

:javascript:

// This function accepts another function as a paramter, then calls it.

function callThisThing(f) {

f();

}

// This is the function we want callThisThing to call.

function myFunction() {

alert("You called!");

}

// This is our program: it tells callThisThing to call myFunction.

callThisThing(myFunction);

What is this doing? We define a function that accepts another function as a parameter. We
have called this function callThisThing because that’s what it does: it calls the function
we pass to it. That’s kind of different, right?

We then define a function for it to call: myFunction. If someone, anyone, calls this function,
it alerts, “You called!” Finally, we pass myFunction (a function that alerts) into
callThisThing, which immediately calls our function and causes an alert.

This is a silly example, but there is nothing in here that you have not seen before. It is all a bit
new and probably not settled in your mind, yet, but it’s worth looking at carefully to understand
all of the things that are happening. owever, if it’s just a bit too weird for now, move on and
stay tuned. We will soon see this in context, and that will likely help clarify things.

Why are we talking about this, though, when you could just call myFunction directly,
instead of asking someone else to call it for you? The reason is that this is how events work in
JavaScript, and we are about to talk about those. As a bit of foreshadowing, there are
functions that already exist in JavaScript that act a lot like callThisThing does above,
and one of those functions is called setTimeout. Let’s see how events work, and how
setTimeout works in particular.

Events

So far our programs have been fairly linear in nature: the browser loads our code and starts
executing it in order (temporarily jumping back to function definitions when they’re called). It

76 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

starts at the top, does things until it reaches the bottom, and quits. It does this as fast as it can.

Computers need to interact with the real world, however, and the real world has its own
schedule. Time marches on, regardless of how long our program takes to run. People bang
on keys on a keyboard or touch spots on a screen at moments that our programs can’t predict.

When things happen outside of our program, and we want to react to them, they are called
events. We will get much more deeply into events in coming chapters, but for now we are
going to talk about one particular event to illustrate the principle: the passage of a
predetermined amount of time.

Let’s suppose we wanted to make a little timer. After we load the page, we wait ten seconds,
and after that time an alert pops up saying “Done!” How would we do that? How do we wait
for time to pass, then trigger an action? We use the built-in setTimeout function, which
instructs the browser to call our function after a time delay that we specify.

To experience setTimeout, create a new program that looks something like this:
:html:

<script>

// This is how to "call us back".

function done() {

alert("Done!");

}

// This asks the browser to call back after 10 seconds.

setTimeout(done, 10000);

</script>

This is an example of how you can tell other processes to call you back: you create a function,
and you give that function to them so they can call it later. Here we ask the browser to call
done after 10,000 milliseconds (10 seconds).

Let’s draw our attention to that call again: setTimeout(done, 10000). The word
done in there refers to our function. But because there are no parentheses after it, it is not
called, it is merely passed into setTimeout as an argument.

Until now, functions have been sort of interesting as a concept, but we haven’t really seen
how to use them to organize programs because our programs have been tiny: we can just
inline everything. This little bit of code, though, is something you cannot do without functions:
we are setting aside a bundle of code so that it can be run later by some other process. For
that, functions are required.

Granted, the setTimeout function also accepts a string containing JavaScript that it
will interpret when the time comes, but don’t do that. It’s a wart. Practically speaking, it
boils down to basically the same thing, but it is much less secure. Many other event
registration functions do not accept strings. Nor should they. Just pass functions to get

FUNCTIONS ARE VALUES 77

callback behavior.

If you run the program, the browser will look like it isn’t doing anything, but 10 seconds after
loading the page, the “done” alert window will appear!

In this example, we named our function done and passed it into setTimeout, referring to it
by name. In practice, you will see anonymous functions, too. The above program, for
example, can be rewritten like this:

:javascript:

// Anonymous function assigned to the variable "done".

var done = function() {

alert("Done!");

};

setTimeout(done, 10000);

That’s not really very interesting, we just use a variable to hold an anonymous function instead
of naming it directly. What if, instead, we take the next step and don’t even create the
variable? What if we define the function and pass it into setTimeout at the same time?
Here is an example of that idea:

:javascript:

setTimeout(function() {

alert("Done!");

}, 10000);

Do you remember when we created a message in a variable called msg and then called
alert(msg)? And then later, we just put the message right inside the call, like
alert("hello")? What we were doing there was changing from passing a variable to
passing a literal (a string literal, in this case).

The code above is using the same idea. Earlier, we created a done variable and passed it
into setTimeout, but there’s no reason we can’t put a function literal directly into
setTimeout, and that’s what this most recent example does.

It looks a little bit harder to understand at first blush, but it’s very common in JavaScript, as it
removes the need to think of a useful name for your function and makes it clear exactly what
that function’s purpose is. We will make extensive use of this idea going forward.

It can, however, look a little bit confusing, especially at first. If you run into something like this
and aren’t sure what to make of it, how can you figure it out? It may help you to think of things
in terms of layers. When you run into something tricky, take a deep breath and start peeling
layers away one at a time. Try to act like you are the interpreter. Run your own mental
Read/Eval/Loop machine. If you were to do that here, it might go like this:

• setTimeout is a function because it is being called (it has parentheses after its
name).

78 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

• Everything inside of its parentheses is an argument.
• The basic structure therefore looks like setTimeout(...).

At this point, you can peel off setTimeout(...) and set it aside in your mind. Now focus
on what’s inside:

• Function arguments are separated by commas. Are there any commas?
• Yes, between a longish function thing and the number 10000.
• That longish function thing is the first argument, and 10000 is the second.

And now you are basically there. Now you can see that the anonymous function will call
alert("Done!") at some point in the future. You know that because you are calling
setTimeout and handing it two arguments: a function that will alert("Done"), and a
time of 10,000 milliseconds.

This deconstruction process applies everywhere. If you run up against something that seems
too complex, start peeling off layers one at a time and you will get there. It can even be helpful
to take a confusing piece of code like this and rewrite it to a form without anonymous
functions, to see if it becomes clear when written differently. That can help to detangle the
ideas. After a while, though, constructs like the above start to look pretty familiar and
transparent. It’s just getting over this initial hump that takes some effort. The key is to
remember that it is something you already know how to do, and you are capable of
understanding it, given a little study and time.

Of course, if you already know that setTimeout expects a function as its first parameter,
then the process is much simpler: you see setTimeout and immediately know that the first
parameter is a function and the second is a delay in milliseconds. That is obviously a faster
way of understanding what is going on, and it comes with experience as you build up your
own personal function vocabulary.

With the concepts of values, variables, and functions in your repertoire, you are prepared to
understand pretty much all of the rest of the language. As with learning a natural language,
there is a phase where you spend a lot of time with the grammar, and then there is the rest of
it where you learn a lot of vocabulary and idioms, and get practice putting things together in
sensible ways. This was probably one of the hardest grammar lessons, so congratulations!
There are a few more bits of grammar to learn that are highly useful, but none of them are as
deep as function definitions, function calls, anonymous functions, and events.

We are not done with functions yet, as we have not talked about closures and prototypes, but
those come much later. What we have learned here will get us quite far.

Summary

That was a lot to take in, and this was probably one of the most foundational chapters in the
entire curriculum. Please make sure that you feel reasonbly comfortable with it before moving

EXERCISES 79

on. If you can understand how functions work, how they are called, and what locally-scoped
variables are, then you are well on your way to being able to understand all of the rest, even if
some of it is still a little bit fuzzy. Fuzziness is fine: these concepts will come up again in the
context of real programs, which will help make things clear.

These concepts are not only some of the most critical to understand, they are also some of the
most common stumbling blocks, and many students give up right here, at this point, right when
things are starting to get interesting! You can move forward from here. You have basically got
it made, so congratulations! This was the biggest conceptual hump. There is more climbing to
do, but getting through this part of the climb has made you stronger. You can do the rest.

Exercises

Exercise 3-1: Parameters and Arguments
Solution on page 378

What is the difference between a “parameter” and an “argument” when talking about
functions?

Exercise 3-2: Function Anatomy
Solution on page 378

In a function definition like this one,
:javascript:

function A(B) {

// C

}

which parts of the function (A, B, and C) correspond to

• the name
• the parameter(s)
• the body

Exercise 3-3: Return
Solution on page 378

What does the return keyword do in a function?

Exercise 3-4: Function Definition
Solution on page 379

Define (and write down below) a function called mid with two formal parameters low and
high that returns the number right in the middle of the two. Hint: this number will be the
average of low and high.

80 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

When finished, test your function in a real program by passing it the following values and
alerting the results. Then fill in the answers:

low high mid(low, high)

4 6
2 10
-5 2
17 37

Exercise 3-5: Scopes
Solution on page 381

In the following program snippet, fill in the table with the scope of all variables. These will be
either “global” or “local”. Recall that global variables can be seen both outside and inside of
functions, and local variables are only visible inside and during a call.

Also, remember what var does. It’s kind of important.
:javascript:

x = 10;

function f(a, b, c) {

z = 3 * c;

var d = a + b - z;

return d * d;

}

y = 15;

alert(f(x, y, 5));

variable scope

x

y

z

a

b

c

d

Exercise 3-6: Anonymous Functions and Timers
Solution on page 381

EXERCISES 81

Write code to set a timer to alert("Ding!") after 5.5 seconds using setTimeout.
Use two different methods, one with a named function, and one with an anonymous function.
Recall that setTimeout is called like this: setTimeout(functionToCall,
delayMilliseconds).

Exercise 3-7: A Tiny Game
Solution on page 382

Write a program that, each time you reload the page, prompts for a number and alerts its
signed distance from the number 5. See if you can get someone else to play it and figure out
what it is doing without telling them.

Hint: the signed distance of the number x from 5 is x - 5.

82 CHAPTER 3. WRITING FUNCTIONS AND HANDLING EVENTS

Chapter 4

Objects

The heart and soul of a language is not really the syntax, though we do have to spend quite a
lot of time on that at first. Without syntax, we can’t really express ourselves in the language. It
is a critical thing to build on, but it isn’t the only important thing.

Programming languages are a lot like natural languages in some respects. There is what we
call the “language specification”, consisting of the way we write things like variable
assignments, how function definitions are structured, what special key words like return
mean and do, etc. But that can really only get you so far. After that, we need what we call a
“standard library”, which is analagous to a language’s basic vocabulary. We need words for
this language we are learning!

We are definitely not done learning the core language yet, though! In fact, we have to learn
another core concept just to use the standard library, and then we can make use of it while
learning the rest of the core language in later chapters, which makes things a lot more fun and
interesting. The next subject that opens the door to all others is the concept of objects.

Objects Are Containers

If you want to get excessively technical and precise, pretty much every value in JavaScript is
an object. While this is true, it is not terribly helpful right now. Let’s pretend for a moment that
objects are special things and that they are different from other things, and then maybe we
can talk about how it is essentially objects all the way down.

An object in JavaScript can be usefully thought of as a container for other things. Each item
within it has a unique key and a value to go with it. It is much easier to explain this using an
example, so let’s do that by opening up the console and playing around.

In the console (or in a file, of course), we can create a new object using curly braces, like this:
:console:

83

84 CHAPTER 4. OBJECTS

> {}

⋖ ▶ {}

The curly braces {} delimit an object. Here we have created an “empty” object, as is evident
by the fact that there is nothing between the braces. The console, after we did that, helpfully
told us we had created an object. Good so far.

If you expand that object, you might see some interesting (but not terribly transparent or
currently useful) things. Do feel free to poke around, but don’t worry about understanding
what is there. Just know that even empty objects are not really all that empty; they just start
out empty of things that we want to put in them. Let’s make an object with something of our
own creation inside of it and assign the whole thing to a variable:

:console:

> var obj = { "cheer": "huzzah!" }

> obj

⋖ ▶ {cheer: "huzzah!"}

Can you see what happened here? We put one thing into our object. We set up a key/value
pair: the key is "cheer" and the value is "huzzah!". They are separated by a colon
character.

Figure 4.1: Our object obj.

A key and its value are called a property of the object, but that isn’t really important unless
you are looking up documentation on the language.

Now, what can we do with this object? For one thing, we can get the value for a particular key:
:console:

> obj["cheer"]

⋖ "huzzah!"

We can thus access properties1 inside the object by using square brackets [] around the
key. That is called bracket notation, and it is quite useful. There is another way to access
properties, too, if they happen to be valid identifiers2 (meaning you could use them as variable

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#Variables

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#Variables

OBJECTS ARE CONTAINERS 85

names—no spaces or dashes, cannot start with a number, and a few additional rules). In that
case you can also access values by key using dot notation3:

:console:

> obj.cheer

⋖ "huzzah!"

When you see periods separating variable names like this, that means you are “drilling down”
into an object, getting something from inside of it, by key name.

What else can we do with objects? We can set additional key/value pairs in them, as in this
example (omitting some intermediate console values):

:console:

> obj.boo = "bad form!"

> obj["10 little monkeys"] = "high hospital bills"

> obj

⋖ ▶ {cheer: "huzzah!",

⋯ boo: "bad form!",

⋯ 10 little monkeys: "high hospital bills"}

Figure 4.2: Our object obj.

Here we have used both dot notation and bracket notation to assign new values inside of the
object. This looks an awful lot like variable assignment, right? It turns out that it works in
exactly the same way. If the name you are referencing does not yet exist in the object, it will
be created. If it does exist, its value will be overwritten with the new value you are specifying.

3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors

86 CHAPTER 4. OBJECTS

But, because these names are all defined inside of an object, there is no need (indeed it is not
possible) to declare them using var. Only the outermost object is a variable in your program;
everything else here is a member of the object.

Figure 4.3: An object as a tree.

As before, we can get values from their keys using either dot notation (when possible) or
bracket notation:

:console:

> obj["cheer"]

⋖ "huzzah!"

> obj["10 little monkeys"]

⋖ "high hospital bills"

> obj.boo

⋖ "bad form!"

> obj.whatAmI

⋖ undefined

If, as in the final example, we try to reference a key that doesn’t exist, we get the special
JavaScript value undefined, like we have seen with functions that do not return anything,
or expressions that have no value. We will continue seeing that value a lot as we proceed
through this JavaScript jungle. Just watch out for monkeys. They throw unsavory things.

We have now seen how to create objects with initial values, add values to objects, and
retrieve them by key. What if we want to delete them?

It might be tempting to just try setting them to the special undefined value, but that’s not
quite what we want:

:console:

> obj["10 little monkeys"] = undefined

> obj

⋖ ▶ {cheer: "huzzah!",

⋯ boo: "bad form!",

⋯ 10 little monkeys: undefined}

THE CONSOLE 87

Interesting. That left the “10 little monkeys” key in there, taking up space with the value
undefined. To actually remove this, we need to use the delete statement4:

:console:

> delete obj["10 little monkeys"]

⋖ true

> obj

⋖ ▶ {cheer: "huzzah!", boo: "bad form!"}

Did you see how the value of delete was true? We are going to get into the boolean
values true and false shortly, but for now, just know that delete returns true if it
succeeds, and false if it does not. Note that it will always succeed when using it on your
own objects and keys, even if the key isn’t there, which makes it a fairly useless return value
for our purposes.

The Console

Now that we have seen dot notation, we can start to explore a lot more of JavaScript’s
vocabulary: its standard library. Let’s begin with something that all modern browsers have
(except on mobile platforms like Android and iOS): a console.

Up to this point, we have used the console as a way of typing statements and seeing what
happens. That is a very powerful feature of the console. We might have also seen some
errors in our previous programs when loading them. The console is a place where error
messages go so that if we want to see them, we can. A rather entertaining (and perhaps a
little scary) thing to do is to load popular web sites with the console open and see how many
errors show up. It turns out that our browsers are surprisingly robust in the face of some
common kinds of errors. It also turns out that a lot of web sites are just broken and the authors
do not appear to be aware of that fact. The console gives you the super power of awareness.

It also gives you something else: a place to dump information that you might want as a
programmer, but that a user of your program might not care about. Errors are not the only
things that can be logged to the console. You can log anything you like! Let’s find out how.
We will do this using the built-in console object.

The console object is part of the global scope in JavaScript programs running in the
browser and environments like NodeJS5. It contains a number of things, one of which is the
console.log function, which we can call to produce console output:

:console:

> console.log("hello there, console!")

hello there, console!

⋖ undefined

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
5http://nodejs.org

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
http://nodejs.org

88 CHAPTER 4. OBJECTS

Well, that’s new! We have not one, but two lines coming out of our one console expression.
Why is that? Let’s remember that when we see something like this:

:console:

⋖ undefined

That little symbol at the left means “this is the value of the expression you typed”. The
expression we typed was a function call, and that function does not return anything. It is a lot
like alert in that way.

A line without a symbol is just something written to the console. So, when we see this,

:console:

> console.log("hello there, console!")

hello there, console!

⋖ undefined

what we are seeing is

• console.log(...): the command we typed,
• hello there, console!: the thing we told it to log, and
• undefined: the value of the call to console.log, which does not return a value.

This is going to be very useful to us. The alert function is handy and all, but we are very
shortly going to want to see a lot more than just one piece of information at a time, and it
would be nice to not have to tap “OK” all the time to dismiss our little windows. Now we can
just open the console and see whatever we have logged there.

If you want to see more of what the console object contains, you can try just looking at it in
(you’ll never guess…) the console!

:console:

> console

⋖ ▶ {}

That object will be expandable (click the arrow), so you can look at some of the things it
contains by poking around. We are pretty much going to stick with log throughout this
course, but you should always feel free to play, or to read up on the documentation for your
environment’s console, such as the Chrome6 or Firefox7 documentation (they are the same in
the ways most important for this course).

6https://developers.google.com/web/tools/chrome-devtools/console/
7https://developer.mozilla.org/en-US/docs/Tools/Web_Console

https://developers.google.com/web/tools/chrome-devtools/console/
https://developer.mozilla.org/en-US/docs/Tools/Web_Console

THE STANDARD LIBRARY 89

The Standard Library

Everything in the standard library is organized inside of objects, which is why we needed to
cover them here. Now we can walk through and see what we can actually do with this
language. If you head over to the Mozilla Developer Network JavaScript Documentation8, you
will see a huge amount of stuff. If you start poking around there (start with Math or String if
you’re not sure what to look at first), you might notice that there is an awful lot to know. It can
be overwhelming. How will you ever remember it all?

One of the dirty little secrets of programming is that nobody actually does it the way it’s
depicted in movies. In movies you have a hero or villain staring at possibly several monitors all
full of incomprehensible text, tapping away madly without once consulting anything other than
their own brain to perform their on-screen magic. Quite often they are not even consulting the
monitors.

While it is true that having more monitors is great for programming, and sometimes a
programmer will get into the zone and work for a while without interruption or help, most of the
time the (very, very smart) programmers I know have multiple tabs of documentation open in
their browser and spend a great deal of time looking at that documentation and at code
examples from other programmers to jog their memories and get inspiration on what to do next.
They look at documentation even if they have seen it before, even if it was just yesterday.

Not only is there no shame in needing to consult documentation, there is generally no success
without it. There is a way to do it without consulting email and cat pictures throughout the day,
too, but that might be a bridge too far.

The point is that good programmers are not only good at typing commands into the computer,
they are also good at finding what they need to know in documentation, support forums, and
code examples. There are so many things to know about the libraries available for even one
programming language that it is practically impossible to accurately remember even a useful
fraction of it without assistance. Therefore, programmers get very good at looking at
documentation and remembering roughly how to find things. If we had to remember every
command and every facility in the language, we would simply fail to do anything.

A skill you will do well to cultivate as a programmer is this: recognize when it is likely that
someone else has needed to do this before. If what you are about to do, or do not know how
to do, is likely to have been done before, go find it. The internet is an amazing resource for
programmers (stackoverflow.com9, for example, is an essential tool). Documentation is a
crucial resource for programmers. Get good at searching and guessing keywords; your next
program may depend on it.

All that said, if you are on a restricted network, or no network at all, you can absolutely finish
this course without going online. There is plenty left to learn right here, and we will cover all

8https://developer.mozilla.org/docs/Web/JavaScript
9https://stackoverflow.com

https://developer.mozilla.org/docs/Web/JavaScript
https://stackoverflow.com

90 CHAPTER 4. OBJECTS

of the facilities needed to successfully create small games.

Not that there is anything particularly special about games as such; they just happen to be
great pedagogical tools because they exercise a wide swath of any programming
language. There are lots of extremely useful programs that we could write, but it would be
hard to find something else that is simultaneously small, interesting, and requires such
broad use of a programming language.

With that out of the way, let’s look at some useful standard library objects.

The Math Object

We have pointed out that you can add, subtract, multiply, and divide numbers. That’s nice,
but there is a whole lot more that you might want to do with them, like take their square root.
For all but the most basic operations, you want the built-in Math object10.

There are a lot of functions available on the Math object, most of which you can view by
evaluating Math in the console. Let’s look at just a few of them:

:console:

> Math.abs(-20)

⋖ 20

> Math.floor(5.62)

⋖ 5

> Math.floor(-5.62)

⋖ -6

> Math.ceil(3.1)

⋖ 4

> Math.sqrt(144)

⋖ 12

Here we have—in order—taken the absolute value (removed a negative sign if it exists), the
floor (go down to the closest integer), the ceiling (go up to the closest integer), and the square
root (no explanation required).

There are a lot of useful functions in here, but we will focus just on what we need in this
course. Another very useful one is Math.random(), which takes no arguments and
produces a random number between 0 and 1. We will cover that in greater detail later on, but
it can be fun to play with if you are so inclined.

The String Object (and Prototypes)

The String object11 is kind of like the Math object in that it provides some functions you
can use, but it is also very different, in the sense that many of its functions are prototype

10https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
11https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

THE STANDARD LIBRARY 91

functions. Let’s take a look at what we mean by that.

If you look at the documentation for String, you might see in the margin that it has properties
andmethods like these:

• String.length

• String.fromCharCode()

• String.fromCodePoint()

• String.prototype.toUpperCase()

• String.prototype.trimRight()

• etc.

What is that length thing? Well, it turns out that every time you create a string, you are
creating an object that has all of the stuff in it that the String object has, but specific to your
string. In other words, when you type "hello" you are creating a String object with the
characters “hello” in it, and with a length property equal to 5: the number of characters
represented between, but of course not including, the delimiters (quote marks). Other strings
will have other values specific to them. To get a feel for this, take a look at this console
session:

:console:

> var s = "hi there"

> s.length

⋖ 8

> "all on one line".length

⋖ 15

See how we can access the length property on any string we choose? This can be done
whether that string is pulled from a variable like s or from a literal like "all on one

line".

There are other things we can do to strings, as well. If you are able to look at the
documentation for the String object online, you will see a very long list of methods and
properties.

Since we have gained the superpower of logging things to the console without actually typing
in the console itself, it’s time to create a program. In fact, from now on, we will only rarely refer
to the console for examples, because our examples are going to get a lot more involved.
Typing a lot of involved stuff in the console is a pain. Use it for playing, use it for basic
exploration, but once things get a little bit busy, use a friendly text editor to write a file, then
load it. You can always log things using console.log.

If you can’t, or don’t want to use the browser console, a neat trick is to create your own
logging function. It’s a little bit advanced because it requires some things we haven’t yet
covered, but if you’re willing to try it, here are some steps.

92 CHAPTER 4. OBJECTS

Step 1: Copy the following code into a file called fakeconsole.js:
:javascript:

document.addEventListener('DOMContentLoaded',

function() {

var div = document.createElement('div');

div.id = 'log';

div.style.border = '1px solid black';

div.style.position = 'absolute';

div.style.bottom = '0px';

div.appendChild(document.createTextNode('Log:'));

div.appendChild(document.createElement('br'));

document.body.appendChild(div);

this.console = {

log: function log() {

var v = Array.from(arguments).join(' ');

div.appendChild(document.createTextNode(v));

div.appendChild(document.createElement('br'));

},

};

});

Step 2: In all of your HTML files throughout the rest of this course, add the following line
above all other scripts, and close with </body>:

:html:

<body>

<script src="fakeconsole.js"></script>

<!-- Other stuff goes here. -->

</body>

Make sure that fakeconsole.js is in the same folder as your program file, and it
should be able to find it.

Note that <!-- --> is a comment tag in HTML, in case you were wondering.

The body tags are important! Otherwise you won’t be able to create the div and add it to
the body, because it won’t have been created, yet. It’s kind of advanced, but if you save
fakeconsole.js and then remember to add body tags around your programs, in
addition to using the <script src="fakeconsolejs"></script> line, it will
create a box at the bottom of the page and print log entries to it, even if you don’t have
console access.

If you haven’t already, now might be a good time to create a special programming project that
you always just use for examples. Then it will be ready to go whenever you want to type
something in like this:

:html:

THE STANDARD LIBRARY 93

<script>

var s = "hi there";

console.log(s);

console.log("length of s:", s.length);

console.log(s.toUpperCase());

</script>

Without looking below just yet, what do you think this will output in the console when you load
it?

Note that console.log (and our little fake replacement, if you don’t have access to the
console) can take any number of arguments, which can be useful if we want to know
which log entry we are looking at without figuring out file line numbers. It outputs all of its
arguments separated by spaces.

It is also worth reiterating that identifiers in JavaScript are case-sensitive. That means
capitalization matters a great deal. The identifier touppercase is not the same as
toUpperCase. To spell any identifier correctly, you have to get the cases correct.

Finally, note that toUpperCase is a function, which is why we call it to get a new value.
The value length, on the other hand, is just a numeric value, not a function on a string.
It acts something like a variable.

First of all, we are just outputting s, which is our “hi there” string. Then we output a line that
tells us how long it is, which should be 8. But then we call a function using dot notation on s
and output its result. This should mean we see the following output in the console:

:console:

hi there

length of s: 8

HI THERE

We have seen function calls before, but s.toUpperCase() is a little bit different. This
function takes no arguments but still produces a value based on s. How does it do that? It can
do that because it is a prototype function. When you see the word “prototype” in an object’s
documentation, that means that the function knows about what is to the left of the dot when
you call it. The value s, in this case, is an implicit argument to the toUpperCase function.

This is a gross oversimplification, and other functions (closures) can be made to act this
way even if they are not defined on the prototype, but there is really no need to get
technical about it right now. The simple explanation is going to be sufficient for a number
of chapters.

Much of the JavaScript standard library is designed in this way, but the first and most obvious
place we run into this is with String.

Let’s try adding a few more examples to our program:

94 CHAPTER 4. OBJECTS

:javascript:

console.log(" hey".trimLeft());

console.log("WHAT?!".toLowerCase());

Here we are calling those methods on a brand new string using dot notation. This is just the
same as doing it on a variable. The interpreter has to evaluate the thing on the left before it
can find out what is inside of it, so all of the standard evaluation rules apply: get a value before
doing anything else with it. In the case of our trimLeft call above, the interpreter follows
these steps:

• Evaluate console, get an object
• Evaluate log in that object, get a function
• Cannot call it yet, need the value inside, so
• Evaluate " hey", get a string
• Evaluate trimLeft in that string, get a function
• Call that function with no arguments
• Call console.log with the result

Remember, when things get a little muddy, as they might have done again in our most recent
example, you can always peel them off a layer at a time by going through this exercise. Left to
right, inside to outside, you can poke at the things you do understand, and then after not much
time at all, you will realize that you understand the whole thing.

JavaScript, as is true with many programming languages, is fairly “regular”. This means that
things are somewhat predictable once you understand the basic rules of evaluation. They
apply everywhere (almost) equally, even when evaluations are buried inside of other
evaluations like a nesting doll. In fact, the concept of evaluations containing other evaluations
(or functions calling other functions, or statements containing other statements, or objects
containing other objects, etc.) is called nesting because of exactly that analogy.

Drawing Pictures

It is finally time to do something other than pop up alert windows and log stuff to the console.
It’s time to draw some pictures!

The world of the browser is pretty rich with functionality. Browsers can display text and
images, of course, but they can also play videos, do animations, run games, process audio,
and many other interesting things.

The capability we are going to focus on for much of the rest of this course is the canvas. A
canvas is basically what it sounds like: something we can draw pictures on. To get access to
a canvas, we will need to create one using the current document.

DRAWING PICTURES 95

Document

When you open a page in your browser, you are looking at a document. A document contains
everything you can see and everything you can do with that page. It contains all of the text, all
of the buttons, form elements, images, videos, and code that you are running. It is usually
specified in HTML. You have actually been creating HTML documents this whole time.

The document that contains your code is referred to by the global variable document inside
of that code. This document object contains other objects that contain other objects, etc. It
is a nested structure, approximately a tree. At the root of the tree is this document object.
The tree itself is called the “Document Object Model” (DOM). As you might imagine, the tree
can get very big for complex documents, with lots of nested objects and long lists of text and
formatting. Each object represents something that you can manipulate or get information from
in your program.

Figure 4.4: A document as a tree.

Because these trees can get really big (we say “deep” because we usually draw the root on
top in computer science), the document object has a number of functions that you can use
to find and manipulate various parts of the document, called DOM elements or nodes. This
may all sound unfamiliar, but you have actually already run into a node. Consider a document
containing typical “Hello, world!” program that logs to the console:

:html:

<script>

console.log("Hello, world!");

</script>

Or, if you don’t have console access and need to use our fake, above:
:html:

<body>

<script src="fakeconsole.js"></script>

96 CHAPTER 4. OBJECTS

<script>

console.log("Hello, world!");

</script>

</body>

This is a document. It contains a few hidden elements that we will talk about later, but right
away you can see one of the elements: the script node. The script tags and the code
within them are represented in an object in the DOM, and we can get at it using document
methods (functions) like document.getElementsByTagName('script') (this
returns a list of all of the script nodes in the document). There are similar functions for finding
elements by other special attributes like “id” or “class”.

Canvas

Right now we want a document that contains a canvas element. We can just add one in our
HTML. We will add it before our program code so that it exists before our code tries to find it:

:html:

<canvas id="drawing" width="400" height="300"

style="border: 1px solid gray"></canvas>

<script>

var canvas = document.getElementById('drawing');

// Our other code goes here.

</script>

The width and height of the canvas are specified in pixels.

In case you don’t know this already, the word “pixel” is short for “picture element”. Each
pixel is a tiny rectangle of color, the smallest unit of drawing on a computer display, and
the basis of our canvas’s default coordinate system.

Also, note that spacing is not terribly important inside of a tag. Our canvas tag is split
across multiple lines to make it look good in book format, but you could have done it on
one line or many more lines.

Note that when we do this, the browser is filling in some things for us to be nice, but your
browser may or may not be as easygoing as mine. If you find that things are not really showing
up the way you expect them to, try putting in all of the missing HTML tags, like this (we will
omit them in most examples for the sake of brevity, so if you have to add them here to make
things look right, you will need to add them everywhere even when the examples do not say
so directly):

:html:

<html>

<body>

<canvas id="drawing" width="400" height="300"

DRAWING PICTURES 97

style="border: 1px solid gray"></canvas>

<script>

var canvas = document.getElementById('drawing');

// Our other code goes here.

</script>

</body>

</html>

The browser is filling in these missing html and body tags for us because it found a
canvas tag and knows that it needs to be in the body, but again, it might not work that
way for you. If you have any doubt about this at all, just add in those missing tags and see
if that gets you fixed up.

Also note: if you are using the fake console.log implementation described earlier,
that goes immediately after the opening <body> tag. The first <canvas> tag would
come after loading fakeconsole.js.

In our canvas, we are also giving it a 1-pixel solid gray border so that we can see that it is
there. Please don’t worry too much about the style attribute: we are not going to be getting
into Cascading Style Sheets (CSS) in this course, so even though I dislike mystery in any
serious curriculum, in this case it’s a good idea to treat this as a magic incantation and just
copy the canvas tags when you need them elsewhere. CSS is a language all by itself, and
it is well beyond the scope of this book. If you want to get into it, please do! Find a good book
on HTML and CSS and go nuts. Or get driven bananas by CSS rules. The latter is actually
pretty likely.

First, let’s talk briefly about the one line of code (not counting comments) found within:

:javascript:

var canvas = document.getElementById('drawing');

If you look closely at the canvas tag above, you will see we gave it some attributes. It has, for
example, an attribute named id with the value "drawing". The value can really be
anything you like, but if you want to find it again, you need to use the same value in the
getElementById function, like we did here.

Our JavaScript code is asking the document to find an element, any old element, with an
attribute id equal to the string "drawing". Since there is an object with that identity, the
getElementById function finds it and the object representing that element is given back
to us (our canvas!). We then keep track of it in the canvas variable. Again, there’s nothing
special about the variable name canvas. We could just as easily have called it x or c. It’s
our variable, after all, and we can name it whatever we want.

If you load your program right now, you will see the canvas with its border. Now it’s time to
draw something onto it.

98 CHAPTER 4. OBJECTS

To draw on a canvas, we need a context12. This is where we set colors and line widths, and
is also what we use to draw on the canvas. You can think of it as your brush and paint set. We
aren’t getting into 3D modeling (WebGL) in this course, so we ask for a 2-dimensional canvas
using getContext('2d'). Then we set some colors and draw a rectangle with those
colors. Here’s the new code, so copy it into your HTML program file and save it (though you
can skip the instructional comments if you want to):

:html:

<canvas id="drawing" width="300" height="200"

style="border: 1px solid gray"></canvas>

<script>

// Find the canvas element.

var canvas = document.getElementById('drawing');

// Get the context so we can draw.

var context = canvas.getContext('2d');

// Set the current fill color.

context.fillStyle = 'red';

// Draw a rectangle with the current color.

context.fillRect(10, 10, 30, 30);

</script>

Figure 4.5: Program output: one red rectangle.

If you run this and it doesn’t work, don’t forget to open the console to look for error
messages!

12https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

DRAWING PICTURES 99

There is quite a bit of new stuff going on in there, so let’s do what we usually do: take things
one step at a time and make sure that we understand before moving on.

First, we get a canvas object from the document by searching for its ID. That part is familiar.
The ID in getElementById matches the one we set in the canvas tag, so it finds the
canvas successfully. Then, we ask the canvas for a context by calling
getContext('2d').

Remember, case matters, so we have to spell the function precisely as
getElementById, no matter how much it might offend our sensibilities.

After all, we’re not searching for the element by invoking its Freudian “id”. We’re not
savages.

As mentioned earlier, the context13 holds the current status of your drawing tools. If you set
fillStyle to a particular color, that is like dipping your brush in that color. Then, when you
actually draw something with it, that color is what ends up on the canvas. It can do more than
that, like keeping track of how much your canvas is stretched or rotated, but we will stick with
colors and line styles here. You can find out about everything you can do with a canvas
context by looking at the documentation online14.

Since we have not applied any stretching or rotating transformations, the coordinate system of
the canvas is pretty straightforward: the upper left corner is pixel (0, 0) and the lower right
corner is (width, height), or (400, 300) in our case. That’s why the red rectangle shows up
near the upper left corner: it has a corner at (10, 10) and extends 30 pixels to the right (the
rectangle width) and 30 pixels down (the rectangle height) from there.

As an aside, note that the coordinates of the canvas might not be exactly what you expect. An
x coordinate of 0 means “exactly on the left edge of the canvas”, and the “width” coordinate is
“exactly on the right edge of the canvas”. Similar logic applies to the extremes in the y
direction.

So, that means that integer coordinates are in between pixels; the actual pixels are the grid
squares, and integers occur at the intersections. If, therefore, you try to draw a horizontal line
1 pixel wide from, say, (1, 1) to (5, 1), the line will actually straddle pixel boundaries as
shown in the figure. By the way, fractional coordinates like (1.5, 1.5) are allowed; those
would point to the center of a pixel instead of the boundary.

For integer coordinates this means that lines drawn at the extreme edges are only half shown,
and every other line looks fuzzy (the computer tries to make it look like it is only lighting up half
a pixel by fiddling with the color). It is therefore not uncommon to shift the whole canvas by
half a pixel in each direction, putting the integer coordinates at the center of the pixels instead
of on their boundaries, making lines look crisper. We won’t worry about that until a bit later;

13https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
14https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D
https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

100 CHAPTER 4. OBJECTS

Figure 4.6: A line straddles pixels by default.

the point was to know how the canvas coordinate system works: the coordinates are on the
boundaries of the pixels, and the pixels are the cells, and each cell can only be exactly one
color.

With that out of the way, let’s try adding some more rectangles with different colors and
positions, just for fun, just inside our script tags (remember, there should be a canvas tag first,
then script tags containing this code, it is just omitted for the example here):

:html:

<canvas id="drawing" width="300" height="200"

style="border: 1px solid gray"></canvas>

<script>

var canvas = document.getElementById('drawing');

var context = canvas.getContext('2d');

context.fillStyle = 'red';

context.fillRect(10, 10, 30, 30);

context.fillStyle = 'blue';

context.fillRect(50, 20, 50, 40);

context.fillStyle = 'green';

context.fillRect(240, 150, 10, 20);

// Still green.

context.fillRect(65, 15, 14, 16);

</script>

Did you see how we told the context what the current color was, then told it where to put a

LISTING 101

rectangle? It used the most recent color each time. If you add more rectangles without
changing the fillStyle property, it will continue with the last color used.

Figure 4.7: Program output: four colored rectangles.

That’s the basic principle of the context: you set things up the way you want them, then you
draw stuff under those conditions. We have seen color (well, fillStyle, really, that
happens to be a solid color because that’s what we told it to use) as one type of condition, and
there are others, but the principle remains the same. Whatever you draw in a context uses the
current setup in that context, and the setup only changes when you tell it to. That’s how the
canvas works.

Congratulations! You have just painted on a canvas that you found by ID, and you changed
colors and learned about its coordinate system in the process. You can play around with all of
it and see what happens.

Listing

A complete listing of our final program is here. All of it goes into a file like
myprogram.html, and the <html> and <body> tags are explicitly shown (though many
browsers do not need them for small programs shaped like this one):

:html:

<html>

<body>

<canvas id="drawing" width="300" height="200"

style="border: 1px solid gray"></canvas>

<script>

var canvas = document.getElementById('drawing');

102 CHAPTER 4. OBJECTS

var context = canvas.getContext('2d');

context.fillStyle = 'red';

context.fillRect(10, 10, 30, 30);

context.fillStyle = 'blue';

context.fillRect(50, 20, 50, 40);

context.fillStyle = 'green';

context.fillRect(240, 250, 10, 20);

// Still green.

context.fillRect(65, 15, 4, 8);

</script>

</body>

</html>

Exercises

Exercise 4-1: Object Creation
Solution on page 383

Show how to create objects with the following characteristics:

1. Empty
2. One property with key "name" and the value being your own name (or you can make

the value just be the string "me").
3. One property with a key that is a number, like 5, and a value of anything you like.
4. The following properties, with string values that correspond to your favorite book:

• “Title”
• “Author”
• “Year Published”

Exercise 4-2: Object Property Retrieval (and Setting)
Solution on page 384

Show how to get (or set) values in an object stored in the variable obj for properties with the
following names:

1. "title"
2. 10
3. "something amazing"

Do any of these allow you to use dot notation? Why can you not use dot notation on the
others?

EXERCISES 103

Exercise 4-3: Non-existent Object Keys
Solution on page 384

What happens if you try to get a property out of an object that does not exist? What value do
you get instead?

Exercise 4-4: Deleting Object Properties
Solution on page 385

How do you delete a property from an object? Hint: you cannot just assign undefined to it.

Exercise 4-5: Logging
Solution on page 385

How do you log something to the console from code in a file (as opposed to just entering it
directly in the console)? How do you log multiple things at once?

Exercise 4-6: Standard Library
Solution on page 386

What is a language’s “standard library”?

Exercise 4-7: Math Practice
Solution on page 386

Without the aid of the computer, write down how you would compute a few things using the
Math library:

1. 212

2.
√

3
3. | − 56|
4. ⌊6.8⌋
5. ⌈2.3⌉

Note that |𝑥| indicates the “absolute value” (positive value of 𝑥), ⌊𝑥⌋ indicates the “floor”
(nearest integer at or below 𝑥), and ⌈𝑥⌉ indicates the “ceiling” (nearest integer at or above 𝑥).

Exercise 4-8: String Practice
Solution on page 387

Strings have a bunch of standard methods built in, as well as the standard length property.
Solve this without the aid of a computer: given the string s = " This string is

mine. ", what will the following methods produce? Hint: the spaces at the ends of it are
part of the string because they are within the quote delimiters.

1. s.length
2. s.toUpperCase()

104 CHAPTER 4. OBJECTS

3. s.toLowerCase()
4. s.trim()
5. Bonus: s.toLowerCase().trim()

Exercise 4-9: Canvas Practice
Solution on page 388

Write a program that draws three squares (using fillRect) on a 300-by-300-pixel canvas.
The squares will have the following properties:

• Each square is 100 pixels on a side,
• Each is a different color, one of red, yellow, and green.
• The first square is in the upper left corner, the second is in the middle, and the third is
in the lower right corner.

Chapter 5

Reacting Logically

With the ability to draw on a canvas and respond to events like the passage of time, learning
more of the language just got a lot more interesting. In this chapter we will be covering two
things that are deceptively simple and secretly awesome: the values true and false.

And we will do it by drawing pictures. But first, math!

Boolean Logic

This section is pretty useful as background reading, and there will be some exercises on the
basic concepts in here, but you shouldn’t worry too much if it gets a bit deeper than you are
ready for. Programmers should be good at logic, and you should at least be exposed to the
ideas and techniques in this section as you get started, but you shouldn’t expect complete
mastery right away. It is fascinating, useful stuff, and we will be practicing it as needed
throughout the course. It’s not a fire-and-forget kind of thing. Consider this a first pass, if you
aren’t familiar with the material. It will come up again, with review!

One of the most fundamental things you can learn when working with computers is Boolean
logic and algebra: the mathematics of truth values. You can think of it as a number system
with only two digits: 1 and 0, or true and false. It is not exaggerating to say that the logic
of truth values lies at the foundation of all modern digital computing. That is why you might
often hear, “It’s all just ones and zeros”: it really is. Everything a computer does is ultimately
about manipulating those two things.

Well, everything a classical computer does is about manipulating discrete values like that.
Quantum computers do something else, entirely. We will definitely not be talking about
how those work in this course, but it is a really interesting topic with what turns out to be
surprisingly accessible mathematics behind it. We’re hearing more and more about them
lately, and that’s exciting, but for this course we’ll stick with classical computing.

105

106 CHAPTER 5. REACTING LOGICALLY

The number system consisting of only the digits 0 and 1 is called the binary number system.
While we will indeed talk more about the binary number system, for now we are going to stick
to the two values false and true, and we will avoid thinking of them as being equivalent in
some way to 0 and 1. Stay tuned, though, because we will eventually get back to binary.

George Boole

George Boole1 published The Laws of Thought in 1854, a book that contains “Boolean
Algebra”, and one that I want on my bookshelf, though it is not necessarily light reading. His
ground-breaking mathematical approach to logic underlies how we reason about computation
and forms the basis for how most computers work internally. Thus, when we speak of
“Boolean Logic” or “Boolean Algebra”, we are speaking of the work that George Boole did in
the 1800s. The work is important enough that, even though the concept it refers to is as
generic as the term “truth”, “indicator”, or even “bit” (short for “binary digit”), we see some
form of his name all over the place in computer programs as a “boolean” type, sometimes
shortened to “bool”.

Boolean Types and Truth Values

The values true and false are fairly special. They aren’t numbers, exactly, though in
working with digital computers we often think of them as 1 and 0, respectively. They aren’t
names or places. They aren’t strings or images. They are just the values true and false,
and nothing else. In computer science, we say that these “truth values” are of type “boolean”.
That is, “boolean” is the kind of thing that they are, just like “number” is the kind of thing that
10 is and “string” is the kind of thing that "is" is.

You might say that they are isomorphic to the numbers 1 and 0 in certain contexts, so it’s
valid to think of them as being basically the same thing.

Also, since we are introducing a new type here, let’s talk a bit more about types in general.

Whenever you encounter a new type in computer science, you can think of it as
describing a set of things. For the “boolean” type, for example, you can think of it as the
set containing true and false, and nothing else.

Sometimes the number of things in a type’s set is infinite (like “all integers”), but that’s
only in theory, not in the reality of the machine sitting in front of you. In practice there is
always a finite limit, however large, of the number of things of a certain type that can be
represented on a real system. The type “boolean” is a nice place to start, though,
because it can only have two values. What are they, again? Oh yes, true and false.

You know, just in case you forgot.

1https://en.wikipedia.org/wiki/George_Boole

https://en.wikipedia.org/wiki/George_Boole

BOOLEAN LOGIC 107

Booleans in Familiar Places

Other than saying true or false directly, how can we get a boolean value, and what can
we do with it once we have it? It turns out that with a background in basic algebra, you have
already had frequent encounters with truth values, but might not have thought about them in
quite this way.

To really see this, let’s look for a moment at a simple equation:

𝑦 = −𝑥

If you know 𝑥, you can find 𝑦, and that is probably the most common thing to do with an
equation like this in pre-algebra. But what if you already know both 𝑥 and 𝑦? Suppose you
know, for example, that 𝑥 = 4 and 𝑦 = −4. What can you then say about 𝑦 = −𝑥?
We can say that it is true, because −4 = −4.
Suppose instead that 𝑥 = 4 and 𝑦 = −3. Now what? In this case, the equation is false
because −3 = −4 is not a true statement (not an equation).

And there we have it. The relational operators in algebra, such as =, give us truth values.
Equations are true or false depending on how you set the variables. If you only set some of the
variables, sometimes your task is to find values for the rest that make the equation true, but
ultimately it’s all about whether the equation is a true or false statement.

Let’s try another relational operator to go over this concept again:

𝑦 ≤ 𝑥

This is something we usually think about intuitively: if I say that 𝑥 = 3, then you know that 𝑦
can be any value less than or equal to 3. Why do you know that? Because if I told you 𝑥 = 3
and 𝑦 = 4, then 𝑦 ≤ 𝑥 would no longer be true. For what values, exactly, is the expression
true? One way to find out is to plot a graph of it. To do that, you look at every possible value of
𝑦 and 𝑥 and color in the parts that make 𝑦 ≤ 𝑥 a true expression, as shown in the figure.

Remember, every point on the graph represents a unique pair of values for 𝑥 and 𝑦.
Everywhere that is colored in on the graph represents values for 𝑥 and 𝑦 that make 𝑦 ≤ 𝑥 a
true statement. Everywhere else, the statement is false.

Of course, we can’t graph every value, so we usually just pick values of 𝑥 that show
either a representative trend, or a particularly interesting part of the function. In the case

108 CHAPTER 5. REACTING LOGICALLY

Figure 5.1: 𝑦 ≤ 𝑥

of a line we often just need to show its slope and intercept, so that’s usually the part that
gets graphed.

That’s pretty neat, really! We just took a simple algebraic inequality and turned it into a
mathematical question whose answer is either true or false. In other words, we started with
some numbers and ended up with a boolean value! Hopefully when you look at things this
way, where every expression has a value, including inequalities and equations, you begin to
realize that you have been working with booleans for a long time already.

Are we good so far? If not, this is a good time to take a breather and re-read the previous
section, because this next part is where we take a critical leap. Meanwhile, here is the basic
summary:

• Boolean values are just true and false, sometimes written down as 1 and 0,
depending on the context.

• Whenever we compute a mathematical relation like “less than” or “equal”, the result of
that relation is either true or false.

• Graphing things is basically the process of marking the areas where variable settings
make an expression true.

Truth Values Are Just Values

Boolean values are like numbers in many ways, and we are going to explore some of those in
this section. You can use them in equations, you can compare them, and there are operators
that let you combine them. Here is an example of how you might use a boolean value 𝑎 in an
equation:

𝑎 = (5 < 7)

BOOLEAN LOGIC 109

This might look strange to you. Hopefully you are familiar with things like 5 < 7 and 𝑎 = 𝑏,
but combinations of those concepts, as shown here, are not often part of an early algebra
curriculum. They turn up everywhere in computer programming, though.

One way to get comfortable with a new expression like this is to start picking it apart and
figuring out what all of the types are. We will work from the inside out, just like you do in
algebra. If we do that, we end up tackling things in roughly this order:

• 5: number
• 7: number
• (5 < 7): boolean expression (true, in this case)
• 𝑎: free variable

Now we can have some hope of understanding this equation. It is saying that 𝑎 is equal to the
boolean value corresponding to 5 < 7, which we know is true. Therefore 𝑎 must be equal to
the value true, otherwise the equation itself would be wrong (false).

This last point is important, too: if you already have 𝑎 = false, then the entire thing is false.
That’s interesting, even an equation like 𝑎 = (5 < 7) evaluates to a boolean. In other words,
when 𝑎 = false, you might read the equation as “It is false that 𝑎 = (5 < 7),” or, after
simplifying, ”It is false that false = true.

Equations are just statements about how things are related, and it’s possible to set things up
so that they satisfy that relationship (make it true) or so that they don’t (they make it false).

In this form of algebra, there really is no such thing as variable “assignment” (crucially, we are
talking about algebra and not programming, here). There are only declarations about what is
true. When we say 𝑥 = 5, that does not somehow create a slot in the universe named 𝑥 and
stick the number 5 into it like it would in one of our programs. Instead, it makes a statement
about what is true and what is false. It is true that 𝑥 = 5 and it is false that 𝑥 equals
something else.

As a teaser for what comes next, consider the following statement: 𝑦 < 𝑥 AND 𝑦 > −𝑥.
How would you shade that graph? Hint: “AND” is an operator that you apply to boolean
values, and its result is only true when both sides are true at the same time. Let that sink in for
a bit, and then we will jump into the next section.

Boolean Operations and Truth Tables

What can we do with truth values? It turns out that we can do quite a bit! In fact, there is an
entire algebraic system developed around these values. Most folks learn a little bit about
these rules of logic as they learn to process written language, but the conclusions drawn tend
to be error-prone and even subjective, both of which are problems when programming
because computers are dumb and require precise explanations of what you want. It is far
easier to get these things right when you can write them down and manipulate them
algebraically than when they are a jumble of words. Consider this statement, for example:

110 CHAPTER 5. REACTING LOGICALLY

It is not true that I am not wearing short sleeves and it is also not raining.

That’s sort of tricky, right? I mean, what we really want to say is more straightforward, like

It is either raining or I am wearing short sleeves (or both).

Did you know that those two statements are equivalent? They are! But it’s hard to tell for two
reasons:

• The first sentence is ambiguous: does the “it is not true” apply to the first half or the
whole thing? In our case it applies to the whole thing, but the structure does not instill
confidence.

• The language is generally unwieldy and imprecise.

This is a teaser, so try not to get hung up on the notation, but here is an example of how to
mechanically morph the above statements into each other using Boolean Algebra concepts of
double negatives and De Morgan’s Laws:

statement = ¬(¬short sleeves ∧ ¬raining)
= ¬¬short sleeves ∨ ¬¬raining
= short sleeves ∨ raining

Mathematical notation has its perks. Let’s learn more about that notation now.

We are already familiar with common numeric operators like these:

Symbol Formal Name

⋅ Multiplication
/ Division
+ Addition
− Subtraction

It turns out that boolean values have their own similar operators:

Symbol Common Name Formal Name

¬ NOT Negation
∧ AND Conjunction
∨ OR Disjunction

BOOLEAN LOGIC 111

There are others, like the “implication arrow” ⟹ , but we will be sticking with just these.
Implication can be expressed in terms of these, anyway.

Note that ∧ looks like a capital A with the middle line missing. That can be a good way to
remember that ∧ is just AND.

While we can describe what these do in human language, and we most certainly will, it is
clearest to express them as truth tables. A truth table is just a listing of all the possible
operands (“inputs”) to their corresponding expression values (“outputs”).

The simplest of the operators is the unary negation operator ¬. This basically inverts the truth
value given to it:

¬false = true
¬true = false

That’s the entire table. Since negation only takes one value (much like negation in numeric
arithmetic), there are only two possibilities: either it is negating the value false or it is negating
the value true. As you might expect from an operator called “not”, ¬𝐴 is true if 𝐴 is not true,
and ¬𝐴 is false if 𝐴 is not false. In other words, ¬𝐴 is read as “NOT A”.

A truth table is really a completely enumerated function definition, consisting of the entire
domain-to-range mapping. The connections of computer science, boolean algebra, and
even number systems to functions is extremely deep, and Lambda Calculus forms a
powerful underlying framework for understanding and expressing these connections. If,
you know, you like that sort of thing. I know I do.

The other two operators, ∧ and ∨, are binary operators analogous to multiplication and
addition, so they have larger tables. Each entry in the table represents one of the possible
situations in which they are used. Let’s start with conjunction (“AND”, written ∧):

false ∧ false = false
false ∧ true = false
true ∧ false = false
true ∧ true = true

Here we have four entries, because there are four possible situations where you can see ∧:
both sides false, both sides true, and one entry each for the sides being different. As you
might expect from an operator known as “AND”, a conjunction expression is only true when

112 CHAPTER 5. REACTING LOGICALLY

both the left and the right side is true, and is false in all other cases. We therefore read 𝐴 ∧ 𝐵
as “A AND B”, meaning that the statement is true if both A and B are true.

Let’s see what happens with disjunction (“OR”, written ∨):

false ∨ false = false
false ∨ true = true
true ∨ false = true
true ∨ true = true

In this case, as you might well expect from an operator called “OR”, the disjunction
expression is true if either the left or the right side is true, and is only false when both sides
are false. It is important to remember that it is also true when both sides are true, which is
different than the way we sometimes say “or” to mean “only one or the other” in English.
Disjunction 𝐴 ∨ 𝐵 is therefore read as “A OR B”, and is true if at least one of A or B is true.
The only time 𝐴 ∨ 𝐵 is false is if both values are false.

Truth tables are extremely useful as shown, but they are often written in shorthand, more like
a table than what we have seen so far. Let’s look at the more compact form for the three
operators above, and we will shorten true to 𝑇 and false to 𝐹 at the same time:

𝐴 ¬𝐴
F T
T F

𝐴 𝐵 𝐴 ∧ 𝐵
F F F
F T F
T F F
T T T

𝐴 𝐵 𝐴 ∨ 𝐵
F F F
F T T
T F T
T T T

BOOLEAN LOGIC 113

Because the expressions can get more complex than just 𝐴 ∧ 𝐵, this format shows the
expression once in the column header, with the values below it. This is the more common
approach to truth tables, and we will be using it as we go on.

Be aware that common mathematical notation for true is ⊤ (top), while the notation for
false is ⊥ (bottom). We will stick to the letter versions of these because they are more
familiar, but it is good to be aware of the standard notation in case you see it elsewhere.
We won’t be using this for programming.

𝐴 𝐵 𝐴 ∨ 𝐵
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊤

Truth Table Construction and Binary Numbers

To make sure you cover all possible cases in a truth table, you basically count in binary, using
one bit per variable. If that doesn’t sound familiar, great! We will go over it in detail here. If it
does sound familiar, feel free to skip to the next section.

To count in binary, we start with a single row of values for our variables, where they are all
initially false. Then we go through a simple procedure to create the row beneath it (and repeat
the procedure to create all the rest of the rows).

If you already have a row, then you can create the next row in the sequence as follows:

• Copy the bottom row. Congratulations, you now have a new bottom row.
• Flip the rightmost variable in the new row (𝐹 goes to 𝑇 , and 𝑇 goes to 𝐹).
• Stop if you just changed it to 𝑇 .

There is one last little rule:

• If you ever change anything to 𝐹 , then the one to the left of it must also be flipped.

When you end up with a row where all the values are 𝑇 , you are done.

Here is an illustration of how that works with three variables. We begin with them all false, as
described, and we will show every changed variable in bold:

𝐴 𝐵 𝐶
F F F

Then, we copy this row and flip the new row’s rightmost variable, giving us this:

114 CHAPTER 5. REACTING LOGICALLY

𝐴 𝐵 𝐶
F F F
F F T

Nothing went from true to false, so we are done with that row.

To create the next row, just do the whole thing again: copy and flip. Note, though, that this
time the rightmost variable will go from true to false, so we need to flip the one to its left:

𝐴 𝐵 𝐶
F F F
F F T
F T F

So far so good. Now we create the next row by doing it again, flipping the one on the right and
checking to see if one left of it needs to flip. Not this time, it turns out (nothing is switching
from true to false):

𝐴 𝐵 𝐶
F F F
F F T
F T F
F T T

Now we get to a row that is really interesting. We will flip the rightmost variable like we always
do, but because it is going from true to false, the one to the left of it has to flip as well. But that
one is also switching to false, so the next one over must switch, as well:

𝐴 𝐵 𝐶
F F F
F F T
F T F
F T T
T F F

And now, if you continue the pattern, you will see pretty quickly how you can get to this
complete table, starting with all values false, and ending with all values true:

BOOLEAN LOGIC 115

𝐴 𝐵 𝐶
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

That is how you create the inputs for a truth table. Because you are an astute student, you
might have noticed some other patterns in the completed table, like the fact that the left side
has 2 blocks of similar values (4 false and 4 true, in that order), the middle alternates twice as
often, and the right side alternates twice as often as the middle (it alternates every time, in
fact).

There are other things to notice, as well. For example, if you have 𝑁 variables, you will
always have 2𝑁 rows. That is why we have 8 rows for 3 variables: 23 = 8. And since we
know we have 8 rows, we could have just written 4 Fs and 4 Ts on the left, then groups of 2,
then groups of 1. It is kind of cool once you start seeing how it works.

That is how counting in binary works, by the way. If you use 1 instead of 𝑇 and 0 instead of 𝐹 ,
you get this:

000

001

010

011

100

101

110

111

Those are the first 8 binary integers, starting at zero!

It is worth noting that this is exactly the same procedure that we use to count in decimal (base
10), we just have fewer digits to work with in binary. Try it in base 10: start with all zeros,
count up the rightmost digit, then when it flips from nine back to zero, increment (add 1 to) the
one to the left. That’s how we count in decimal, and it’s also how we count in binary.

There is a relationship here between AND and multiplication, and OR and addition. They
obviously aren’t perfectly the same: if you draw the AND and OR truth tables using
multiplication and addition, you’ll get some strangeness with OR (in binary, “10” means

116 CHAPTER 5. REACTING LOGICALLY

“two”):

𝐴 𝐵 𝐴 ∨ 𝐵 𝐴 + 𝐵
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 10

It’s sort of interesting, but more importantly, AND and OR behave similarly to
multiplication and addition when considering the distributive property. So, if you are trying
to distribute AND over OR, it works like distributing multiplication over addition. Almost.
We’ll get to that with De Morgan’s Laws.

Basic Boolean Algebra

As is the case with familiar numerical operators, the boolean operators can be combined in all
sorts of ways to form complex expressions. The first thing to note is that parentheses work
exactly the same way as they do with familiar expressions: if something is in brackets or
parentheses, it needs to be considered a single expression. Always evaluate what’s in
parentheses first.

Operator Precedence

In the absence of parentheses, there are certain rules for which things are evaluated first; the
operations performed first have precedence. This should feel familiar for numbers, where we
know, for example, that mulitplication takes precedence over addition. It is also true of
booleans. When you are calculating something, operations with higher precedence come first.
For example, if we just list a few common numerical operators, we might put them in this order:

• brackets
• exponentiation (and roots)
• negation
• multiplication (and division)
• addition (and subtraction)

To illustrate, suppose you saw something like this:

𝑦 = 3𝑥 + 2

You would know that 𝑥 is multiplied by 3 before 2 is added to obtain 𝑦. That is true (and it
affects the way we write things down) because multiplication has higher precedence than
addition. But brackets beat everything, so this is a different equation entirely:

BOOLEAN LOGIC 117

𝑦 = 3(𝑥 + 2)

Here 2 is added to 𝑥 before multiplying all of it by 3 to obtain 𝑦.
Feeling comfortable again? Good. Boolean logic has precedence rules similar to those you
are used to:

• brackets
• negation (NOT)
• conjunction (AND)
• disjunction (OR)

So, if you saw this

𝑍 = 𝐴 ∧ 𝐵 ∨ 𝐶

you would know that it is the same as this

𝑍 = (𝐴 ∧ 𝐵) ∨ 𝐶

and different from this

𝑍 = 𝐴 ∧ (𝐵 ∨ 𝐶)

because conjunction has higher precedence than disjunction: “AND” comes before “OR” just
like multiplication comes before addition.

One thing that is important to know is this: numeric comparators have precedence over
boolean operators. That means, for example, that 3 < 5 ∧ 4 > 3 is the same as
(3 < 5) ∧ (4 > 3).

Commutativity, Associativity, Distributivity, and De Morgan’s Laws

Conjunction and disjunction are both commutative: it doesn’t matter if you flip the arguments
around, so

𝐴 ∧ 𝐵 = 𝐵 ∧ 𝐴

118 CHAPTER 5. REACTING LOGICALLY

and

𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐴 .

That seems pretty obvious if you look at their truth tables. They are defined by how many of
their arguments are true or false, not by which side they are on.

Similarly, they are both associative. This means that

(𝐴 ∧ 𝐵) ∧ 𝐶 = 𝐴 ∧ (𝐵 ∧ 𝐶)

and the same is true for disjunction. In practice this means it doesn’t matter which things you
combine first, so long as the operators are the same.

That is also true of addition and multiplication:

2 + (4 + 6) = (2 + 4) + 6

so you can just write

2 + 4 + 6

without getting confused. The same applies to conjunction and disjunction: you can omit the
brackets in associative cases like

𝐴 ∧ 𝐵 ∧ 𝐶

or

𝐴 ∨ 𝐵 ∨ 𝐶 .

And just like multiplication distributes over addition, conjunction (AND) distributes over
disjunction (OR). Consider this:

BOOLEAN LOGIC 119

𝑍 = 𝐴 ∧ (𝐵 ∨ 𝐶)

This has a conjunction (AND) outside, and a disjunction (OR) inside. You can distribute in the
same way you would if this were multiplication and addition, giving you this:

𝑍 = 𝐴 ∧ (𝐵 ∨ 𝐶)
= (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)

Something odd happens when you try to distribute a negation, though. It causes everything
inside to be negated, but it also causes disjunctions and conjunctions to trade places; they get
flipped upside-down. This is called De Morgan’s Law, and it’s very useful. Sometimes
complex truth expressions can be greatly simplified and clarified in your programs if you know
this rule:

¬(𝐴 ∧ 𝐵) = ¬𝐴 ∨ ¬𝐵
¬(𝐴 ∨ 𝐵) = ¬𝐴 ∧ ¬𝐵

See how the operators flipped over when distributing negation? You can see that this actually
works by looking at the truth tables carefully:

𝐴 𝐵 ¬(𝐴 ∨ 𝐵) ¬𝐴 ∧ ¬𝐵
F F T T
F T F F
T F F F
T T F F

𝐴 𝐵 ¬(𝐴 ∧ 𝐵) ¬𝐴 ∨ ¬𝐵
F F T T
F T T T
T F T T
T T F F

You can also talk your way through it. For example, if it is not both raining and windy right now,
that means it is either not rainy or not windy. See if you can come up with some other

120 CHAPTER 5. REACTING LOGICALLY

examples of your own. It always works.

In fact, we kind of got a glimpse of this when talking about what AND and OR really do:
AND produces true only when both inputs are true, but OR produces false only when both
inputs are false. That is an interesting parallel! And it is very suggestive of De Morgan’s
Laws.

Conditional Expressions

With this basic introduction to boolean logic, we should be more than ready to start putting
these ideas to work in a program. Get a blank project file ready to go, load it into your browser,
and let’s begin.

Equal Isn’t Equal

In JavaScript, as we have already seen, the symbol = means assignment. The thing on the
left has to be something assignable like a variable or an object property. The thing on the right
has to be an evaluatable expression. Thus, when we see

:javascript:

var x = 5;

that means “create a slot in our programming universe, name it x, and stick the value 5 into it.”
Given that = already has this meaning, how do we compare two things to check for equalty?

For that, we use ===. That is right, three = symbols in a row produces true if both sides are
equal, and false if they are not. Just like there is a symbol for “equal”, there is also a
symbol for “not equal”, which is !==:

Symbol Meaning

=== Are both sides equal?
!== Are the two sides different?

JavaScript, sometimes you hurt those you love. Seriously. The operators == and !=
could have been perfectly reasonable as in many other programming languages, but they
just do too many surprising things for me to recommend their use here. For example, 5
== "5" is true. Why? Because, dear JavaScript, == does not compare types, only
values, and you try very hard to make them the same type before doing the comparison.
We know you mean well. We know you want to do what we mean and not what we say, to
make our lives easier. It just turns out to be so error-prone! At least you give us the ===
operator, which compares both types and values, and is therefore almost always what we

CONDITIONAL EXPRESSIONS 121

want.

Try them out in the console:
:console:

> 5 === 5

⋖ true

> 5 === "5"

⋖ false

> "hi" !== "hello"

⋖ true

> 5 === 4

⋖ false

> 2 === "hi"

⋖ false

Load that up in your browser and see what happens when you look at the console. You
should see several truth values in the right order. Play around with it a bit. You can try testing
equality for all sorts of things.

Remember, once you have the file loaded in your browser, you can just keep editing it,
saving it, and then reloading the page. You don’t need to go find it every time because the
browser already knows where it is (the location is in the URL bar).

The operators === and !== are useful for pretty much any type. For numbers, though, we
also have the standard comparison operators, shown here with their mathematical
counterparts:

Algebra JavaScript

< <

≤ <=

> >

≥ >=

Strings are also comparable using the above operators. When applied to strings, they do
a lexicographical comparison, loosely meaning that < tells you whether the string on the
left comes before the string on the right, if you were to look them up in an alphabetized
dictionary. Beware, however, that alphabetization may not work the way you think. It has
more to do with the numeric value of the characters involved than with any particular
notion you have about order. For example, using the English alphabet represented in
ASCII or any of the UTF variants (JavaScript uses UTF-16 internally), capitals always
come before lower case, which is not likely the way that you are used to thinking of things.

122 CHAPTER 5. REACTING LOGICALLY

Boolean Operators for Typists

Modern programming languages have their roots in a time where only a limited charcter set
was available to computers, called ASCII. Nowadays, we have access to all of unicode, which
contains pretty much every character you can dream of in any language, plus a whole bunch
of—incredibly useful, I’m sure—emoji. But even with our nearly unlimited character sets,
keyboards are still of finite size, so we still mostly program using the original ASCII, at least for
fundamental programming constructs like built-in operators. Now that we have seen how to
type common comparison operators, let’s see what the boolean operators look like in
JavaScript:

Name Algebra JavaScript

NOT ¬ !

AND ∧ &&

OR ∨ ||

Thus we have ! (exclamation point, or “bang”) for “not”, && (two ampersands) for “and”, and
|| (two vertical pipe characters, usually found on the backslash key) for “or”. We can play
around with them in the console like this:

:console:

> true && true

⋖ true

> true || false

⋖ true

> !true

⋖ false

Go ahead and play around with them a bit. Because the regular math operators take
precedence over all of these (just as they do in algebra), you can also do things like this:

:console:

> 5 < 6 && 3 < 2

⋖ false

Pretty neat! We can do all of the basic boolean operations in JavaScript, and they evaluate to
the same kinds of things you would expect: the values true and false, with type
“boolean”. With truth values like these, we can start to think about conditional computation,
which is one of the fundamental things that makes computers work at all.

Technically, it is possible to represent conditional evaluation using nothing more than
functions. It’s kind of a strange thing to think about, but you can represent the ideas of
“true” and “false” as functions, you can represent numbers as functions, and then of
course, you have functions. With all of that, you can define computing as we know it

CONDITIONAL EXPRESSIONS 123

(though Category Theory layers a thing or two on top). That’s what Lambda Calculus is all
about. Theoreticians like boiling things down to their absolute essentials, and for
computation, it turns out that functions are absolutely essential, but not much else is.

It’s much easier to just have native boolean types and operators, however, so that’s what
people actually use, even in purely functional languages like Haskell or Racket.
Programming is a fundamentally human endeavor, and syntax matters a lot.

Ternary Conditional Expressions

Now it’s time to create a program in a file. It has been a little while since we did that, so recall
the steps:

• Open a new file in your text editor,
• Write code into it and save it as something with a .html extension, and
• Open it in your browser.

Remember that what we are actually writing is HTML that contains script tags, where we
put our JavaScript code. With that in mind, let’s create a simple number-guessing game. We
know how to get input using prompt, and how to alert values to the user, so we make use
of those functions here:

:html:

<script>

// What we're thinking of. Don't tell.

var answer = 6;

var guess = prompt("Guess the number I'm thinking of:");

alert(answer === +guess);

</script>

Here we see our familiar unary plus, to ensure that we are working with a number. That’s why
we say +guess above. It ensures that our === operator will be comparing two numbers
instead of a number and a string (prompt returns a string). If not, we would get 6 ===

"6", which is false because an integer cannot === a string.

We could just use == instead, which is more forgiving about types (more coercive, really),
but it is a bad practice as programs grow larger, so we will not reinforce that particularly
dangerous habit. It is usually better to do conversions explicitly instead of hiding them
within the details of how overly permissive operators work.

Furthermore, using == hides bugs. If a user types something like “hello” instead of a
number, == will simply return false and your program will go on its merry way. But in
reality, that’s a bug! Your program isn’t making sure that the user gives a valid input (a
number), so what you want is an error that induces you to fix that. When you try to
compute +guess, because you can’t apply unary plus to a non-numeric string, you will
get a noisy error in the console, which is what you want: errors should never pass silently.

124 CHAPTER 5. REACTING LOGICALLY

If we play this game, we will see false in the alert when we guess wrong, and true when
we guess right. That’s useful, but wouldn’t it be nice if we could pop up a message that said
“You win!” if you guess it, and “You lose.” otherwise? It turns out that we can. In fact, there
are multiple ways to do it, but we will start with a conditional expression.

A conditional expression looks like this:
:javascript:

condition ? true_expression : false_expression;

If the condition evaluates to true, then the value of this entire expression (the whole
line) is true_expression. If it evaluates to false, then the value of the entire
expression is false_expression. That’s somewhat abstract, so after you have
pondered it, see if you can figure out how it is used in our improved guessing game:

:html:

<script>

var answer = 6;

var guess = prompt("Guess the number I'm thinking of:");

var msg = (answer === +guess) ? "You win!" : "You lose.";

alert(msg);

</script>

What happens when you run this program now? Now, if you get the answer correct, the
message sent to alert will be “You win!”. If you get it wrong, the alert will be “You lose”.
Depending on how complex the expressions are in the conditional ?: operator, you may see
parentheses around parts of it, as well, as was the case here. It’s generally a good practice to
put the condition in parentheses just to make things extra clear.

To explain this more simply in context, the truth of answer === +guess determines
which value msg gets, selecting from the two choices on the right.

If and Else

Conditional expressions are helpful and they are used all over the place, allowing us to
respond to the truth of things that we don’t know before the program runs (like whether
someone will type what we want them to), but if we have a lot of things we want to do when
something is true or false, they can be pretty hard to read. We know that we can do a lot of
things in a function, which we could call inside of the ?: operator, like this:

:javascript:

function whenTrue() {

console.log("whenTrue");

return 10;

}

IF AND ELSE 125

function whenFalse() {

console.log("whenFalse");

return -10;

}

var num = +prompt("Enter a number");

console.log("Result",

(num >= 0) ? whenTrue() : whenFalse());

Since we just call functions in the conditional expression, we can actually put a lot of code in
there that responds to the two possible situations. This works fine, but there is another, often
clearer, way. That way is the if statement.

It has been a while since we did any drawing, so let’s start this next section with the standard
canvas skeleton code to give us a chance to draw some more:

:html:

<canvas id="drawing" width="400" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing');

var ctx = canvas.getContext('2d');

ctx.fillStyle = 'black'; // Default to black shapes.

// And now for something fun. What should we do?

</script>

Instead of making a guessing game, we will ask a “yes/no” question using the confirm
function, and we will color a rectangle if we get a “yes”. Otherwise we will use the boring
default.

The confirm function pops up a little window like the alert function does, but it has two
buttons: “OK” and “Cancel”. If you press OK, the function returns true, otherwise it returns
false. We can use that to demonstrate how the if block works.

After getting the context above, try adding the following code to your program (after getting
the context) and running it in the browser:

:javascript:

ctx.fillStyle = 'black';

var changeColor = confirm("Change color?");

if (changeColor) {

ctx.fillStyle = 'blue';

}

ctx.fillRect(10, 10, 100, 100);

After we set the fillStyle to solid black (the default, but we’re making it explicit for
clarity), we check what we get back from confirm. If we get true, we change the fill color

126 CHAPTER 5. REACTING LOGICALLY

to blue before actually drawing the rectangle. Give it a try with one of “OK” and “Cancel”.
Once the program has run, reload the page and try the other button.

Figure 5.2: OK on the left, Cancel on the right.

As you can see, if the condition in parentheses is true, the body is executed, otherwise it is
skipped. That is the essence of the if statement. The body is delimited by curly brackets,
just like in a function. Thus, we get the value for changeColor from the button pressed,
then if it was “OK” we set the fill style. If not, we skip that step.

No matter what happens, we still call fillRect to draw the rectangle.

There is a kind of interesting detail here about the condition that needs to be brought up. We
have said that the body executes if the condition is “true”, but what really happens is it
executes if the condition is “truthy”2. Yes, that’s the real word for it. The opposite is “falsy”3.

It is actually easier to define “falsy” than to define “truthy”. Something is “falsy” if it is one of
the following values:

• false

• 0

• ''

• NaN

• null

• undefined

Everything else is truthy.

At least, mostly everything else is truthy. There are caveats and exceptions that you may
never run into, like the long-deprecated and Microsoft-invented document.all object,
which violates the standard on purpose for browser compatibility’s sake.

2https://developer.mozilla.org/en-US/docs/Glossary/Truthy
3https://developer.mozilla.org/en-US/docs/Glossary/Falsy

https://developer.mozilla.org/en-US/docs/Glossary/Truthy
https://developer.mozilla.org/en-US/docs/Glossary/Falsy

IF AND ELSE 127

Thus, the body of an if statement executes if the condition is truthy, but does not execute if
the condition is falsy. That is fairly awkward to say, so we will keep saying “true” and “false”,
but you should know that we mean “truthy” and “falsy” when we refer to any kind of
conditional statement or expression. This includes if statements, conditional ternary
expressions ?:, and loop conditions, which we will talk about later.

What if we want to do one thing when the condition is true, and another thing when it is false?
We can actually do that right now without any new ideas, because we know how to negate the
meaning of a boolean value: we use the “not” operator. It looks like this: !. Let’s see what the
code would look like if we had two if statements used in this way:

:javascript:

var useBlue = confirm("Use blue?");

if (useBlue) {

ctx.fillStyle = "blue";

}

if (!useBlue) {

ctx.fillStyle = "orange";

}

ctx.fillRect(10, 10, 100, 100);

Figure 5.3: OK on the left, Cancel on the right.

One unfortunate thing about the “not” operator ! is that it is so visually narrow compared to
what it is inverting. Sometimes it’s easy to miss, so take a close look at that code and
convince yourself that it will use blue when we select “OK”, and orange when we select
“Cancel”. The condition useBlue is true precisely when !useBlue is false, and vice versa.
But, there is a way to do this without mentioning the condition useBlue more than once; it’s
the second half of the if statement, called else:

:javascript:

var useBlue = confirm("Use blue?");

if (useBlue) {

ctx.fillStyle = "blue";

128 CHAPTER 5. REACTING LOGICALLY

} else {

ctx.fillStyle = "orange";

}

ctx.fillRect(10, 10, 100, 100);

This does the same thing as our previous example, but it only mentions useBlue once. The
body of the if is executed if the condition is truthy, and the body of the else block is
executed if the condition is falsy. Either way, the fillRect statement is always executed,
since it comes after the whole if/else statement.

Where you put the else keyword visually is not terribly important—as long as the only
thing between the if block and the else keyword is space (including empty lines), it will
work fine. The formatting style shown here is in fairly common use because it is both
compact and readable. It makes very clear the fact that the if statement is not complete
yet, as well, making it easier for others to follow your code. Other formats are also used.

Else If

What if you want to test for more than two conditions? For this, we have the else if

pattern. Let’s go back to our number-guessing game for a moment, but this time we want to
handle three cases: a correct answer, an answer that is too high, and an answer that is too
low. Since that is three different things, a single if/else block won’t really cut it. One way to
deal with this is multiple if/else blocks, with one inside another:

:javascript:

var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else {

if (guess < answer) {

alert("Too low");

} else {

alert("Too high");

}

}

The else if pattern allows us to collapse this logic into a single list of bodies, like this:
:javascript:

var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else if (guess < answer) {

alert("Too low");

ELSE IF 129

} else {

alert("Too high");

}

You can add as many else if sections as you like. It’s a nice, clean way to test for multiple
things in order. The first body with a true condition runs, then the rest are ignored and the
whole pattern is finished.

Let’s see what it’s like to add yet another else if block, by also testing for guesses that are
“way too high”:

:javascript:

var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else if (guess > answer + 10) {

alert("Way too high");

} else if (guess > answer) {

alert("Too high");

} else {

alert("Too low");

}

There we have it: the else if pattern. If you’re testing for multiple possible outcomes, then
you can check each one in order by using the if else if else if … else style shown
above. It’s very common and pretty readable. As long as you keep in mind the fact that the
first thing to be true will run, and the rest will be skipped, you should be in good shape. This is
why we put “way too high” before “too high”. See if you can figure out what would happen if
the order were reversed.

As is commonly the case, we have glossed over a fairly important feature of the if/else
statement, and that is that curly braces are not strictly required. What is required is that
there be a single statement after each of the if and else keywords. Using curly braces
allows us to collect multiple statements together to treat them as a single compound
statement.

In practice, please never leave off the braces. Always use the curly braces on the body.
To illustrate why, consider the following:

:javascript:

if (useBlue)

ctx.fillStyle = "blue";

else

console.log("not using blue");

ctx.fillStyle = "orange";

130 CHAPTER 5. REACTING LOGICALLY

That looks okay on the surface, but it really isn’t. Let’s format it so that it is very clear
which statements are attached to which bodies:

:javascript:

if (useBlue) ctx.fillStyle = "blue";

else console.log("not using blue");

ctx.fillStyle = "orange";

Aha! So, because we did not use curly braces on the else block, the
ctx.fillStyle = "orange" command is run every time no matter what
useBlue says. That’s not what we signed up for, is it?

This situation, where new statements are added to if and else bodies, is very common,
so follow this advice and you will be glad: always use the braces, even when they are not
technically needed. Severe security errors have occurred because that advice was not
followed, like Apple’s SSL/TLS bug in 2014a. That bug was introduced because a
programmer added one more statement to an if body, except it did not have braces, so
the statement ended up outside the body and was always executed. That was incorrect
and not the programmer’s intent, and it opened up a rather serious security hole.

It’s true that there are debates surrounding the 2014 Apple SSL/TLS bug that point out a
problem with the tools missing unreachable code, and the programmer using goto, and
tests being inadequate, and they are all right, as well. But, if braces had been used
consistently throughout the code, the error would have been less likely to creep in at all.
Some contend that an extra curly brace does not make enough of a difference visually to
make bugs like that easy to spot, but they are kind of missing the point: an extra curly
brace on a line all its own makes it less likely for the wrong thing to be typed or pasted
outside the block in the first place.

Always use braces.

It is useful to note, however, that the entire reason that else if works at all is because
of this single-statement behavior that you should basically never use. In the else if

pattern, the single statement after else is an entire if statement. We just write it in a
nicer, more convenient-looking way. It’s the only exception you should ever make for the
“always use braces” rule, and it’s safe to do so because this specific pattern is so rigid
and predictable.

ahttp://mfukar.github.io/2014/02/22/Apple-SSL-bug.html

Analysis Using Truth Tables

Sometimes when reading someone else’s code, you will come across something that is really
hard to understand. Perhaps it is a long nested chain of if and else blocks. If you do come
across something like that, you can nearly always untangle things by building a sort of truth
table from the statements. Let’s look carefully at our example from before, but written with
only if and else, no else if blocks:

http://mfukar.github.io/2014/02/22/Apple-SSL-bug.html

ELSE IF 131

:javascript:

var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else {

if (guess > answer + 10) {

alert("Way too high");

} else {

if (guess > answer) {

alert("Too high");

} else {

alert("Too low");

}

}

}

This works exactly the same way as our chain of else if above, but it’s a bit harder to be
sure. Let’s try untangling it using a truth table. Truth tables are pretty helpful tools for cases
like these, though you might never actually need to do this. Some programmers never do. It’s
useful enough to go over it here, though, so you can choose to use it if you want to later.

To build a truth table for the above, we must first figure out what all of the variables in the table
will be. These are the things that appear in conditions, and they are

• guess === answer

• guess > answer + 10

• guess > answer

Of course, for each of these there is a corresponding else, so each condition can be true or
false. Let’s build our table (we will use 0 for false and 1 for true, as is common). Remember,
to get all of the row inputs, we just count in binary, giving us the values of the first 3 columns,
over 8 rows in the table below (we let the word “guess” be implied in our table headings).

We have a truth table, now, so we’re ready to start filling it in. Note that some of the rows are
impossible: you can’t have guess > answer + 10 while not also having guess >

answer. Similarly, you can’t have equality and inequality simultaneously. So we mark these
impossible cases right away. We can discard those rows.

=== answer > answer + 10 > answer Output

0 0 0
0 0 1
0 1 0 impossible
0 1 1
1 0 0
1 0 1 impossible

132 CHAPTER 5. REACTING LOGICALLY

=== answer > answer + 10 > answer Output

1 1 0 impossible
1 1 1 impossible

Having discarded the impossible rows, our task is to ensure that all of the possible outputs are
triggered at the right times, and the table will help us with that.

Proceed by following the code for the first row, where we find that the first check is false, so
we skip the “You win!” clause and enter the else block. The next check is also false, so we
skip the “Way too high” clause and enter that else block. The third check is also false, so
we skip the “Too high” clause and enter the final else block, where we output “Too low”.
Let’s add that to our table, and we can do the second row while we’re at it (see if you can fill it
in yourself):

=== answer > answer + 10 > answer Output

0 0 0 “Too low”
0 0 1 “Too high”
0 1 1
1 0 0

Now we look at the third row. This row says that things are not equal, and the guess is both
higher and “much higher” than the answer. Since guess === answer is false, we skip
the first block. The next test is for guess > answer + 10, which is true, and we output
“Way too high” immediately. That means we never check for guess > answer. When we
come upon a case where we never check one of the conditions, we mark it with a ? to
indicate “don’t care” (or “never tested”):

=== answer > answer + 10 > answer Output

0 0 0 “Too low”
0 0 1 “Too high”
0 1 ? “Way too high”
1 0 0

Now that we have a “don’t care” value in there, it’s useful to ask ourselves: is this the right
thing? Let’s reason through it by asking the question and coming up with an answer to it:

Question: If guess > answer + 10, do we care about guess > answer?
Answer: No, we don’t care, because guess > answer + 10 implies guess >

answer. It’s not possible for the guess to be much bigger than the answer without it
also being bigger than the answer.

ELSE IF 133

Oh, good. Logically, it makes perfect sense that we don’t care about guess > answer if
we get a true value for guess > answer + 10. That is evidence that the order of our
else if blocks is well-designed and matches intuition. It is possible to do this wrong, for
example, if we checked guess > answer first, then we would never notice when guess
> answer + 10, and the truth table would show us that error.

See how putting the truth/output table together like this can help us to catch errors and
understand code? It is a very useful technique.

Let’s continue with what is now the fourth row, the row with 1 0 0 as its set of conditions.

• guess === answer is true, so output “You win!” and skip the rest of the code.

Here we go again. We have ignored two conditions, now. That means we don’t care about
them, so we end up with this:

=== answer > answer + 10 > answer Output

0 0 0 “Too low”
0 0 1 “Too high”
0 1 ? “Way too high”
1 ? ? “You win!”

Once again, we ask ourselves: is this right? The answer is again “yes”. The reason is simply
that the guess cannot equal the answer at the same time that it is bigger than the answer.
Therefore, if we get a true value for equality, we will never get true values for the inequalities,
so we can just not test them. We don’t care about them.

Well, good! Our code seems to be structured reasonably, and we just learned how to analyze
complex conditional expressions using the idea of a truth table, which we morphed into an
output table. That’s a very powerful tool.

There is one more thing that we can get out of this output table, and that is the fact that we can
take our nested conditionals and convert them into a chain of “else if” statements. How do we
see that in the table? Well, let’s turn it upside-down and see if we notice any interesting
patterns within it. An important hint: look for things that jump out at you diagonally:

=== answer > answer + 10 > answer Output

1 ? ? “You win!”
0 1 ? “Way too high”
0 0 1 “Too high”
0 0 0 “Too low”

The upper right of the variables table is all ?s, there are 1s along the diagonal, and there are

134 CHAPTER 5. REACTING LOGICALLY

0s in the lower left.

If you can organize your table like this, you can just use an “else if” chain to represent your
logic. Why is that? Look at what is now the first row: if the first variable is true, we don’t care
about the rest. Now the second row: if the first variable is false and the second variable is true,
we don’t care about the rest. Finally, if the first two are false and the third is true, we output
something, and then we handle the “everything is false” case (which would be the final else
block).

If you build a table like this, and rearrange the rows and columns to get this pattern, you have
an “else if” chain in disguise. That can be very useful indeed. Here is what the code looks like
when inspired by the table transformation:

:javascript:

var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else if (guess > answer + 10) {

alert("Way too high");

} else if (guess > answer) {

alert("Too high");

} else {

alert("Too low");

}

That looks just like we want it to. Now, it’s very important to note that using an output table
like this is just one tool in your toolbox. Use it when it makes sense or when things are
confusing, or when logic gets to be pretty subtle and you want to be sure of things.

Most of the time, however, programmers don’t think about conditions in this way, because
they’re building the logic from scratch and already have an intuitive idea of what it should do,
but occasionally the logic gets a little bit tortured. When that happens, knowing how to write it
out and carefully trace through all outcomes in a table like this can be extremely valuable. You
know about boolean logic, now, so you can switch back and forth between boolean algebra
and JavaScript conditionals to really be sure you understand whatever code you’re looking at.
That’s the kind of skill that can really set the good programmers apart from the rest.

Exercises

Exercise 5-1: Comparators and Boolean Values
Solution on page 389

Every expression in mathematics that involves a comparator has a boolean type. A
comparator is something like =, <, >, ≤, ≥, etc.

EXERCISES 135

1. What is the value of 7 > 10?
2. What is the value of 3 = 3?
3. What about the value of 3 = 3 ∨ 7 > 10?
4. What is the value of 3 = 3 ∧ 7 > 10?
5. If 𝑥 = 2, find two values of 𝑦 that make this false, and two values of 𝑦 that make it

true: 𝑥 < 2𝑦 ∧ 𝑦 < 𝑥 + 4.

Exercise 5-2: Boolean Connectives
Solution on page 389

• What is the symbol for OR?
• What is the symbol for AND?
• What is the symbol for NOT?
• What is their precedence order (highest to lowest)?

Exercise 5-3: Truth Tables
Solution on page 390

Compute a truth table for the expression ¬𝐴 ∨ 𝐵. It will have 4 rows. You may use 0/1 or T/F:

𝐴 𝐵 ¬𝐴 ∨ 𝐵
0 0
0 1
1 0
1 1

Exercise 5-4: More Truth Tables
Solution on page 391

Fill out the truth table for the expression 𝐴 ∧ 𝐵 ∨ ¬𝐶 . Remember the order of operations!

𝐴 𝐵 𝐶 𝐴 ∧ 𝐵 ∨ ¬𝐶
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

136 CHAPTER 5. REACTING LOGICALLY

Exercise 5-5: Most Truth Tables
Solution on page 392

Create the truth table for 𝐴 ∧ 𝐵 ∨ 𝐶 ∧ ¬𝐷. Hint: it will have 16 rows of values. You can use
any representation of true and false you like, including ones and zeros.

Exercise 5-6: De Morgan
Solution on page 396

Use De Morgan’s Law to transform the following expressions (move the outer negation into
the expression). Hint: when there is no outer negation, you can first pretend that there are two
outer negations instead, like this: 𝐴 ∧ 𝐵 = ¬¬(𝐴 ∧ 𝐵) (since one undoes the other), and
you can move one of them into the expression.

1. ¬(𝐴 ∧ 𝐵)
2. ¬(𝐴 ∨ 𝐵)
3. ¬(𝐴 ∧ 𝐵 ∨ ¬𝐶)
4. ¬(¬𝐴 ∨ 𝐵 ∧ ¬𝐶)

Exercise 5-7: JavaScript and Equality
Solution on page 397

Give the true or false value for each of the following expressions:

1. 3 === "3"

2. 1.6 !== 1.6

3. "hi" === 'hi'

4. "hi" !== "hello"

5. 3 > 6

6. 2 <= 2

7. 7 >= 6

8. !(9 >= 9)

9. 10 < 8 || 8 < 9

10. 9 === 9 && 2 !== 3

Exercise 5-8: Converting Strings to Numbers
Solution on page 398

When prompting for an answer using prompt, the value returned is a string representing the
characters the user typed. For example, if you run this:

:javascript:

var val = prompt("Please enter a number:");

The user is shown a window with a text box into which they can type. There is nothing in that
box that forces them to type a number, other than your message, which is really just advice.

EXERCISES 137

Suppose, however, that the user does indeed type a string representing a number, like 11.
What should you do to val to ensure that you can do numeric things (like addition,
subtraction, multiplication, etc.) to it?

Exercise 5-9: Conditional Expressions
Solution on page 399

It’s possible to create an expression in JavaScript that is one thing for one situation, and
something else for another. This is doing using the ternary conditional operator: ?:. What are
the values of the following expressions?

Note that we threw a little surprise in here, but it’s not too hard to make use of it: the number 0
is falsy, and any other number is truthy. Similarly, the empty string '' is falsy, but every other
string is truthy. (Note that the concepts of “truthy” and “falsy” come up in the discussion of
if/else).

1. true ? "hello" : "good-bye"

2. 5 < 6 ? "smaller" : "not smaller"

3. 'hi' === 'hello' ? "yes" : "no"

4. 5 ? "truthy" : "falsy"

5. 0 ? "truthy" : "falsy"

6. '' ? 1 : 0

Exercise 5-10: If and Else
Solution on page 399

Write a program that does the following using if and else (don’t forget your braces!):

• Ask the user for a number,
• If less than zero, output “negative”,
• Otherwise, output “non-negative”.

Exercise 5-11: More If and Else
Solution on page 400

For this program, use two techniques: the first will use nested if/else blocks, and the
second will use an else if chain.

Write a program that outputs “negative” for a number less than zero, “zero” for a number
equal to zero, and “positive” for a number greater than zero. Get the number using prompt
and output either to the console or via alert.

Exercise 5-12: Output Tables
Solution on page 401

Make an output table for the “negative/zero/positive” program in the previous problem.

138 CHAPTER 5. REACTING LOGICALLY

Exercise 5-13: More Output Tables
Solution on page 402

Consider the guessing game problem from this chapter, where different outcomes are
displayed for guesses that are too small, too large, much too large, and correct. Now we are
going to change it slightly. For the following altered code, build the output table and see if you
can use it to spot the problem in our new implementation:

:javascript:

var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else {

if (guess > answer) {

alert("Too high");

} else {

if (guess > answer + 10) {

alert("Way too high");

} else {

alert("Too low");

}

}

}

Midterm 1

We have covered a lot of ground! You have been exposed to some of the most fundamental
aspects of programming in JavaScript, and now it is time to make sure it is all clear and
comfortable before moving on.

The most important concepts covered thus far are

• Syntax
– Comments
– Strings
– Numbers
– Variables

• Evaluation steps, including functions (algebraic)
– Expand, substitute, evaluate, repeat until finished
– Order of evaluation (inside-out, left-to-right, operator precedence)

• Basic algebraic recursion
• Writing our own functions in JavaScript

– Variable scopes and var.
– Anonymous functions.
– Timer events.

MIDTERM 1 139

• Objects as key-value storage.
– Insertion, deletion, retrieval, and rules for dot notation.

• Boolean concepts
• If/Then/Else and ternary conditionals.

Before taking the test below, take some time to study these concepts in the preceding
chapters.

Exercise 5-14: Basic types and outputs
Solution on page 403

In the following code, fill in the missing values (look for ‘?’). Also say what type the result has.
What kind of a thing is it?

:console:

> 10 + 5

⋖ ?

> 3 * 12

⋖ ?

> "hello" + " " + "world"

⋖ ?

Exercise 5-15: Variables and evaluation
Solution on page 403

Fill in the output of the console below where they are missing (‘?’). Remember to be careful
about assignment - a variable only changes value when assigned.

:console:

> x = 10

⋖ ?

> x + 15

⋖ ?

> x / 5

⋖ ?

> y = 'hello'

⋖ ?

> y + ' there'

⋖ ?

Exercise 5-16: Show the steps for evaluating a numeric expression
Solution on page 404

Using the expansion technique demonstrated earlier, show the steps of evaluation for the
following expression:

3(2 + 4) − (3/(12 + 2))

140 CHAPTER 5. REACTING LOGICALLY

Exercise 5-17: Show the steps for evaluating a different numeric
expression

Solution on page 405

Do the same as before, recalling that the ⋅ symbol stands for multiplication and the / symbol
stands for division:

3 + 5 ⋅ 2 + 6/3 − 4

Exercise 5-18: Show the steps for evaluating a function with variables
Solution on page 405

The function 𝑓(𝑥, 𝑦) is given below. Using the expansion technique demonstrated earlier,
show all of the steps of how you would evaluate 𝑓(25, 3):

𝑓(𝑥, 𝑦) = 𝑥
5 + 3 + 𝑦3

Exercise 5-19: Recursion in algebraic evaluation
Solution on page 406

Evaluate 𝑓(4):

𝑓(𝑥) = {0 for 𝑥 ≤ 0
𝑥 − 𝑓(𝑥 − 1) otherwise.

Exercise 5-20: Calling JavaScript Functions
Solution on page 407

Write a one-line program that shows a pop-up window with the text “Hello!” in it. Use the
alert function.

There is no need to show the surrounding HTML—just show the relevant JavaScript code.

Exercise 5-21: Prompting For Values
Solution on page 408

Using the prompt function, ask the user for their name, and display “Hello <name>!”,
where <name> is replaced by whatever the user types. For example, if I were to type “Chris”
in your prompt box, you would display “Hello, Chris!”.

MIDTERM 1 141

The correct answer need not contain surrounding HTML tags, though it can. The JavaScript
that displays the prompt and the final message is the important part of the answer.

Hint: you will call two functions in a correct program, and only one of them will be prompt.

Exercise 5-22: Writing Functions
Solution on page 409

You will write two function definitions for this exercise:

• A niladic function (a function that accepts no parameters) called getName that
prompts the user for a name and returns the value, and

• A function called showGreeting that accepts a name and displays “Hello
<name>!”, as in the previous exercise.

A correct set of function definitions will allow you to write the previous answer as
:javascript:

var name = getName();

showGreeting(name);

or even
:javascript:

showGreeting(getName());

Exercise 5-23: Events
Solution on page 409

Write a short program that causes “Hello!” to be displayed in a pop-up window after 5
seconds have passed. Use setTimeout to accomplish this.

142 CHAPTER 5. REACTING LOGICALLY

Chapter 6

Iteration Through Recursion

You now have the ability to change the course of your programs based on things that happen
outside of them, like user input. You also have the ability to define and call functions. Since
JavaScript functions are recursive, you can perform just about any computation you want to
with only what you have learned so far. Recursion is a really important idea in computer
science, and getting at least a little exposure to it can really enhance your brain, and this
chapter provides some of that exposure.

Before we begin, however, an important note is in order. While recursion is a fascinating and
powerful idea, it has a reputation of being intimidating to some, especially at first. This book
endeavors to make it as simple and easy as possible to understand, but if you find yourself
struggling, that’s okay. You can focus your attention on the parts that teach you how to draw
lines on a canvas, not worry too much about the rest, and then move on to the next chapter
without any trouble. Meanwhile, give it a try and see how it goes!

We begin our journey with a story.

Gauss and the Sum of Integers

Carl Friedrich Gauss was in school in the 1700s, and reportedly his class was given some
busy work. The teacher asked all of the students to sum the numbers 1 to 100, which was
expected to take some time.

It is possible that this story is apocryphal, but it is fun and widely reported.

The child Gauss, however, noticed a pattern. If you line up the numbers from 1 to 100 right
next to the numbers from 100 to 1, you can add up pairs like this:

143

144 CHAPTER 6. ITERATION THROUGH RECURSION

1 + 100 = 101
2 + 99 = 101
3 + 98 = 101
4 + 97 = 101

⋮
99 + 2 = 101

100 + 1 = 101

Do you see how we have the sequence 1 to 100 written down twice? On the left of + we have
it in ascending order, and on the right of + we have it in descending order. Remarkably, pick
any row, and it sums to 101. We have 100 of those rows.

If we add up 100 rows of the number 101, we get 100 ⋅ 101 = 10100, which is really easy to
calculate. But that number is the sum of two sequences from 1 to 100 (one forward, one
backward). We want the sum of just one of them, so we just divide by 2 to get our answer!
10100/2 = 5050, and now we’re done. We have the sum of all integers from 1 to 100.

Multiplication by 100 is obviously a lot simpler and faster than adding up 100 things, so Gauss
was able to obtain the sum in a few moments instead of the time it would take to add up each
number individually. Cue astounded teacher and (we can hope) early recess for Gauss, who
might have spent it working out more math problems.

By the way, this is real math: this creative process of looking for patterns and finding
interesting things in them, things that can make your life easier, or lead to interesting
results. Math is not about “learn to multiply 3-digit numbers” or “solve for 𝑥”. Those are
just tools and practice.

Math is about exploring reality using self-consistent models, and learning where that takes
us. It’s about figuring out cool things and having lots of fun “aha!” moments like this one.

If you have, in the past, felt like math wasn’t your thing, it is quite possible that you weren’t
really doing math, just computation and arithmetic. Those can indeed be boring, but math
can be delightful .

This pattern actually holds for any positive integer 𝑛 (not just 100). We obtain a more general
formula by replacing the number 100 in the table above with 𝑛:

RECURSIVE DUMB SUMS 145

1 + 𝑛 = 𝑛 + 1
2 + (𝑛 − 1) = 𝑛 + 1
3 + (𝑛 − 2) = 𝑛 + 1
4 + (𝑛 − 3) = 𝑛 + 1

⋮
(𝑛 − 3) + 4 = 𝑛 + 1
(𝑛 − 2) + 3 = 𝑛 + 1
(𝑛 − 1) + 2 = 𝑛 + 1

𝑛 + 1 = 𝑛 + 1

All we did was replace 100 from the previous table with 𝑛. With that transformation, there are
𝑛 rows in the table and each row sums to 𝑛 + 1, so we multiply 𝑛 by 𝑛 + 1 and then divide
by 2 (because, as before, the sequence appears twice). That gives the following more
general formula:

1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2

That’s pretty fun! You can sum up all of the numbers from 1 to 𝑛 by plugging in 𝑛 and doing a
multiplication and division. The formula works for all positive integers (𝑛 ≥ 1). We can check
that it still works for 100 by plugging that in for 𝑛: 100(100 + 1)/2 = 5050.
By the way, what we just did is called abstraction. We took a concrete problem—the sum of
numbers from 1 to 100—and turned it into a slightly more abstract problem by replacing one
of the constraints with a variable, giving us the problem of summing numbers from 1 to 𝑛. We
can reason about what that sum looks like without knowing anything about 𝑛 except that it’s a
positive integer.

Programming is often an exercise in finding and creating the right abstractions. We will talk
more about that throughout the course.

Recursive Dumb Sums

Gauss was a brilliant mathematician, and contributed much to science and mathematics that
we still benefit from today. One wonders what he could have done with a computer!

Imagine the cat pictures!

146 CHAPTER 6. ITERATION THROUGH RECURSION

Even though we may not feel as smart as Gauss, we can calculate the sum from 1 to 100
pretty quickly using a computer, even without his remarkable insight and formula. Let’s see
what it would take to get JavaScript to give us an answer to the sum problem, doing it the hard
way on purpose.

One thing we could do is type all of the numbers into one big expression, like this:
:javascript:

function sum() {

return 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 +

21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 30 +

31 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 + 40 +

41 + 42 + 43 + 44 + 45 + 46 + 47 + 48 + 49 + 50 +

51 + 52 + 53 + 54 + 55 + 56 + 57 + 58 + 59 + 60 +

61 + 62 + 63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 +

71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 80 +

81 + 82 + 83 + 84 + 85 + 86 + 87 + 88 + 89 + 90 +

91 + 92 + 93 + 94 + 95 + 96 + 97 + 98 + 99 + 100;

}

That’s obviously not very fun, nor is it generally useful: you can only sum the numbers 1 to
100 this way. Summing the numbers 1 to an arbitrary 𝑛 is not something we can do with this.
How could we write this to sum 1 to 𝑛?
Of course, we could just define a function that takes n as a parameter, and define it using
Gauss’s formula, like this:

:javascript:

function sum(n) {

return (n * (n + 1)) / 2;

}

That’s actually pretty cool, but we did say we were going to do this the hard way on purpose.
We therefore begin by creating a recurrence relation, then we will figure out how to write
code that computes it. Why a recurrence relation? Because recursion is amazing, powerful,
and useful, and because we already know a bit about how it works. Let’s use it!

If we’re going to make a recursive function do this work for us, it makes sense to look at the
algebra of this “sum everything from 1 to 𝑛” problem. We begin as usual with recurrence
relationships, by using our imagination. We start by pretending that we have a function 𝑓(𝑛)
that finds the sum we want. How would we define it? Here is one way:

𝑓(𝑛) = 1 + 2 + 3 + 4 + 5 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛

That is nice, and correct, but if we tried to write a function for it using what we have learned so
far, it would be hard: we don’t know how many things we are adding! But that’s okay,

RECURSIVE DUMB SUMS 147

because right now we are pretending that we already have a good definition for 𝑓(𝑛), and
that means we can pretend to have a good definition for 𝑓(𝑛 − 1), as well. Let’s see how we
might make use of that pretend function to make a real one.

If we write 𝑓(𝑛) next to 𝑓(𝑛 − 1), we start to see something interesting:

𝑓(𝑛) = 1 + 2 + 3 + 4 + 5 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛
𝑓(𝑛 − 1) = 1 + 2 + 3 + 4 + 5 + ⋯ + (𝑛 − 2) + (𝑛 − 1)

It looks like 𝑓(𝑛 − 1) is just the first part of 𝑓(𝑛). In fact, it contains the entire sum except for
the final number 𝑛:

𝑓(𝑛) = 1 + 2 + 3 + 4 + 5 + ⋯ + (𝑛 − 2) + (𝑛 − 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑓(𝑛−1)

+𝑛

and therefore,

𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑛

That’s nice and clean, and we’re nearly there!

This process—defining a problem as a smaller version of itself plus some trivial additional
computation—is a key idea. Here, we have discovered that you can compute the sum of
numbers 1 to 𝑛 by first computing the sum from 1 to 𝑛 − 1, then adding 𝑛. We have thus
defined 𝑓(𝑛) in terms of 𝑓(𝑛 − 1) and simple addition, which is an incredibly useful way to
think about it if you are writing a recursive function.

Now, what’s missing? A way to stop expanding this when we plug in a number. Consider this:

𝑓(3) = 𝑓(2)⏟ +3

= ⏞𝑓(1)⏟ +2 +3

= ⏞𝑓(0) + 1 +2 + 3

Oops! We don’t know how to compute 𝑓(0) because we only know what 𝑓(𝑛) means for
𝑛 > 0. It is inevitable that we get there, however, because each time we expand the function
definition, we subtract 1 from a smaller value of 𝑛.

148 CHAPTER 6. ITERATION THROUGH RECURSION

To solve this, we need an initial condition (or a “stopping condition”), a value of 𝑛 that is
valid and that makes 𝑓(𝑛) trivial to compute. Since we are limiting ourselves to positive
integers, we will choose the first of them as our initial condition: 𝑓(1) = 1. That’s easy to
compute, trivial to see, and now we can create a complete recurrence relation:

𝑓(1) = 1
𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑛

A more common way of writing this is as a piecewise function, where the use of each part is a
bit more explicit, and it’s clearly not defined for 𝑛 ≤ 0:

𝑓(𝑛) = {1 when 𝑛 = 1
𝑓(𝑛 − 1) + 𝑛 when 𝑛 > 1

We don’t always use the word “when” in piecewise function definitions like the one above.
Generally, if you see a large left curly brace with multiple things in it for a function
definition, the stuff on the left is the value and the stuff on the right is the condition when
that value applies.

To refresh your memory from the previous time we discussed recursion, here is how that
expansion process works:

𝑓(100) = 𝑓(99)⏟ +100

= ⏞⏞⏞⏞⏞𝑓(98)⏟ +99 +100

= ⏞⏞⏞⏞⏞𝑓(97)⏟
𝑓(96)+97

+98 +99 + 100

⋮

=
𝑓(3)

⏞𝑓(2)⏟ +3 + ⋯ + 99 + 100

= ⏞𝑓(1)⏟ +2 +3 + ⋯ + 99 + 100
= ⏞1 +2 + 3 + ⋯ + 99 + 100

Hopefully it is clear how the recurrence relation gives us back exactly the sequence we are
interested in, just by performing repeated expansions. Hopefully it is also clear where we

RECURSIVE DUMB SUMS 149

used the definition 𝑓(1) = 1 at the bottom of the expansion to stop the process and finally
produce an answer.

With our recurrence relation in hand, we can translate it into a JavaScript function:
:javascript:

function sum(n) {

// Initial condition.

if (n === 1) {

return 1;

}

if (n > 1) {

return sum(n-1) + n;

}

}

As a reminder, no matter where return is encountered inside a function body, the function
exits immediately with that value, skipping anything that might be below. This is called a
“short-circuiting return”, and we make use of it here.

With that reminder, take a moment to be sure you understand what is happening, and then we
will move on with a different example. The key thing to take away from this is that you can
create a function that does multiple things in a row, without knowing exactly how many there
are before you run it!

You should type this in and try it out by calling it with some things you know the answer to, like
sum(3) or sum(100).

A note about undefined behavior is in order here. The function is undefined if n < 1,
since it doesn’t do anything in that case. That’s what we want, and JavaScript will literally
return the value undefined when that happens (no return statement is reached in
that case). We’ll let that slide for now because fixing it properly would muddy things
substantially by introducting the concept of exceptions, but in general it’s not great to
have implicit, silent failure modes in your programs. Errors should be loud and obnoxious.
That’s how they get discovered and fixed.

Another more advanced note is in order, as well. This is a serviceable recursive function
in many ways, but it has some subtle flaws. You would not really write it this way in
production software. For example, it cannot be “tail-call optimized” because what it
returns is not merely result of calling itself again with different arguments. That means that
large values of n will actually cause the interpreter to run out of memory. This, however, is
a perfectly fine way to learn about recursion, it just misses some important real-world
considerations.

In other words, We have abstracted the idea of summing positive integers up to n, without first
knowing what n is. If you want to try running this in a program, do feel free to give it a try. Also
try making n fairly large, like a million, and see what happens.

150 CHAPTER 6. ITERATION THROUGH RECURSION

Recursion is pretty neat, but this was obviously just practice since we can more easily and
efficiently solve the summed integers problem using Gauss’s formula. Let’s practice it next in
a more practical and visual way.

Drawing Lines

It’s time to dust off our canvas element again. We will use it to draw a regular grid. To do that,
we will need to draw lines. So far, we have only drawn filled-in rectangles, but the canvas has
a lot more capabilities than that. We can find out from the canvas context documentation1 that
there are moveTo, lineTo, and stroke functions, for example. Those look pretty
promising. There are also lineWidth and strokeStyle properties that we can use to
control how lines are drawn. Let’s take a look at how those work, and practice using recursion
to do repetitive things in JavaScript.

A Detour Through Forbidden Paths

When drawing lines on a canvas, we think about it in terms of an invisible brush. We first
move our invisible brush to the right place, then we instruct the context to (eventually) draw a
line from there to a new spot, and finally we make it all real by calling stroke.

Create a new program, because we are going to be doing a lot of coding now. Remember,
just open your text editor to a new file, write your code in it, and save it as
something.html (where “something” can be whatever you want). In that file, indicate
where your JavaScript code is by using <script> and </script> tags.

Here is a very basic start for our line-drawing program file. The first few lines of code are the
familiar setup for a canvas and 2-dimensional context. After that, we draw a single line:

:html:

<canvas id="drawing" width="300" height="200"></canvas>

<script>

var canvas = document.getElementById('drawing');

var context = canvas.getContext('2d');

context.moveTo(10, 30);

context.lineTo(canvas.width - 10, 30);

context.stroke();

</script>

Find your file, drag it onto a new empty tab in your browser, and you should see a single
horizontal black line.

How does this work? If you imagine an invisible coordinate system on your canvas, you can
think of the operations above like this:

1https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D

DRAWING LINES 151

• moveTo moves the brush with it lifted away from the “paper” - it just positions it
without dragging it there.

• lineTo drags the brush on the canvas from where it was to where you tell it to go,
drawing a line on the way.

Thus, the code above goes to position (10, 30), then draws a line from there to (290, 30).
Since the start and end points have the same 𝑦 coordinates, the line is horizontal. It goes up
to 𝑥 = 290 because the canvas is 300 pixels wide, and we draw a line to that point minus 10.
Doing it this way is not required, but it makes it easier to change the canvas size without
having to alter all of our code to make the line fill it up.

Figure 6.1: One horizontal line.

One thing about the canvas isn’t really obvious at first: nothing is actually drawn when calling
lineTo. That function is just part of making a drawing plan. If you want the lines to actually
appear, you have to tell the context that it’s time to execute that plan. To do that, we call
context.stroke() and then the line finally shows up. You can actually call moveTo
and lineTo multiple times, then call stroke once and all of them will show up, like this:

:javascript:

context.moveTo(10, 30);

context.lineTo(canvas.width - 10, 30);

context.moveTo(10, 50);

context.lineTo(canvas.width - 10, 50);

context.stroke();

What’s happening here? We are basically making a list of instructions, but not actually doing
them until calling stroke. The instructions are to move somewhere, draw a line, move
somewhere else, then draw another line. Finally, when we say stroke, all of those
instructions are followed in the order we gave them, ending in an actual rendering of the lines.

If you want to change the properties of the lines, like making them wider or changing their
color, you can do it as before, by setting style variables. With our earlier filled rectangles we

152 CHAPTER 6. ITERATION THROUGH RECURSION

Figure 6.2: Two horizontal lines, one stroke.

used fillStyle, this time we will use properties specific to strokes. Because nothing is
actually drawn until stroke is called, you can set the stroke style and width anytime before
calling stroke and it will apply to everything drawn since the last output.

Note that the fillRect function is kind of special, in that it both computes a rectangle and
fills it immediately. Most canvas drawing functions don’t work like that.

:javascript:

// Drawing commands here or anywhere before stroke.

context.lineWidth = 3;

context.strokeStyle = 'red';

context.stroke();

Figure 6.3: Red applies to everything before stroke is called.

There is another non-obvious thing to note about strokes: if you want to draw multiple strokes
with different colors and styles, you will need to be more careful about how you signal when

DRAWING LINES 153

things are changing. To paint in multiple colors, for example, you need to start your drawing
with beginPath and end it with stroke, then change the settings and do it again.
Otherwise all of your strokes are assumed to be part of the same group, and they will all be
drawn in the same style. It’s a bit confusing if you don’t know how operations are batched up
and drawn after your code finishes running, so for now it’s best to just remember: start lines
with beginPath and end them with stroke if you want to change their styles.

Here is an example of what that looks like. Try replacing all of your drawing commands with
these:

:javascript:

context.lineWidth = 3;

context.strokeStyle = 'red';

context.beginPath();

context.moveTo(10, 30);

context.lineTo(canvas.width - 10, 30);

context.stroke();

context.lineWidth = 5;

context.strokeStyle = 'blue';

context.beginPath();

context.moveTo(10, 50);

context.lineTo(canvas.width - 10, 50);

context.stroke();

Figure 6.4: Separate paths allow separate colors.

That’s awfully verbose, which is one of the reasons there are about a million libraries to make
the JavaScript canvas easier to use, but we’re going to stick with built in facilities for this
course. You can always learn to use another library on your own (and that is
recommended—the canvas really is fairly clunky to use in its native form).

154 CHAPTER 6. ITERATION THROUGH RECURSION

A Recursive Grid

Now that we know how to draw lines and have briefly reintroduced recursion, we’re ready to
write a program that draws a grid on our canvas.

Let’s say that we want a grid where each square is about 10 pixels on a side. That might
mean that we draw a vertical line at x = 0, another at x = 10, another at x = 20, and so
on until x = 300 (or whatever our canvas width is). That makes 31 different lines to draw,
something like this:

:javascript:

context.beginPath();

context.moveTo(0, 0);

context.lineTo(0, canvas.height);

context.moveTo(10, 0);

context.lineTo(10, canvas.height);

// A whole lot of other stuff here, every 10 pixels...

context.moveTo(300, 0);

context.lineTo(300, canvas.height);

context.stroke();

That’s a lot of typing and a whole lot of mess just to get the vertical lines. Plus, we’re only half
done; we would need to do something similar to get all of the horizontal lines drawn!

Basically what we have done is taken a simple problem statement:

• Draw 31 vertical lines, spaced 10 pixels apart.

and turned it into a really annoying and difficult statement:

• Draw a vertical line at x = 0
• Draw a vertical line at x = 10
• Draw a vertical line at x = 20
• …
• Draw a vertical line at x = 300

The first way we wrote the problem makes sense to us. It’s very human-friendly. It’s also more
abstract. When we are solving this problem, the abstract version is easier to think about and
to write down. But that’s not all: it is also easier to rewrite for different square and canvas
sizes! After all, if you want to instruct someone to draw 5-pixel squares, you can just say

• Draw 61 vertical lines, spaced 5 pixels apart.

Similarly, if the canvas size changes, you can just draw a different number of vertical lines.

We have kind of belabored this point, but it’s important: abstraction allows us to not only make
our problem statements (and code) more concise, but it also allows us to make it more
general; it will work in more situations than those we have already thought of.

A RECURSIVE GRID 155

Let’s take this idea and apply it now. How can we write a function that draws all of the vertical
lines that we want it to? Does this feel like a place where we might apply recursion?

Yes! The trick that we used for summing numbers was to find a smaller version of the problem
embedded in the problem we wanted to solve, then to write the bigger problem in terms of the
smaller problem. We can do that here! We can pretend that our canvas is made up of two
parts: a slightly narrower canvas that only allows 30 lines, and the rest of it that allows one
more. Our base condition will be a drawing area that is too narrow to draw anything on at all.

Our problem statement now looks like this:

1. To fill up a space that is too small, do nothing.
2. To fill up a space with some non-zero width, draw a line at width then fill up a

space that is smaller: width - 10 pixels wide.

In other words, to fill a canvas with vertical lines, we draw a line at the right edge of it (where
𝑥 = width), then pretend the canvas is 10 pixels narrower and fill that up. We stop when the
width is zero. Do you see the recursive pattern here? How would you do this in code?

Here is one possibility. Note that we need to pass the context into the function to ensure that it
is available for drawing:

:javascript:

function vertLines(ctx, width) {

// 1) Don't draw if we have no room.

if (width < 0) {

return;

}

// 2a) Draw the last one.

ctx.moveTo(width, 0);

ctx.lineTo(width, ctx.canvas.height);

// 2b) Draw all but the last one.

vertLines(ctx, width - 10);

}

We are taking advantage of the fact that a context knows about its canvas. That allows us
to use ctx.canvas.height to get the canvas’s height from the context. We first get
the canvas from the context, then we get the height from the canvas.

In general, when following dot notation, you can think of it as going deeper into objects
contained within other objects: height is inside of canvas, and canvas is inside of
ctx. But, it isn’t really containment, is it? We get a context from a canvas, but then we
can get the canvas from the context? The answer to this conundrum is that we have been
using containment as a metaphor, but it breaks down, here. Really it is better to think of
items within an object as being variables that can be assigned to anything a variable can

156 CHAPTER 6. ITERATION THROUGH RECURSION

be assigned to. If I have an object a and an object b, they can have items that refer to
each other, so that a.thing === b and b.stuff === a. That is totally valid; it
just breaks our container metaphor.

That’s it. If you remove the comments, it’s a very short function. Let’s see it in context of a
larger program. If you have been following along thus far in your own code (which would be
very helpful for learning), you just need to add a call to vertLines(context,
canvas.width) and a final call to context.stroke() to make this all work:

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function vertLines(ctx, width) {

if (width < 0) {

return;

}

ctx.moveTo(width, 0);

ctx.lineTo(width, ctx.canvas.height);

vertLines(ctx, width - 10);

}

var canvas = document.getElementById('drawing');

var context = canvas.getContext('2d');

// Now actually call this and stroke the lines:

vertLines(context, canvas.width);

context.stroke();

</script>

It’s a really good idea to run this in the debugger by setting a breakpoint on the first line of
vertLines and watching what the local variables do every time you hit “play”. You will see
the value of width count down by 10 from 300, and you will see the call stack grow for a
while until it finishes drawing all the lines.

The call stack is always there, but invisible to you unless you look at the debugger (or your
program crashes because it runs out of stack space). It’s an implementation detail inside the
JavaScript interpreter itself. Let’s talk a little bit about it in terms of the code above.

The recursive line-drawing function works the same way any function call works: when a
function is called, the current state of the program is saved in the call stack so that the
program can continue where it left off when the function exits. Most of our program can be
considered to be at the “top” of the call stack. The interpreter marches along, creating our
vertLines function definition, then getting the value for canvas, then getting the
context from that. Then it calls a function. To do that, it remembers what comes next
(context.stroke), then creates some space for the function call’s local variables, which
are all parameters in this case: ctx and width. This space on the stack is often visualized
as a block containing variable settings. We are glossing over a few details for the sake of

A RECURSIVE GRID 157

Figure 6.5: Vertical lines, generated recursively.

clarity. We will also leave out ctx, since it is always the same:

depth name value

1 width 300

Here we show the value at each “depth” of the stack. Since we just barely called
vertLines once, the stack is only 1 entry deep, and the value of width at that depth is
300: the width of the canvas.

In order to do its work, the vertLines function draws a vertical line at x = width,
then—before returning—calls vertLines again. That means our stack has to grow in order
to remember where it left off so it can finish up after the (internal) call to vertLines returns.
This gives us (after a second call) a stack that has stuff in it like this:

depth name value

1 width 300
2 width 290

158 CHAPTER 6. ITERATION THROUGH RECURSION

But, in order to do the work for width = 290, the function has to call itself again with width =
280, and so on all the way down to some number less than 0, drawing vertical lines as it goes:

depth name value

1 width 300
2 width 290
3 width 280
… … …
31 width 0
32 width -10

Before our main call to vertLines(contex, canvas.width) finishes, then, the
stack ends up having 32 entries on it. What happens at this last entry? Well, our function
notices that width < 0, so it immediately returns. That removes its entry from the stack:

depth name value

1 width 300
2 width 290
3 width 280
… … …
31 width 0

Where the function that called it left off was right before its own return, so it is immediately
removed from the stack as well. This happens to every one of the invocations of vertLines
until the main call exits in our main program, leaving us at the line context.stroke(),
which actually draws the lines we just set up.

That”s how recursion works. Remembering where the interpreter left off takes space, and that
space has to grow with every function call. Thus, recursive calls can end up using all available
memory pretty fast even though you don’t feel like you are using any more than usual. Once
that happens, your program stops: no memory means no program.

The JavaScript standard briefly flirted with allowing tail call optimization, but it was
never widely implemented and was ultimately abandoned in favor of something more
explicit that has not yet been adopted, as of 2022, and it isn’t clear that it ever will be.
Thus, recursion will cause memory growth in general, and there is no currently accepted
solution for that in JavaScript. The way we have written this example function, with only a
function call as the last thing it does (the tail position), can already be optimized in that
way if JavaScript ever becomes capable of doing it.

If tail call optimization is ever implemented in JavaScript, then the recursive line-drawing

A RECURSIVE GRID 159

function we’ve been playing with here would not actually grow the stack at all. Instead,
each recursive call would replace the current function’s space on the stack, because the
interpreter can tell that it won’t need to remember anything to clean up.

The important thing to note is that it is not magic: a function calling itself is just creating a new
version of itself and remembering where it left off so it can continue later. It still feels magical
sometimes, though.

To make the rest of the grid, you can easily create a similar function that draws horizontal
lines and call it before context.stroke().

There are many more cool things you can do with recursive repetition, like making rays using
a bit of trigonometry. Here’s one way to do something like that:

:javascript:

function rays(ctx, byDegrees, toDegrees) {

if (toDegrees < 0) {

return;

}

// Find the center, convert degrees to radians, etc.

var angle = toDegrees * Math.PI / 180,

size = ctx.canvas.width / 3,

ox = ctx.canvas.width / 2,

oy = ctx.canvas.height / 2;

// Draw a single ray at the "toDegrees" angle.

ctx.moveTo(ox, oy);

ctx.lineTo(ox + size * Math.cos(angle),

oy + size * Math.sin(angle));

// Draw the rest of the rays.

rays(ctx, byDegrees, toDegrees - byDegrees);

}

var canvas = document.getElementById('drawing');

var context = canvas.getContext('2d');

// Now actually call this and stroke the lines:

rays(context, 10, 360);

context.stroke();

This has essentially the same structure as our vertical lines problem, but it does something
completely different! Here are some questions to ask yourself, even if you are not familiar with
this use of the sine and cosine functions for plotting lines with a certain angle:

• What are the initial arguments to rays?
• Where does rays recur?
• What is changed in the arguments each time rays recurs?

160 CHAPTER 6. ITERATION THROUGH RECURSION

Figure 6.6: Recursive rays.

• What causes it to finish?

By answering those questions, you will probably begin to see how you could change this
function to do more of what you want it to do, even without a perfect knowledge of the math
behind it. That is pretty neat!

Onward

This chapter was meant to be a fairly gentle introduction to recursion in JavaScript, and it also
teaches a thing or two about drawing lines and using information from the canvas like its
width and height. The next chapter teaches a simpler, more common way of doing
repetitive work.

Even if you don’t feel supremely confident in everything you have learned here, each exposure
to recursion can help you learn to think more like a successful, problem-solving programmer.
Congratulations on getting through it!

Exercises

Exercise 6-1: Grid Recursion
Solution on page 411

EXERCISES 161

Use recursion to implement the hLines function. It works like vertLines, but it draws
horizontal lines instead by marching along the y coordinate instead of the x coordinate. Run
our program with both horizontal and vertical lines and verify that it works properly.

Exercise 6-2: Partial Rays
Solution on page 412

Change the arguments passed initially to rays (the first time it is called by the interpreter) to
end on something other than 360 degrees, and make the lines closer together (the original
used 10 degrees, pick something smaller, like 5). Use this to make a sort of “sun on the
horizon”, where only the top half of the circle is drawn.

Exercise 6-3: Circle-like Things
Solution on page 414

The rays function basically draws a bunch of straight lines emanating out from a central
point, and it does it in order, starting at zero degrees (pointing to the right), then going around
counterclockwise until it reaches the final angle. It does this by repeatedly calling moveTo to
get to the central point, then calling lineTo to get away from that point.

Note that, without a moveTo function, the first lineTo behaves as though it were a
moveTo. This is in the documentation for the context object, but in case you don’t have
access to that, you’re welcome.

In this exercise, copy the rays function somewhere and rename it to be polygon. Then
see what happens if you don’t call moveTo at all. Before running your program, answer this
question:

• What will happen if you don’t call moveTo between line drawings? Hint: what was it
doing before?

Once done, increase the byDegrees value in the first call to polygon to be 120. Before
running the program again, answer these question:

• What shape will that draw?
• Why?

Exercise 6-4: Time to Fly
Solution on page 416

Write a program that draws n rectangles of decreasing height, starting at the left edge and
finishing at the right edge. The first rectangle’s height will be the height of the canvas, and the
last rectangle’s height will be canvas.height / n. Use a recursive function name bars
to to draw these.

Once complete, demonstrate that it works for any n by plugging in different values and
showing how the shape changes.

162 CHAPTER 6. ITERATION THROUGH RECURSION

Chapter 7

Arrays, Loops, Switches, and
Randomness

Recursion is a powerful tool—and sometimes the most sensible one—but it’s not always the
most obvious way to express common ideas. Furthermore, many popular
languages—including the default version of JavaScript in the majority of modern browsers in
2022—do not employ the necessary optimizations to make it efficient. Sometimes it’s still the
best tool for the job, but you always have to be mindful of how deep your stack is going to get
when you use it.

So far, we have used recursion to do things one at a time, in order. That process is called
iteration. We “iterate” over elements of an array, or over line positions on a canvas, or the
numbers from 0 to n-1 to do something useful with each of them. The nice thing about
recursion is that once you know functions, you don’t need to know much else; you can recur to
iterate.

Still, that isn’t the clearest way to do it in JavaScript. In this chapter we are going to learn
about loops, by far the most common way of doing iteration. As a bonus, we will also learn
about the conditional switch statement, which will complete our exploration of JavaScript
syntax concepts for a little while. After this, we will focus more on creating programs using the
syntax we already know.

But first, let’s begin by introducing one more thing that holds data: the array.

Arrays

An array is basically an ordered list of things. You can put anything into an array, and any
number of things (up to the limits of the memory). To create an empty array with nothing in it,
you use square brackets, like this:

:javascript:

163

164 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

var a = [];

Indexing

To get an idea of the most common operations on an array, the following console exercise
shows examples of how to create a non-empty array, and how to change and access values
within it based on their index:

:console:

> a = ["milk", "butter", "bread"];

⋖ ["milk", "butter", "bread"]

> a[0]

⋖ "milk"

> a[2]

⋖ "bread"

> a[1] = "margarine";

⋖ "margarine"

> a

⋖ ["milk", "margarine", "bread"]

> a.length

⋖ 3

Note that the first element in an array has index 0. Arrays in JavaScript are 0-based, as all
good arrays should be.

Pushing and Popping

You can also treat an array like a stack, where you push things onto the end. You can also
pop them off:

:console:

> a.push("napkins")

⋖ 4

> a

⋖ ["milk", "margarine", "bread", "napkins"]

> a.pop()

⋖ "napkins"

> a

⋖ ["milk", "margarine", "bread"]

> a.push(42)

⋖ 4

> a

⋖ ["milk", "margarine", "bread", 42]

> a.pop()

⋖ 42

> a.pop()

⋖ "bread"

ARRAYS 165

Pushing happens at the end (the largest index), and so does popping.

Contents and Length

As mentioned earlier, you can put anything you like into an array. It can hold strings, numbers,
functions, objects, other arrays, etc. Anything that is a value can be stored there, just like
values in an object. The main difference is that order matters in an array, and the elements
are accessed by index instead of by key. The first index is always 0, and the last available
index is one less than the length of the array.

Arrays are also objects with a length property (the number of elements in the array) and
several useful methods like the push and pop methods demonstrated above. The full list of
these methods is found with the Array documentation1.

The length of an array is not necessarily the number of things it contains, because
JavaScript arrays are sparse. This is not likely to come up in normal use, though, so we
won’t worry about it here.

As shown in the examples, to push something onto an array adds something to the end of it,
returning the new length. To pop something removes the last element and returns it. These
are probably the most commonly-used array methods.

Slicing

Arrays have a very useful method called slice that bears going over in some detail. We will
use it later on. The slice method takes an array and gives you only part of it back. The first
argument to slice tells it the first index to be part of the new array, and the second element
is one beyond the last index of the new array.

Let’s say we want to keep everything but the first element of an array. We could do something
like this:

:javascript:

var ar = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];

var newArray = ar.slice(1, ar.length);

Going from some element all the way to the end is pretty common, so there’s a shorthand way
to do it by just leaving off the last argument. This is therefore equivalent:

:javascript:

var newArray = ar.slice(1);

That gives us a new array with all of the same elements as the old one except for the very first
element ar[0].

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

166 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

Note that slice does not change the original array, but rather it creates a new one with
all of the appropriate values copied into it. If you want to change the original in place,
slice is not going to do it. You can reassign the same variable, though, like this: ar =

ar.slice(1).

You can play around with slice some more in the console to see how it works. It’s useful to
start with an array that has values matching the indices so you can really get a handle on
things:

:console:

> ar = [0, 1, 2, 3, 4, 5]

⋖ [0, 1, 2, 3, 4, 5]

> ar.slice(1, 4)

⋖ [1, 2, 3]

> ar.slice(2)

⋖ [2, 3, 4, 5]

As you can see, the first argument tells us which element will be taken to be the first one in the
new array, and the second argument tells us where we stop. As is hopefully abundantly clear
now, the first index is inclusive, meaning it is included in the final result, and the second is
exclusive, meaning, as you might expect, that it is excluded from the result—we take the
element just before it to be the last one.

While Loops

With a data structure like the array, we might want to do something to every element in it. We
have seen earlier how we could devise a recursive function to do something to a sequence,
but there is a far simpler, memory-efficient, and syntactically clean approach: loops.

A loop, at its most fundamental, is a chunk of code that you run multiple times while some
condition is true. The simplest kind of loop is the while loop. Here is its basic structure:

:javascript:

while (condition) {

// If true, run this code

// Without stopping, repeating,

// 'Til false condition.

}

It looks an awful lot like an if statement, right? In fact, it’s very similar! The difference is this:
when an if statement executes, the body (in braces) is run exactly once when the condition
is true. With a while loop, the body is run when the condition is true, then the condition is
checked again. If it is still true, the body is run again, and again, and again until the condition
becomes false.

WHILE LOOPS 167

Just like if statements, all loops can omit the curly braces if their bodies contain exactly
one statement. Don’t do that. That’s off the edge of the map, and there be dragons.

We call this a loop because if you were to draw a diagram showing what happens, you would
need an arrow “looping back” to the beginning after the body is executed.

Figure 7.1: A while loop: the loopy part is shown with bolded lines.

If the condition never becomes false (or never encounters a break or return statement),
then the loop never terminates. It is therefore important to remember to ensure that something
in the body eventually changes the condition.

That seems like something we can do. Remember our grid-drawing task from the previous
chapter? As a reminder, here is the code for one of the recursive vertLines function. To
refresh your memory, try tracing through the execution path, starting at the call to
vertLines at the bottom of this code:

:javascript:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function vertLines(ctx, width) {

if (width < 0) {

return;

}

ctx.moveTo(width, 0);

ctx.lineTo(width, ctx.canvas.height);

vertLines(ctx, width - 10);

}

var canvas = document.getElementById('drawing'),

context = canvas.getContext('2d');

vertLines(context, canvas.width);

168 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

context.stroke();

</script>

Figure 7.2: Vertical lines with a recursive function.

Let’s see if we can replace our recursive vertLines function with a while loop.
Remember our statement of what we want to do:

• Draw vertical lines to fill the canvas, spaced 10 pixels apart.

Thinking about this iteratively instead of recursively means taking an imperative “shampoo
instructions” approach instead of a functional “recurrence relation” approach. On a shampoo
bottle, we often see the instructions “Wet hair, lather, rinse, repeat if desired.” See how these
are all commands? Where a recurrence relation describes relationships between steps, an
imperative definition describes the steps themselves. Here, we will do something similar:

1. Set the current position x to be canvas.width
2. Draw a line at the current x
3. Subtract 10 from x

4. Repeat from step 2 as long as x >= 0.

The key difference here, the thing that allows loops to work for iteration, is the fact that we are
doing something repetitive, with small changes each time. In our recursive functions, no
variables ever really changed value. Instead, new variables were always created based on
the value of other variables. When we use a loop, however, we create a variable whose value
changes over time. For example, we can make an x variable that “keeps track” of the current
line position.

WHILE LOOPS 169

Our loop will follow exactly that pattern. Here is a new vertLines function that uses a
while loop. See if you can match the steps above with the loop code below:

:javascript:

function vertLines(ctx) {

var x = ctx.canvas.width;

while (x >= 0) {

ctx.moveTo(x, 0);

ctx.lineTo(x, ctx.canvas.height);

x = x - 10;

}

ctx.stroke();

}

Figure 7.3: Vertical lines with a while loop.

Did you get the lines matched up with the code? Here’s how I would do it, with the steps in
comments off to the side:

:javascript:

function vertLines(ctx) {

var x = ctx.canvas.width; // 1. Set the current position.

while (x >= 0) { // 4. Repeat as long as x >= 0.

ctx.moveTo(x, 0); // 2. Draw the line.

ctx.lineTo(x, ctx.canvas.height);

x = x - 10; // 3. Subtract 10 from x.

}

ctx.stroke();

}

170 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

This is a very straightforward way to do multiple things in order, and for most folks it is a more
natural way of thinking about iteration; there is no need to first develop a recurrence relation.
Recursion is the best way to approach some problems, still, but not this one. How can you
decide, though? A simple rule for languages that have loops is this:

Use loops when possible, fall back to recursion when it’s a natural fit.

Most of the time that means “just use loops”.

Another benefit of loops is shorter, clearer, more readable code. You can see more of the
pattern all at once, without having to trace through function calls.

Incidentally, mutability is a major distinction between “functional programming” (describe
what you want to compute) and “imperative programming” (describe what you want to
do). In pure functional programming, every value is the result of a function call—including
things like + that don’t look like functions, but can easily be thought of as such—and every
variable is assigned exactly once. The value of a variable never changes. That’s true for
our recursive vertLines function: we might pass in computed values for width,
effectively initializing a brand new variable for that function call, but we never reassign
variables to hold new values.

Keeping things unchanged (immutable) in a pure functional way requires recursion.
Allowing variables to be changeable (mutable) opens the door to iteration using loops.
That’s typical in imperative languages, and most mainstream languages are
fundamentally imperative with numerous helpful functional concepts sprinkled in.
JavaScript is very much like that.

Loop iteration is often simpler to understand than recursion, but that doesn’t mean that it’s
better in any fundamental way. There are pure functional languages that have no concept
of loops at all, and they are every bit as powerful and expressive as imperative languages.
In fact, it is sometimes convincingly argued that they are more expressive than
mainstream imperative languages.

The key is to use the best tool for the language you are working in right now : when it’s
possible and clearer to do so, use loops.

Getting back to our concrete problem, you can probably see how you would adapt this
function to draw horizontal lines. Give that a try, now!

Incrementing Variables

As you might expect, the various steps in a loop description have names, which we associate
with the code above:

• Initialize: set the starting value x = ctx.canvas.width once, at the beginning.
• Check: check the condition to see if we should continue, if x >= 0.
• Increment: change the value of x to x - 10 to get closer to a false condition.

WHILE LOOPS 171

The initialization and condition parts are somewhat familiar now, because of previous
discussions on variable assignment and if statements. Incrementing a variable can be
surprisingly interesting, though! This gives us a chance to take a quick detour into
assignment operators2. So far we have seen and used exactly one assignment operator: =. It
turns out that there are several more.

Why might we need an alternate assignment operator? Let’s take another look at that funny
assignment at the bottom of our loop:

:javascript:

x = x - 10;

That assignment references x twice. It reads from it, subtracts 10, then stores it. It turns out
that programmers really hate repeating themselves, so a shorthand was developed for this
kind of thing. It’s called a “subtraction assignment” and it looks like this:

:javascript:

x -= 10;

That’s basically the same as what we had, but we only mention x once. The nice thing about
it is that it’s obvious at a glance that x is being modified based on what it used to be. Clutter
has been removed, clarifying the most important information. It now reads like “x is reduced
by 10”. There is a similar “addition assignment” written +=, and there are several more.

For the extra common case of adding 1 to a variable, we have these tantalizing possibilities
that all do the same thing:

:javascript:

x = x + 1;

x += 1;

x++;

++x;

The last two are new in this discussion: x++ and ++x. They are called increment
operators3 and are equivalent to each other as written: they add 1 to your variable. There are
similar decrement operators4 that subtract 1: x-- or --x.

Good code will not exercise the difference between ++x and x++ because good code
doesn’t use the value of an assignment expression. It is a source of subtle bugs to do so.

What is that difference, though? The difference between the prefix (++x, --x) and postfix

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Assignment_Operators
3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#

Increment_()
4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#

Decrement_(--)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Assignment_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment_()
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Increment_()
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Decrement_(--)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Arithmetic_Operators#Decrement_(--)

172 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

(x++, x--) versions of the increment and decrement operators lies in what happens
when they are treated as expressions, such as during assignment: y = x++ or y =

++x. The first one assigns y to the value of x, then increments x. The second one
increments x first, then assigns y to the newly incremented value of x. The difference in
these cases is what y is after they are done.

This means you are doing two nontrivially related assignments in one statement, and that
means clarity suffers. Don’t do it. It can be a source of subtle bugs. Instead, always use
increment and decrement operators as statements rather than as expressions that
produce a value. Thus, a better way of writing y = ++x is ++x; y = x, and a better
way of writing y = x++ is y = x; ++x. These are far clearer.

That was a long-winded way of getting to the fact that instead of writing x = x - 10, we
could and usually would write x -= 10.

Early Stopping And Skipping Stuff

All loops in JavaScript, including while and the for loop we will discuss below, understand
two special keywords: break and continue. These are not used much in this text, but it is
important to be aware of what they do, starting with break.

In a nutshell, break says to the interpreter, “Stop this loop right now and jump to the end.”
Thus, this loop will terminate after outputting a single “hello”, even though its condition is
never false:

:javascript:

while (true) {

console.log("hello");

break;

console.log("Never let them see you print.");

}

Note also that it stops exactly where the break is located and skips over the rest of its body.
The second log function is never called.

The continue keyword also interrupts the flow of the loop, but instead of jumping to the
end, it jumps back to the beginning and attempts to do the next iteration. It’s like saying, “Hey,
this trip through the loop has finished its useful work, so start the next trip through it right now.”

In the case of a while loop, that just means evaluating the condition again and, if true, going
through the loop again.

As mentioned, we won’t use break and continue very much in this course, but they’re
very useful. For example, if you want to know whether your value appears in an array, you can
look at each index one at a time until you find the value you are looking for. Once you have
found it, you don’t need to keep going: you already know it’s there. In that situation you would
use break. To illustrate that point, look at this code and see if you can tell how it works:

DO-WHILE LOOPS 173

:javascript:

var values = ['a', 'b', 'c', 'd'];

var i = 0;

while (i < values.length) {

if (values[i] === 'c') {

break;

}

++i;

}

console.log("Loop exited at index " + i);

There’s that pattern again: initialize, check, do stuff, and increment. But in the “do stuff”
portion, we end early if we find what we were looking for. That’s the way you use break in a
loop.

Do-While Loops

There’s a variation on the while loop that you won’t see very often. It’s called a do while

(or just a do) loop. It looks like this:
:javascript:

do {

// The body runs once,

// Condition finally checked,

// Runs perhaps again.

} while (condition);

It works just like the while loop, but the body is guaranteed to execute at least once. It is
structured to make that somewhat easy to see: we do the stuff in the body, then we check the
condition to see if we want to do it again. This actually matches the whole “shampoo
instructions” idea a little more closely: lather and rinse, repeat if desired. Like this:

:javascript:

do {

lather()

rinse()

} while (desired())

You will see these occasionally and may find a handy use for them from time to time, but they
are not as common as the others.

For Loops

Using a while loop is great for iteration because it is easy to understand: it’s basically a
repeating if statement. Our while loops have always been shaped like this:

174 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

:javascript:

var i = 0;

while (i < N) {

// do stuff

i++;

}

The full pattern, as mentioned earlier, is initialize-check-increment, and you can see those
three things in the loop: i is initialized to 0, the condition checks that it is less than N, and it
is incremented by 1 at the bottom of the loop. Because this particular thing is so common,
and because it is equally common to do silly things like forget to increment your variable
inside the body of a while loop (causing it to run forever), there is another loop that you will
see even more often. It is called a for loop.

You can think of it as “Do this thing for a certain number of iterations”, though it is much
more flexible than that. Let’s have a look at the shape of a for loop that prints vertical lines
on a canvas:

:javascript:

for (var x = ctx.canvas.width; x >= 0; x -= 10) {

ctx.moveTo(x, 0);

ctx.lineTo(x, canvas.height);

}

ctx.stroke();

This behaves just like the while loop we wrote earlier:
:javascript:

var x = ctx.canvas.width;

while (x >= 0) {

ctx.moveTo(x, 0);

ctx.lineTo(ctx.canvas.height);

x -= 10;

}

ctx.stroke();

In the for loop, however, all of the loopy stuff is in the first line and only the meaty stuff is in
the body. This makes it much easier to remember things that you might otherwise forget, like
initializing and incrementing the loop variables; in a for loop those steps are right next to the
terminal condition, instead of spread around in a similar while loop. Additionally, it is easy to
see how the loop progresses without looking at what it does; everything is right there in one
place. Let’s look at how these loops work right next to each other, in abstract:

:javascript:

// While loop:

initialize x

while (condition) {

body

FOR LOOPS 175

increment x

}

// For loop:

for (initialize x; condition; increment x) {

body

}

These loops behave differently when continue is used. Looking at our specific
line-drawing loops above, if we were to continue in the while loop, we would just
check x >= 0 again and possibly execute the body. If, however, we were to
continue in a for loop, we would perform the x -= 10 increment and then check x
>= 0. This is one of the powerful and useful things about for loops: every time through
the loop, you can be sure that the “increment” will be run: in this example, x will be sure to
change even when continue is used. That’s not true for while loops, where a badly
placed continue can cause an infinite loop.

Finally, there are other forms of for loop: for-in and its younger, more talented cousin
for-of. We won’t go over those just yet, though. This “initialize; check; increment” form
is very useful and common, and we can do just about everything we need with it.

The loop variable x can, of course, be named whatever you want; x is just used as a simple
example here. The name i is very common when it’s the index of something like an array.

The thing to take away from this is the transformation between while and for. Let’s redo
our grid using this new knowledge, repeating all of the setup code to make it simpler to
remember past lessons:

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function vertLines(ctx) {

for (var x = ctx.canvas.width; x >= 0; x -= 10) {

ctx.moveTo(x, 0);

ctx.lineTo(x, ctx.canvas.height);

}

ctx.stroke();

}

var canvas = document.getElementById('drawing');

var context = canvas.getContext('2d');

vertLines(context);

</script>

You should be able to run this. Can you see how you would add a horizontal lines function? Or
perhaps you could change vertLines to be called gridLines and put a second loop
right inside of it.

176 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

Figure 7.4: Vertical Lines.

All elements of the for loop are optional. The condition is assumed to be true if left off,
so “forever” can be spelled for(;;), but you rarely see that in practice. Usually you will
see “forever” spelled as while (true).

It’s useful to know what it means to leave out elements, though. You will often see loops
that leave off the initializer in real code.

Without even looking at each loop’s body, you can tell basically how the loop marches along.
You can see immediately in the for loop which variable is changing, what will cause the loop
to finish, and how much the loop variable changes each time. Now we can make a nice,
relatively simple grid-drawing routine, with no recursion in sight. Neat!

Tiling a Canvas

Drawing a grid can certainly be useful, but not very exciting. Let’s try something else with our
newfound understanding of loops. Let’s make our canvas into more of a patchwork quilt.

It’s time to start a new program. By now, you know the drill. Make a file, put stuff in it, save it
as some_name_you_like.html, and open it in your browser. The standard canvas stuff
will be used again, so we will start with our familiar skeleton:

:html:

TILING A CANVAS 177

<canvas id="drawing" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Fun things await.

</script>

We will start by creating a loop in place of // Fun things await. Let’s make a single
row of filled rectangles, all the same color, separated by a single pixel of space. We will stick
with squares 10 pixels apart:

:javascript:

// Constants should be named,

// Keeping magic numbers out,

// Often UPPER_CASE:

var SQUARE_SIZE = 10;

// Draw a row of squares.

for (var x = 0; x < ctx.canvas.width; x += SQUARE_SIZE) {

ctx.fillRect(x+1, 1, SQUARE_SIZE-1, SQUARE_SIZE-1);

}

Figure 7.5: A row of squares.

Note that this time we used a more common way of writing a for loop: starting low and
ending high. That’s a bit different than what we did for grid lines earlier, where we started
high and ended low to keep things similar to the recursive version, but the principles are

178 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

all exactly the same.

Since this is still new, let’s go over it again in detail. As can be seen in the program, we are
being careful to not put magic constants everywhere. If we used the number 10 instead of
SQUARE_SIZE, we would see 10 and 9 in multiple places. Instead, we can see the
relationship between all of the numbers, and if we want to use squares of size 5 at some point,
it’s just one change instead of several. That’s an important practice: no magic numbers. The
most common exceptions to this are 0 and 1, of course.

The loop is the interesting part. We start at the left side, with x = 0 in the initializer position.
We only execute the loop body if x < ctx.canvas.width, since otherwise we would be
drawing outside of the canvas’s extent where anything we do is lost. Finally, in the increment
position we have x += SQUARE_SIZE, which advances us (in this example) 10 pixels to
the right.

We use the words “left” and “right” in that explanation, but that’s not really what x means, at
least not yet. It’s how x is used that gives it meaning to us (the computer assigns no meaning
to anything at all—it is only doing computations; that is all it knows how to do—we humans
assign meaning to the output of those computations, that happens to look to us like colored
shapes), and the loop body is where that happens. There, a rectangle 1 pixel to the right of x
and one pixel down is drawn. We draw just shy of SQUARE_SIZE since we already used a
pixel for the space on the edges.

Each time through the loop, it draws another rectangle, the same size as all the others, but
shifted to the right. That’s a good start!

Nested Loops

What about filling the rest of the rows? This only does the first one. For that, we will use a
nested loop. In the same way we used the term “nested” with the if statement, here we use
it to mean “one loop inside of another”. Basically, we need to run our row-filling loop once for
each row, and each row starts with a different value for y:

:javascript:

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

}

}

We have taken our original loop and moved it to the inside of another one. We had to change
one thing in that inner loop, though: instead of drawing at (x+1, 1), we now draw at (x+1,
y+1). Our original version assumed that we were just drawing on the top row.

What does the outer loop do? It starts us at the top with y = 0, does everything inside over
and over again so long as y < canvas.height, and always adds SQUARE_SIZE to y

COLOR CYCLING USING ELSE-IF 179

when it finishes one iteration.

Remember that the body of a loop is executed multiple times, with different values for the loop
variable each time. So, our for (var y ...) loop is going to execute its entire body
several times, once for each row that we want to create. But in this case the body of the loop
is another loop! This “inner” loop outputs a square for each x coordinate, starting at 0 and
ending when it reaches the width of the canvas.

This is something you are going to want to run, both in and out of the debugger. In the
debugger, put a breakpoint on the call to fillRect and watch what happens to x and y
each time you advance the program.

To make it easier to experiment, here is the full, surprisingly short program:
:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing');

var ctx = canvas.getContext('2d');

var SQUARE_SIZE = 10;

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

}

}

</script>

Load it up and play around!

Color Cycling Using Else-If

It would be more interesting to have more than one color represented here. What if we defined
a few colors and then cycled through them to get a rainbow effect? How could we even do
that?

There are a couple of ways to go about it. Here is one idea. Inside of the inner loop, we could
change the color based on what it was the previous time through, like this:

:javascript:

var color = 'red';

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

ctx.fillStyle = color;

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

// Let's pick a new color before we draw again!

if (color === 'red') {

180 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

Figure 7.6: All tiled.

color = 'orange';

} else if (color === 'orange') {

color = 'yellow';

} else if (color === 'yellow') {

color = 'green';

} else if (color === 'green') {

color = 'blue';

} else if (color === 'blue') {

color = 'purple';

} else if (color === 'purple') {

color = 'red';

}

}

}

Do you see how this works? We start out with the color “red”, and we set the context color
and draw a square. Then we check the current color and change to the next one for the next
time through the loop. In this case, if it was “red”, it will be “orange” next. If it was “orange”, it
will be “yellow” next, and so on through the colors of the rainbow until we get to the end, where
“purple” goes back to “red” and the colors repeat.

We don’t just use ctx.fillStyle to determine what color to use next, because it
actually transforms our nicely named colors into RGB (Red-Green-Blue) specifications,
and those don’t have nice names like what we start with. A color like “red”, for example,

SWITCH IT UP 181

Figure 7.7: Color Cycling.

becomes '#ff0000' when we read it back. The use of hexadecimal for colors is a
topic for another time; just know that it is usually best to keep track of things in your own
variables rather than relying on browser objects to give you back exactly what you gave
them. Browser document elements are notorious for not working in intuitive ways all the
time (in this particular instance, the surprise is due to not “round-tripping” the value
properly: you read something different than you write), and this is one instance of that.

Also, for those interested in more vocabulary, what we have created here is a very simple
version of a state machine: something that determines what to do next by the current
state. When it does the next thing, the state changes, and it has to re-evaluate based on
that when it goes around again. This particular state machine changes state in this order:
“red, orange, yellow, green, blue, purple” and then it repeats.

One thing that can be fun is changing the square size. If you change it to something like 15,
the pattern will change. The colors are cycling based on individual squares, not based on
rows and columns: each square gets a different color, and since the size of the square affects
how many appear in a row, you can use that to alter the overall pattern.

Switch It Up

There is another interesting conditional statement in JavaScript called the switch statement.
It can basically replace an “else if” pattern, but it has some additional and interesting quirks.
Let’s start by just doing a straightforward replacement of our else if chain:

182 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

:javascript:

var color = 'red';

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

ctx.fillStyle = color;

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

// Let's switch up the color, and switch *on* it, too.

switch (color) {

case 'red':

color = 'orange';

break;

case 'orange':

color = 'yellow';

break;

case 'yellow':

color = 'green';

break;

case 'green':

color = 'blue';

break;

case 'blue':

color = 'purple';

break;

case 'purple':

color = 'red';

break;

}

}

}

This looks a bit different than what we had before, but it is very close to the same thing. The
first thing to notice is that we only have to mention color once to check its value. It’s up
there in the switch header. Then there are all of these case sections as well as a ton of
break commands. What can we make of all that?

Here is the basic structure of a switch statement:
:javascript:

switch(checkValue) {

case value1:

body1

break; // skip all the rest of the cases

case value2:

body2

// no break---falls through to next body

case value3:

body3

break;

default:

SWITCH IT UP 183

bodyDefault // executes when nothing else matches

}

Note that once a case matches, the interpreter will run everything it finds until it sees a break
or the end of the switch statement. In other words, if one of your cases doesn’t use break,
execution will continue into the next case body. This is called “falling through” to the next case
and is a sometimes useful behavior, but the general rule is, “Don’t do it.” Fall-through is pretty
dangerous. Let’s look at how it works below, but remember that this is not recommended. It is
better, in this case, to repeat yourself and keep things clear for the reader: don’t forget your
break statements in case bodies!

:javascript:

switch(color) {

case 'red':

console.log("matched red");

case 'blue':

console.log("running blue");

color = 'yellow';

break;

case 'green':

color = 'blue':

break;

// etc.

}

If the color is "red" in this example, the console will output this:
:console:

matched red

running blue

The “red” case has no break in it, so both 'red' and 'blue' case bodies are executed.
This is a very unfortunate default behavior because it makes the most common situation the
most verbose. We will see alternative approaches using data structures and closures that
don’t suffer from this shortcoming, and you may decide that you like them better as we move
one. There are trade-offs involved in all possible choices.

Note that switch is implicitly doing an equality check, which brings up the question of which
kind of equality it is using. It turns out that switch uses ===, which is what we have been
using all along. This is the safest equality operator, as it compares types as well as values,
and does not implicitly coerce strings to numbers and vice versa. Thus, the output of the
following program is “safe”:

:javascript:

switch("50") {

case 50:

console.log("unsafe");

184 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

break;

default:

console.log("safe");

break;

}

Arrayed in Color

If we had even more colors, even our nicer else if expressions would quickly get unwieldy
and hard to follow (note: this may have already happened). Also, we keep repeating
ourselves—we have to mention a color both when we check for it (to change it) and when we
set it to the new value. That’s two mentions for every color, and lots of chances to misspell
something. In fact, I did exactly that when writing this, multiple times, so for me it’s not merely
an academic concern.

There is a principle in programming called the “Don’t Repeat Yourself” (DRY) principle. The
idea is this: if you are repeating yourself, you are introducing opportunities for mistakes as
well as wasting effort. Where possible and sensible, don’t repeat yourself. Let’s see how we
could apply that here.

What we want is a list of colors that we care about, and a way of cycling through that list
without repeating ourselves. An ordered list of colors…that sounds an awful lot like an array.
What if we used one of those? Let’s see what that might look like:

:javascript:

// Create an ordered list of colors: an array.

var COLORS = [

'red',

'orange',

'yellow',

'green',

'blue',

'purple',

];

// Initial color index. This will be red.

var colorIndex = 0;

// Do the normal nested-loop thing to make a grid.

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

// Get the current color and fill the rectangle.

ctx.fillStyle = COLORS[colorIndex];

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

// Change to the next color.

colorIndex++;

ARRAYED IN COLOR 185

// If we went off the end of our array, go back to

// the beginning.

if (colorIndex >= COLORS.length) {

colorIndex = 0;

}

}

}

Figure 7.8: Repeating colors.

We just created an array of color values and cycled through it without an else if in sight.
That’s interesting. How does it work? The main attraction is this line:

:javascript:

ctx.fillStyle = COLORS[colorIndex];

What is that doing? It is setting the drawing color based on the contents of our array and the
current color index. The colorIndex is a number telling us which position in the array we
are interested in. The colorIndex starts at 0, so the first color we will use will be 'red'
because COLORS[0] contains the value "red" (remember, the first element of an array is
at index 0). If you are comfortable with that, you can hopefully see, for example, that
COLORS[3] evaluates to 'green'.

Armed with that information, you are now ready to understand how we are cycling through the
colors using an array instead of a switch statement. Let’s look at the last few lines of the
inner loop, starting with this one:

:javascript:

186 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

colorIndex++;

Remember our friend the increment operator? That’s our friend right there. It changes
colorIndex to be one more than it used to be. It’s equivalent to colorIndex += 1

or colorIndex = colorIndex + 1.

After we increment colorIndex, we check whether it has gotten too big for its array, and if
it has, we set it back to 0 to start over in our list of colors:

:javascript:

if (colorIndex >= COLORS.length) {

colorIndex = 0;

}

Thus, for each square we draw, we move the color index forward one, pointing at the next
color in the array. If we get past the end of the array, we start back at the beginning. It’s pretty
simple once you see what is happening. It is also elegant: we list the colors in exactly one
place, and then we just cycle through them. It is also extremely easy to add more colors or
rearrange the colors that are there: just change the array, and the code adapts without any
other changes!

Modulus

There is another common way of doing this kind of repetitive cycling (where we start over at 0
after reaching some terminal value), and that is using the modulus operator %. Modulus
(frequently shortened to “mod”) is basically the same as taking the remainder after division.
Let’s look at what that means by using a table of values for dividing by 5 and taking the
modulus of 5.

The remainder is zero when our number is perfectly divisible by 5, then it counts upward as
our number counts upward. After it reaches 4, it resets to 0 and counts up again.

Input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

/ 5 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2
% 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

That is exactly the behavior we want for our array, but using the array’s length instead of the
number 5! Let’s look at what happens to our color cycling when we use modulus (remainder):

:javascript:

var COLORS = [

'red',

'orange',

'yellow',

RANDOM NUMBERS 187

'green',

'blue',

'purple',

];

var colorIndex = 0;

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

ctx.fillStyle = COLORS[colorIndex % COLORS.length];

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

colorIndex++;

}

}

That is nice and concise, and once you are used to the modulus operator, it is also fairly
obvious what is going on: no matter how large colorIndex becomes, we will always get a
value out of it that fits inside our array, because we are using the array length as an argument
to the modulus operator. It is quite popular for this sort of thing, and we will be seeing it again.

If we had an exceptionally large set of things we wanted to do, something in the range of
253, for example, this code would eventually fail. It’s easily fixed by resetting
colorIndex to the result of the modulus operator after incrementing it; then it just
keeps resetting to zero at appropriate moments.

Let’s recap. In this section we were introduced to nested loops, indexing arrays, cycling
through values, and using modulus to make that simpler. That’s quite a bit of stuff, and we are
finally doing something interesting with our canvas!

Random Numbers

Speaking of interesting, let’s make things less predictable, literally. Let’s change this up so
that a random color is picked from the array every time instead of just the “next” one.

There are many kinds of randomness, and a discussion of sources of randomness and their
various qualities is beyond the scope of this course. We will just blindly use the provided
Math.random() function and assume it is “random enough” for our needs here, which it is.

Some things are more random than others. Getting the radioactive output of a banana
(yes, that’s a thing) is much more random than grabbing the current time every so often,
for example. Computers usually have multiple means of getting randomness, and more
correct means are usually more costly in time. We won’t get into that here, but it can be
useful to know: randomness is its very own field of study in computer science, and it is

188 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

fascinating.

“Pseudo-random” basically means that a number appears usefully random, but can
actually be predicted if you know the right initial conditions. Such numbers used to be
created from books full of number tables, but now we have interesting algorithms for
generating them instead, and we can make their seeds (initial conditions) based on things
like the clock or the state of the network to reduce predictability.

The Math.random function takes no arguments and produces a pseudo-random real
number between 0 and 1, never quite managing to include 1. Let’s use the console to try it
(your numbers will be different—these are, after all, random):

:console:

> Math.random()

⋖ 0.5343124314422523

> Math.random()

⋖ 0.2841169425251435

If you keep doing that, you will keep getting different answers. That’s helpful, but how do we
use it for color cycling?

For that, we will also want to make use of two operators: multiplication and floor. We can
easily use multiplication to expand the range of our random numbers from [0, 1) to, say,
[0, COLORS.length). That’s very useful, but because we’re dealing with real numbers,
it will include things like 3.6, which is not a very helpful array index. To get an integer array
index from a number like that, we use Math.floor.

Mathematical range notation uses square brackets [] to indicate “inclusive” and round
brackets () to indicate “exclusive”. The range [0, 1] would be all numbers between 0
and 1, including both 0 and 1. The range [0, 1) is the same range, but excludes the
number 1. It includes numbers arbitrarily close to 1, but never quite gets to 1.

The “floor” of a number is essentially the closest integer at or below it. Thus, the floor of 4.2
is 4, the floor of 6.8 is 6, the floor of -1.2 is -2, and the floor of any integer is just itself.
You can think of it as a rounding operator that always rounds down. Similarly, the
corresponding Math.ceil (ceiling) function always rounds up.

If we combine these concepts, we can get a random array index. Let’s try some examples in
the console (you will get different numbers because they are random). Note that you can
repeat the last command by typing the up arrow on your keyboard, thus avoiding having to
copy-paste or retype the command multiple times:

:console:

> Math.floor(Math.random() * 10)

⋖ 7

> Math.floor(Math.random() * 10)

⋖ 9

RANDOM NUMBERS 189

> Math.floor(Math.random() * 10)

⋖ 4

> Math.floor(Math.random() * 10)

⋖ 2

> Math.floor(Math.random() * 10)

⋖ 1

What are we doing there? We are stretching the random range from [0, 1) to [0, 10) by
multiplying whatever number it produces by 10. If the random function gives us 0.2, we
multiply by 10 to get 2.0. If it gives us 0.98, we multiply by 10 to obtain 9.8, and so on.
Remember, this means it will produce numbers from 0 all the way up to 10, but it can never
quite produce an actual 10, just a number really close to it. After expanding the range with
multiplication, we take the floor, guaranteeing that we will only get one of the integers 0, 1, 2,
3, 4, 5, 6, 7, 8, or 9, with no fractional values. If you run that line over and over again (press
the up arrow to get the previous command in the console, it makes it much faster), you will see
that the number is always one of those 10 numbers from 0 through 9.

That looks perfect! We can use something like that to get a color for our squares. Before we
do, however, it might make sense to save our color-cycling code somewhere and start a new
program file. Copy the color-cycling code into the new file, and we will make some changes
there. That way you will have a record of what you did and you can go back to it if you want.

Ready? Good. Here is a review of what we had already:
:javascript:

var COLORS = [

'red',

'orange',

'yellow',

'green',

'blue',

'purple',

];

var colorIndex = 0;

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

ctx.fillStyle = COLORS[colorIndex % COLORS.length];

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

colorIndex++;

}

}

There are two lines in this code that deal with cycling the colors: the line that initializes the
color by setting colorIndex = 0, and the line that changes the color by using modulus to
compute the next index. When we use randomness, we don’t need to keep track of where we

190 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

are in the array, since the current color doesn’t depend on the previous one anymore, so the
colorIndex variable is no longer strictly needed. We will use it anyway for clarity, though.
We will thus do two things:

• Remove both of those lines (the one that sets colorIndex to 0, and the one that
changes it). We won’t be needing them. Farewell!

• Produce a random colorIndex in the beginning of the inner loop body.
• Use that when setting fillStyle.

:javascript:

var COLORS = [

'red',

'orange',

'yellow',

'green',

'blue',

'purple',

];

for (var y = 0; y < canvas.height; y += SQUARE_SIZE) {

for (var x = 0; x < canvas.width; x += SQUARE_SIZE) {

var colorIndex = Math.floor(Math.random()*COLORS.length);

ctx.fillStyle = COLORS[colorIndex];

ctx.fillRect(x+1, y+1, SQUARE_SIZE-1, SQUARE_SIZE-1);

}

}

If you run that, you will get a random pattern of squares. That alone is pretty neat, but even
cooler is the fact that every time you run it the pattern will be different. Try reloading the page
a few times and see what happens to the colors.

Congratulations! You have now learned about randomness, which is an essential component
of many computer programs, including games. That means we can start thinking about even
more interesting things like animation!

Exercises

Exercise 7-1: Array Basics
Solution on page 419

Write a small program that performs the following steps in order. Before running the program,
answer the questions in the steps below and put your answers in the comments:

1. Create an empty array,
2. Push the numbers 1, 2, 3, and 5 onto the array,
3. Add a comment indicating the length you think the array has at this point,
4. Alert the value of pop,

EXERCISES 191

Figure 7.9: Random colors.

5. Add another comment indicating the length you think the array has at this point,
6. Push the values 4 and 5,
7. Add final comment indicating the length you think the array has at this point, and
8. Alert the array.

Exercise 7-2: Slicing Arrays
Solution on page 420

A slice of an array is a copy of a contiguous part of it. For the array ar below, write down the
value of the following expressions:

:javascript:

var ar = [0, 1, 1, 2, 3, 5, 8, 13, 21];

1. ar.slice(0)
2. ar.slice(1)
3. ar.slice(1, 3)

4. ar.slice(4, 5)

5. ar.slice(3, ar.length-1)

Exercise 7-3: Finding elements in arrays
Solution on page 421

After running the “find an element in the array” function below, what is i when the value is
found? What would it be if we were looking for 'e' instead of 'c'?

192 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

:javascript:

var values = ['a', 'b', 'c', 'd'];

var i = 0;

while (i < values.length) {

if (values[i] === 'c') {

break;

}

i++;

}

Exercise 7-4: Addition and Subtraction Assignment Operators
Solution on page 421

There are various ways to add and subtract values from things. After each line of the following
program, show the value for i.

:javascript:

var i = 1;

i = i + 13;

i = i - 1;

i += 5;

i -= 2;

i++;

i--;

Exercise 7-5: Horizontal Lines Using While Loops
Solution on page 422

Write a program that draws a grid using while loops. To do so, take the vertLines
function that uses a while loop and use that as a template to create a hLines function that
looks similar. Put these together to make a grid on a canvas.

Exercise 7-6: While Loops and Arrays
Solution on page 423

Write a function that, using a while loop, computes the sum of all elements in a given array.
The function can be called whatever you want, but it should accept exactly one argument: the
array.

Exercise 7-7: While Loop and Graphing Functions
Solution on page 425

A really interesting thing to do with loops is function graphing. When you go to graph a
function like 𝑓(𝑥) = 𝑥2 − 3, what do you usually do? You probably make something like
table of 𝑥 and 𝑓(𝑥) values, draw dots at all of those locations, and then connect them with
lines. It turns out that computers are really good at that.

EXERCISES 193

To start, here is some skeleton code. Your task will be to implement the function that plots
𝑓(𝑥) = 𝑥2 − 3. We have appropriately transformed the canvas coordinates to make this
sensible (positive y values go up, and the origin is in the middle now), but without explanation.
If you want to learn more about canvas transforms, we will get to that near the end of the
course.

Notes and requirements:

• The function is 𝑓(𝑥) = 𝑥2 − 3.
• The function should be plotted for integer values −30 ≤ 𝑥 < 30.
• Use lineTo to draw line segments (remember that the first lineTo acts like a
moveTo, which is helpful here).

:html:

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById("graph"),

ctx = canvas.getContext("2d");

function graph(ctx) {

// YOUR LOOP GOES HERE

}

// Move origin to center, flip y.

ctx.translate(canvas.width / 2, canvas.height / 2);

ctx.scale(1, -1);

graph(ctx);

ctx.stroke();

</script>

Exercise 7-8: While With Break
Solution on page 427

Without using the computer, what does the following code display? Remember that alerting
an array converts it to a comma-separated list of its contents.

:javascript:

var i = 0,

vals = [];

while (true) {

if (i > 10) {

break;

}

vals.push(i);

i++;

}

alert(vals);

194 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

Exercise 7-9: While With Continue
Solution on page 427

Without using the computer, what does the following code display? Remember that % is the
“modulus” or “remainder” operator, so for example, 5 % 3 is 2: the remainder of dividing 5
by 3.

As a second part to this question, what happens if the i++ immediately before continue is
removed?

:javascript:

var i = 0,

vals = [];

while (i < 10) {

if (i % 2 === 0) {

i++;

continue;

}

vals.push(i);

i++;

}

alert(vals);

Exercise 7-10: Basic For Loops
Solution on page 428

Show the for loop that is equivalent to the following code that uses while:
:javascript:

var i = 0;

while (i < 50) {

console.log(i);

i += 10;

}

Exercise 7-11: For Loops and Arrays
Solution on page 428

Write a loop that outputs (to the console, one at a time) the value of every item in an array
named ar.

Exercise 7-12: For and Continue
Solution on page 429

Without using the computer, show the value that will be alerted by the following code.
Remember that when dealing with numbers, 0 is considered “falsy” and everything else is
considered “truthy”. Coupled with your understanding of the % operator, you can see when
continue will be triggered.

EXERCISES 195

After determining what this function does, give an alternative approach that just changes the
increment and does not use continue.

:javascript:

for (var i = 0; i < 10; i++) {

if (i % 2) {

continue;

}

console.log(i);

}

Exercise 7-13: Nested Loops
Solution on page 430

Output all of the rows of a truth table with three variables a, b, and c. Use 0 for false and 1
for true. Use console.log(a, b, c) to output each row.

Your output should look like this:
:console:

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Hint: Approach this by decomposing the problem into smaller ones. How would you output the
table for a single variable using a loop?

:console:

0

1

Now, for each time through that loop, how would you output a 0 and a 1 for the next variable
to produce this?

:console:

0 0

0 1

1 0

1 1

From there it should be a similar step to get the complete 3-variable answer.

For bonus points:

196 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

There is a way to output a table for any number of variables using only two loops, so if you
want to try for bonus points, you can write a function that accepts a number of variables and
outputs the entire table for that many variables. The foundation of this idea is the fact that
every time a variable on the right “rolls over” (from 1 to 0), the variable next to it on the left
should change.

Exercise 7-14: Switches
Solution on page 432

Write a function that uses switch to return “yes” if given a string "a", "b", or "c", and
“no” otherwise. Use default as one of your cases.

Note that you can use a “fall-through” pattern to make your code smaller, and empty cases
can go on the same line.

Can you do this without using break at all? Why?

Exercise 7-15: Random Numbers
Solution on page 433

To produce pseudo-random numbers, JavaScript gives us the Math.random() library
function, which gives us a different number between 0 (inclusive) and 1 (exclusive) every time
we call it. Using that function and basic arithmetic, write a function dieRoll that represents
a single roll of a 6-sided die: it should produce a number in the set {1, 2, 3, 4, 5, 6}.
Hint: remember that Math.floor can be used to discard everything to the right of the
decimal place (for non-negative numbers).

Exercise 7-16: Lab: Objects, Randomness, and the Canvas
Solution on page 435

We are far enough into the course that it is time to start introducing some lab work. This
assignment brings together many of the things that we have already learned, including
randomness, canvas drawing, and storing data in arrays.

Basic Setup:

For this assignment we are going to plot a distribution over dice rolls. We will use our
dieRoll function created in the recent homework assignment to roll two 6-sided dice over
and over again, keeping track of how many times we get each sum. For example, to get a
single value, we can do this:

:javascript:

var val = dieRoll() + dieRoll();

And we might get the number 5 as an answer. That is a valid number for two dice, and we can
get it as 1+4 or 2+3, with two ways to get each (because it doesn’t matter which die has

EXERCISES 197

which value). As you might expect if you have ever played games with dice, other numbers
are more or less likely. For example, there is only one way to get the number 2, and similarly
there is only one way to get the number 12. This should show up in our lab results.

In this example, where we just rolled a 5, we need to keep track of the fact that we just got
that one more time. So, we will keep a counter for each possible number, and we will
increment it every time we get that number. There are many ways to do this, but for this
assignment we will use an array with everything initialized to zero.

Once you have rolled the dice a number of times (say, 1000 or so), the next task is to display
the results in a meaningful way, using a histogram. This is basically just a bar graph. You will
need to figure out how long to make each bar based on the counts obtained from rolling dice.
That might mean scaling your results, since it is possible to have more counts than you have
space on the canvas. How you do that will be up to you. If you roll the dice 1000 times, then
one pixel per roll is probably going to work out fine on our (heretofore) typical 300 x 300
canvas size. You might want to get more accuracy as you go, though, rolling 10,000 or even
100,000 times, and in that case the counts will increase far beyond the bounds of the canvas.
Figure out some sort of scaling that keeps them within bounds for this lab so that you can
easily change the number of rolls and have the picture automatically adapt.

Some advice: start small. First get your dieRoll function working and test it in the console
(you should have had a homework assignment for this already, but if you didn’t end up doing
that, you will need to do it now). Then log what happens when you roll two dice over and over
again. After you are satisfied that those small things work, then create an array that has space
for numbers up to 12 and store zeros in it everywhere (use push in a loop). Output that to the
console.

Do you see a pattern? The advice is to do things one step at a time. There are usually ways to
tell if little pieces of your program are working before moving on to the bigger parts, and that is
how you should proceed. We are stopping short of talking about unit tests, which are a great
idea but are a bit beyond where we are right now, but this is part of the way you get testable
code that you can be confident in: you get confidence in all of the little pieces before sticking
them together into a larger program.

After getting counts, storing them in an array, and outputting to the console, only then should
you start thinking about displaying things on the canvas. That will be its own chunk of work,
and you want to be sure you have a good feel for what the data will look like before you tackle
it.

Requirements:

• Keep track of how many times each value is obtained after rolling two dice multiple
times.

• Use an array to store your counts. The index into the array will be the value obtained
from rolling two dice. (HINT: this means that there will be a couple of entries that never
get any value at all.)

198 CHAPTER 7. ARRAYS, LOOPS, SWITCHES, AND RANDOMNESS

• Use a variable to set how many times to roll, and make it easy to change it.
• Draw a bar graph on a canvas to show the final outcome of the dice rolls.
• Scale the bar graph so that no matter how many times you roll, the graph always fits on
the canvas.

Bonus:

• Change your dieRoll function to accept a number of sides for the die instead of
always assuming 6. Try using larger dice, like 10-sided dice. Assume that they are
made to be perfectly fair (sometimes physical geometry doesn’t allow this, by the way,
but we will pretend that it does in this lab).

• Change your program to roll three dice and display the results.
• With that change, it should be relatively easy to see how you could roll any number of
dice. Change your code to roll N dice. What happens if you roll 50 or 100 dice on each
turn?

Chapter 8

Timers, Closures, and Animation

Now that we have reached the halfway point of this course, we know about loops (while,
do, and for), conditionals (if, switch, and the ?: operator), function creation and
evaluation, using functions as event listeners (by passing them to other functions to be called
later), arrays, basic objects, and randomness, not to mention how to do some basic canvas
manipulation. That’s actually quite a bit. Congratulations!

You have written some small but very real programs and are now ready to put all of these
ideas together. If you were to stop now, you would have experience with some of the most
fundamental aspects of programming, and you can actually build some really interesting
software just using what you already know.

There are a couple of concepts that still need to be covered, but for the most part we are
going to be spending the rest of this course putting together all of the pieces that you have
already seen and practiced in previous chapters. We are now officially over the hump.

One Thing At A Time

Whenever your programs interact with the world in a visual way, you might find that some of
your intuition fails you. For example, when you drew numerous rectangles in a nested loop,
it’s possible that you expected (as I did when I was first learning) to see them appear one at a
time. Instead, they appeared all at once.

You might think that this is because they just got drawn really quickly, but that, while true, is
not the only reason that they appear all at once. You can usefully think of what’s happening
this way: your code draws to a canvas that is hidden off-screen, then the browser reveals the
picture all at once when it is finished.

This is actually very common in computing, particularly when drawing to a screen. Usually
what you do does not appear immediately. Instead, it has to wait for some other unseen

199

200 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

process to kick in and do the real work for you; you just tell it what to do when it eventually
gets a chance to do it.

There are many good reasons for this behavior. One interesting reason when dealing with
JavaScript in the browser is that it is “single-threaded”. This essentially means that only one
thing can happen at a time (there is one “thread of execution”, kind of like I only have one
“train of thought”). The interpreter can either be running your code, or it can be painting your
drawing to the screen, but it can’t be doing both at once. Thus, your drawing function has to
finish before other things can have a turn.

To work within this fairly limiting context, much of what we do is event-driven. We figure out
what we want to do, and we tell the browser when we want it to happen, just like we saw
earlier with setTimeout. It calls our functions when something happens.

In the case of drawing on the canvas, we already know that we don’t need to do that when
triggered by a timer—our first drawing code just did the drawing and that was that. But
the actual work of drawing on the screen still didn’t happen until our code was finished,
which happens when our called function exits, or we go off the end of our script. Our code
merely wrote down a list of things to do and handed them off. That’s what calling things
like ctx.fillRect does: it adds to the interpreter’s to-do list, and the interpreter will
start checking things off of that list only after we have stopped adding things to it.

Timeouts Revisited

Animation is a pretty interesting topic all by itself, one that I personally find fascinating. At its
core, though, is what the film industry still calls “persistence of vision”. If you have ever
watched a movie or an animation, you have experienced this effect.

Every animation or movie that you see is actually composed of a long sequence of still images,
shown to you in rapid succession. Various aspects of your visual system, all the way along the
path from your eyes to your brain, participate to give the illusion that you are seeing a
continuous scene with real motion, when in reality it’s just a bunch of changing light patterns
on a screen.

To animate, then, we just show a person a bunch of images, called “frames”, in rapid
succession. How do we do that with a computer? Well, the first thought that many people
have is to use a loop. You can imagine something structured like this:

:javascript:

while (moreImagesToDisplay()) {

showNextImage();

waitABitBeforeTheNextFrame();

}

Because JavaScript is single-threaded, looping like that would also cause everything else in

TIMEOUTS REVISITED 201

the tab to stop functioning. While our code is running, the browser can’t show us anything
because it is busy running our code.

To work within this framework, we instead need to write a small amount of code that just
draws one image, then asks the browser to call it later. When the browser isn’t busy running
our drawing code, it can work on actually displaying it to the screen before calling our function
to draw the next one.

In other words, we have to write our code to draw one frame at a time and exit. We will keep
track of which frame we’re on, and the browser will tell us when to draw it. Once the process
is started (the browser is ready to call our frame-drawing function for the first time), that
function will basically do the following:

• Ask the browser to call us again in the future.
• Draw the current frame.
• Store information about the next frame, but don’t draw it.
• Exit.

Every time our function exits, the browser gets a turn to run things like displaying our
newly-drawn frame to the canvas. Then the process repeats.

The key to all of this is events, which we have touched on very briefly in the past with
setTimeout. In fact, we can use setTimeout for animation!

It’s time to start another program, using the familiar file approach. We will be using the
canvas, as usual. Feel free to put a border style on it if you would like to see the edges. Here
is the skeleton of a program, this time with an onTick function that just outputs to the
console after 1 second (1000 milliseconds):

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function onTick() {

console.log("tick!");

}

setTimeout(onTick, 1000);

</script>

This should look familiar, but it might be a distant memory at this point. Let’s review what is
happening:

• We create a function called onTick that, when called, says “tick!” in the console. We
create it, but we do not call it. It doesn’t run, so nothing is displayed in the console yet.

• Then we call setTimeout, instructing the interpreter to call onTick for us one
second from now.

• Then our program exits. Our code is no longer running because we reached the end of
the script block.

202 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

At this point, nothing has actually happened, yet. We have merely set things up to happen one
second in the future.

The interpreter has dutifully recorded our onTick function as something it should call. It then
goes about its business, whatever that is, until one second has passed, at which point it finally
calls onTick. Thus, when you load this in your browser, roughly one second will pass and
then the word “tick!” will appear in the console. You can also use the fake console.log
from an earlier chapter. The alert function can work in this instance, but will quickly
become annoying as we start triggering multiple events in sequence.

Note that setTimeout is a little bit iffy when it comes to precise intervals, a fact that we
will deal with later. It doesn’t wait 1000 milliseconds precisely, but waits something
reasonably close to it. For smooth animation this inaccuracy will be a bit of an issue, but
it’s really easy to reason about and we are just going to run with it for now. Improvements
are coming.

If you missed it, you can leave the console open and reload the page to see the effect of the
1-second delay.

The reason we saw something in the console is that our program stopped running and gave
the browser time to do its work. What do we mean by “stopped running”? Just that, really.
Our program merely sets up onTick and calls setTimeout. That’s it. Then the overall
program is finished.

Part of our program, though, runs later because we told the interpreter, “Run this chunk of
code at a specified time,” and it complied. When that function finished running, the browser
was able to update the console in the way that we asked. But then it’s done. That function
won’t get called again. That’s interesting, but not good enough for animation. Animation
needs to run something every frame, not just one time before giving up. How do we do that?

What if, inside of onTick, we asked the browser to run our function again later? In other
words:

:javascript:

function onTick() {

console.log("tick!");

setTimeout(onTick, 1000);

}

setTimeout(onTick, 1000);

Now, when the browser runs our program, it does the same things as before: creates
onTick, calls setTimeout and exits. One second later, the interpreter diligently calls
onTick, which displays “tick!” to the console. But, before our function finishes, it asks the
interpreter to call it again in another second. Then it quits again. One second later, as
instructed, the interpreter calls onTick, which displays another “tick!” to the console, and
again asks the browser to call it in one more second. This continues forever, or until you close

CLOSURES 203

the browser tab running your program (you do not have to close the whole browser).

Some browsers won’t show multiple lines with the word “tick!” in the console, but will
show a count next to it, indicating how many times that exact line has appeared. That’s to
avoid having a huge scrolling log full of identical lines. You should still see something
changing every second in the console.

Hopefully the idea that a function references itself by name from inside its own body is
comfortable to you by now, since that is necessary to make this work: a function can pass
itself into setTimeout without problem.

If any of the above wasn’t quite comfortable for you, it’s time to review. Do the examples, read
the text until you are feeling good about things, and then proceed. We are about to introduce a
new and very powerful characteristic of functions.

Closures

JavaScript functions each have a lexical closure, and thus the functions themselves are
typically referred to as closures. This is a fancy way of saying, “They can always see
variables defined in their surrounding scope (just outside) no matter when or how they are
called.” Rather than getting precise with the definition—and there are absolutely some
subtleties hiding in there—let’s get some experience with the idea, then the definition will
make more sense. We will begin by changing our onTick function to show a different
number each time it is called:

:javascript:

function main() {

var count = 0;

function onTick() {

console.log("Tick", count);

count++;

setTimeout(onTick, 1000);

}

setTimeout(onTick, 1000);

}

main();

Without running this yet, can you tell what it will do? Once you have an idea, run it and verify
that it works like you would expect it to. Did you get it right?

What is happening with this code? First, the whole program is now inside of a main function,
which is a good practice, as it keeps our variables locally scoped. We call that function at the
end of the script.

204 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

Inside of main, we define a variable called count to keep track of how many times the
onTick function is called, defined next. Inside of onTick, we not only use the value of
count, we also change it! We haven’t made changes to a variable in a surrounding local
scope like this before.

If this concept looks simple and intuitive to you, great! It is supposed to be fairly intuitive:
functions can always see and manipulate the variables in their immediate outer scope, also
known as the enclosing scope: the scope that contains the function. When you think about it,
though, it’s kind of remarkable. It means that a function somehow remembers how to access
those variables just outside of it even when it is passed elsewhere to be run later, like with
setTimeout. That makes this a powerful idea indeed, and we will see why as we continue
to apply it.

We say that a function’s behavior is closed over its body and surrounding variables.
That’s where the name closure comes from.

For example, even though our code never calls onTick directly, the code that runs inside of
onTick (a second later) can still access count, defined just outside of onTick. That
variable is still hanging around in memory, known to onTick even though main itself has
long since stopped executing (and will never execute again). Why is it still around? Because
the interpreter knows that count has to be around in order for onTick to use it. The
count variable is still needed as long as onTick is stashed somewhere, so the interpreter
tracks it along with onTick.

If we were to call main again, a new count variable would be created, and a new onTick

function would be created, as well. We would then have two separate onTick functions
registered with setTimeout, each with their own count variable attached, that would be
writing to the console. In fact, you should try this and see what happens. If you just call main
twice in a row you will see that everything is getting logged twice. If you delay the second call
using something like setTimeout(main, 500) the effect will be even more obvious.

Furthermore, the variables in JavaScript are closed lexically, meaning that if you want to
know where a variable is defined, you can tell by looking at the (lexical) structure of the code.
Basically, if you can see it in your scope or any surrounding scope (including the global scope,
of course, since that’s always visible from anywhere), you can access it.

One notable and important exception to the “you get what you see” rule is the special
dynamically-scoped this variable. We are avoiding that drama for now, and honestly for
as long as possible. Dynamic scopes are usually an unmanageable disease. Lexical
scopes won for a reason.

Thus, when we call setTimeout(onTick, 1000), we are indeed passing onTick to
a routine that will call it later, but what onTick contains is not just the code inside its
brackets, it also contains information about its surrounding scopes: all of the variables and

CLOSURES 205

functions found there.

Figure 8.1: All of this is passed around with onTick.

Why are we talking so much about something that seems so simple to use? Mostly because
understanding gives you the power to make good choices. Knowing that closures carry
around references to every variable in every immediately surrounding scope allows you to
think about and have some control over how much space those functions use, for example.

Why not just use global variables, since those are visible everywhere? For one thing, global
variables are generally a pretty bad idea precisely because they are accessible from
anywhere. We don’t want to stick everything we know about into the global scope because it
might accidentally overwrite something someone else put there. Or someone might do that to
us! Or we might even do it to ourselves if we have two functions that want to use the same
global name to mean different things.

Global variables are a common source of subtle bugs. Using a closure allows us to manage
the scope of our variables a lot more carefully, and that’s a good thing. Consider what
happened when we moved everything into main: now there is only one new thing in the global
scope: main. Everything else is local and under our careful control. The closure can see and
operate on variables in its outer scope, but nothing else can. That’s good code hygiene.

In summary, closures are amazing and useful. They remember the variables in their
surrounding scopes, which allows us to manage the lifetime of variables that need to live
longer than the function call itself without chucking them into the global object, and they
remember those things even when they are called from elsewhere. Because they are so
useful, we will see them all the time from now on.

A quick aside, just for fun, is in order here. If you want to write a program without putting
anything at all into the global scope, you actually can! Instead of making a main function,
you can create and call an anonymous function in one step, like this:

:javascript:

(function() {

console.log("I'm immediately called and have no name!");

}());

This is called an immediate function, and the technique is prevalent in real code
because of its ability to keep things completely out of the global scope. Do you see what’s

206 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

going on here? We created an anonymous function using the function keyword, and
its definition ends with the last curly brace }. As soon as it is defined, we call it by
appending () to the end. That’s it!

There is one more detail, actually, and it’s this: the function is defined inside of
parentheses. Why? Because unless we make it part of an expression, it isn’t really
defined in place to create a value, and the above looks like a syntax error. You will also
see it done this way:

:javascript:

(function() {

// stuff

})();

See how the function is defined inside of parentheses? Those parentheses bracket an
expression, which in this case is an anonymous function. Once the parenthesized
expression is closed, that function exists, and then we call it. If it helps you to think about
things that way instead, then it’s a fine way to go, too. Either way works, because it sends
a message to the interpreter that it needs to create a function value and call it.

Finally, you can even create self-referential functions that don’t create any new global
names by just giving the function a name when you create and call it, like this:

:javascript:

(function onTick() {

console.log("Global:", window.onTick);

console.log("Local:", onTick);

setTimeout(onTick, 1000);

})();

This outputs undefined for the first line and the function’s contents for the second.
That can be quite helpful: it shows that we defined a function that is only visible to itself,
then started it up without it bleeding into the global scope.

Note: this approach to scope creation is falling out of favor now that JavaScript is getting
more implementations with modules, so we may at times be a bit cavalier about global
variables, just to avoid cluttering things up in this book. You will see this technique
sometimes in example code online, though, so it’s good to know what it does.

Simple Timeout-Based Animation

We can combine closures and timeouts with drawing on the canvas to make an animation that
gives the illusion of movement. That’s where things start to get fun, and is central to the
operation of many games. Let’s see if we can make a little spaceship that launches into the
sky.

SIMPLE TIMEOUT-BASED ANIMATION 207

Drawing a Ship

Our spaceship will be really simple: just a humble triangle. Because we will be drawing it over
and over again, we will put the drawing code into its own function. Go ahead and replace the
entire program with this:

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function main() {

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Draw a spaceship with the bottom center at (x, y).

function drawShip(x, y) {

// No triangle function exists in the canvas, so we

// use a path instead:

ctx.fillStyle = 'blue';

ctx.beginPath();

ctx.moveTo(x, y-30);

ctx.lineTo(x-5, y);

ctx.lineTo(x+5, y);

ctx.lineTo(x, y-30);

ctx.fill();

}

// Draw the ship at bottom middle.

drawShip(canvas.width/2, canvas.height);

}

main();

</script>

Note that we put the whole program into main to avoid polluting the global scope. But,
because ctx is in the surrounding scope of drawShip, drawShip can use it.

If all went well, you will see a blue triangle on your canvas. You may want to add a border to
convince yourself that it really is at the bottom.

We could, of course, make more elaborate drawings, but for now, it’s a triangle whose bottom
center is positioned at the given (x, y) location. At the bottom of our program, we call the
function with the bottom middle of the canvas specified (x is canvas.width / 2, which
is halfway across, and y is canvas.height, which is the bottom).

Launching a Ship

We’ve pointedly drawn a sharp-looking ship,

We’re ready to send it off on a trip.

208 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

Figure 8.2: A little ship.

The basic idea is this: every time we draw a frame, we change the ship location by just a little
bit. Since ships usually want to launch directly upward to avoid fiery destruction, that means
we will subtract something from the y coordinate we give to our drawShip function each
time it is called. It’s time to call setTimeout with a closure that can change y and call
drawShip. Let’s call that closure tick. Before looking at the code below, see if you can
figure out how to make this happen using the existing program.

What follows would go inside main, below the drawShip function. We have included all of
it here, but will start omitting surrounding code as we go, to save space and focus on what’s
really critical.

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function main() {

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Draw a spaceship with the bottom center at (x, y).

function drawShip(x, y) {

// No triangle function exists in the canvas, so we

// use a path instead:

ctx.fillStyle = 'blue';

ctx.beginPath();

ctx.moveTo(x, y-30);

ctx.lineTo(x-5, y);

SIMPLE TIMEOUT-BASED ANIMATION 209

ctx.lineTo(x+5, y);

ctx.lineTo(x, y-30);

ctx.fill();

}

var y = canvas.height;

function tick() {

drawShip(canvas.width / 2, y);

if (y >= 0) {

setTimeout(tick, 100); // every 1/10 second

}

y -= 5;

}

tick(); // start drawing right away.

}

main();

</script>

See what we did? We defined a local variable y inside main, set to the bottom of the canvas.
We also defined a function tick to draw the ship and update y for the next frame. Then we
called it once to get things started (instead of calling drawShip directly, like we did earlier).

Here are the detailed steps that tick performs when called:

• Draw the ship at the current y coordinate, centered left to right,
• Check whether any part of the ship is still visible (the bottom of the ship is still on the
canvas—remember that a y value of 0 is the top of the canvas),

• If so, instruct the browser to call tick again in 1/10 of a second (100 milliseconds),
and

• Subtract 5 from y for next time.

Calling tick for the first time (at the bottom) sets this whole thing in motion. It doesn’t look
great, yet, but we’ll fix it.

Note that tick makes use of more than one variable in its outer scope. It uses y, which we
intended, but it also uses canvas to find the left-to-right center for the x coordinate. This
works because canvas is defined in the surrounding scope. Finally, it also has drawShip
in its surrounding scope, which it calls. Closures are pretty cool and are thankfully easier to
use than to explain.

Clearing Between Frames

It looks like our ship is sort of smearing up the canvas instead of moving up it. That’s because
we forgot to erase the canvas between each frame. The computer is not at fault: it’s just
following instructions. To clear the canvas between frames, we add a single command to the

210 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

tick function: ctx.clearRect, and we give it the entire canvas as the rectangle to clear:
:javascript:

function tick() {

// Clear first, then draw.

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width/2, y);

if (y >= 0) {

setTimeout(tick, 100); // 1/10th of a second.

}

y -= 5;

}

That’s simple enough: before drawing a frame we instruct the canvas to clear itself. For
complicated animations sometimes it’s useful to only clear part of the canvas, but we will
always be sticking to the simple “every frame is a brand new drawing” model in this course. It
works fine for our purposes.

Variable Shadowing

All surrounding-scope variables can be seen by all functions defined here, including variables
defined below them. Remember that the definition of drawShip includes two variables:
function drawShip(x, y). That means that drawShip defines its own y, while a
different y also exists in its outer scope! What happens in that case?

If a variable is defined in the outer scope and a variable of the same name is defined locally,
the local (innermost) one wins. This is called “shadowing”—the local variable blocks,
eclipses, or shadows the outer scope variable, so the function drawShip only sees its own
local y parameter, not the outer scope y that tick is using and changing. That outer y is
forever invisible to drawShip because of the local y inside of it.

Shadowing is also caused by var declarations inside of a function. Be aware of it, sometimes
it can surprise you if you are relying on your function closing over an outer variable with a
common name.

Summary

There wasn’t a large volume of new material here, but what was covered was conceptually
very important. We talked about single-threaded programs and how that drives us to an
event-driven model of computation in JavaScript, about how to work with that sort of thing
using lexical closure, how to control scope using nested function definitions, how to animate
something, and what is going on with variable shadowing. Put that way, it actually is a lot of
new material. Make sure to do the homework and labs, and then you will be ready to tackle
anything.

EXERCISES 211

Also, play around! You have a basic animation here, ready to be tinkered with. There are all
sorts of things you can imagine doing with the code here.

Exercises

Exercise 8-1: Practice with setTimeout
Solution on page 445

Write a function that draws a rectangle at a random location on a canvas every quarter
second (250 milliseconds). The rectangle can be any color and the size of your choosing, so
long as it is easy to tell that the program is working.

For bonus points, make the color random as well, so a different color can appear each time.

Exercise 8-2: Scope and Closure
Solution on page 446

Use the following code to answer the questions below:
:html:

<script>

var a = 10;

function F() {

// code here

}

var b = 15;

function G() {

c = "hi";

function H() {

var d = [];

// code here

}

var e = "there";

function I() {

var f = {};

// code here

}

}

</script>

• List every variable and function name below that is in the global scope. Assume that all
functions have run at least once (and remember what happens when you leave off

212 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

var).
• Can code inside of H access f? Why or why not?
• Can code inside of I call H? Why or why not?
• Can code inside of H call F? Why or why not?
• Can code inside of H access e? Why or why not?
• Can code inside of F call H? Why or why not?

Exercise 8-3: Animation
Solution on page 447

Write a program that draws a rectangle on the left side of the canvas and moves it to the right
until it reaches the edge. The rectangle should be of size 10 by 10, and should move 5 pixels
every 1/20th of a second (50 milliseconds). It can be anywhere along the y axis (centered top
to bottom, on the bottom, on the top, or anywhere in between).

Exercise 8-4: Shadowing
Solution on page 448

What is displayed by the following program? Why?
:javascript:

var a = "hello";

function message(a) {

console.log("message is:", a);

}

message("hi");

Exercise 8-5: Lab: Animate a Die Roll
Solution on page 449

For this lab you will animate the roll of a die. It won’t be a physically accurate simulation; it will
just display random dots a few times until it settles on a value. The dots will be rectangles,
and the code to draw a single dot based on where it is on a 3x3 grid is given below to make it
a bit easier on you.

:javascript:

// drawDot draws a 'dot' at the given row and column,

// assuming that size is set to the square side length

// of the die. Both row and col are zero-based, so

// 0, 0 is the top left corner and 2, 2 is the bottom right.

function drawDot(ctx, size, row, col) {

var margin = size / 6,

x = margin + (2*margin*col),

y = margin + (2*margin*row);

ctx.fillRect(x-margin/4, y-margin/4, margin/2, margin/2);

EXERCISES 213

}

// dieDots defines where the dots are located for every

// possible value on a 6-sided die, by row and column.

var dieDots = {

1: [{r: 1, c: 1}],

2: [{r: 0, c: 0}, {r: 2, c: 2}],

3: [{r: 0, c: 0}, {r: 1, c: 1}, {r: 2, c: 2}],

4: [{r: 0, c: 0}, {r: 0, c: 2}, {r: 2, c: 0},

{r: 2, c: 2}],

5: [{r: 0, c: 0}, {r: 0, c: 2}, {r: 2, c: 0},

{r: 2, c: 2}, {r: 1, c: 1}],

6: [{r: 0, c: 0}, {r: 1, c: 0}, {r: 2, c: 0},

{r: 0, c: 2}, {r: 1, c: 2}, {r: 2, c: 2}],

};

With these functions, you should be able to easily define a drawDie function that accepts a
context, a size, and a value (the number of dots you want to show), like this:

:javascript:

function drawDie(ctx, size, value) {

// Your code goes here, using drawDot and dieDots above.

}

And finally, with that, you can animate a die so that it picks a new random value every 200
milliseconds to display, and stops on the tenth one.

If you get this working quickly and just use random draws to create your values (that’s a good
idea—start with that!), you might notice that sometimes you get the same number twice in a
row, and it makes the animation look like it paused. Add code to ensure that you never repeat
the same number twice in a row.

Bonus: make sure you never go directly to a number on the opposite side of the die, either.
You can easily check this because numbers on opposite sides always sum to 7.

214 CHAPTER 8. TIMERS, CLOSURES, AND ANIMATION

Chapter 9

Smoother Animation Using Time and
Animation Frames

We just made our first animation, and learned about closures and variable shadowing at the
same time. That’s a big step. Now it’s time to refine our ability to animate and learn a little
more about how to best make the browser work for us, along with getting a more accurate
frame rate.

Animation Frames

It turns out that setTimeout is not really the best thing to use for animation because it’s not
terribly accurate and, depending on the browser, it has some unfortunate behavior with
hidden browser tabs. If setTimeout is not good for animation, though, what is? The thing
that people really use for animation is a more powerful and accurate function called
requestAnimationFrame1.

The browser has to draw everything you see on the page every so often, and if there is a lot of
stuff moving around, it has to do that quite frequently. The human visual system is pretty
awesome and can detect flashes at a very high frame rate, but movies are typically run at 24
frames per second (FPS), which is generally enough to give a convincing illusion of motion.
Some high definition video runs at 50 to 60 FPS, and virtual reality gear typically runs at 90
FPS or higher to reduce motion sickness. The more rapid the motion (or especially the more
quickly the rate of motion changes), the higher the frame rate should be.

Many computer games run at either 30 or 60 FPS because those rates work well with older
and more modern monitors alike. It’s a historical thing that has to do with CRT refresh rates
and the need to render a frame in between refresh scans to avoid “tearing”. It also happens
that 60 FPS is a pretty solid rate for humans to perceive motion as smooth.

1https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

215

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

216 CHAPTER 9. SMOOTHER ANIMATION USING TIME AND ANIMATION FRAMES

You might have noticed that your earlier spaceship was not animating very smoothly. That’s
because it was updating position and drawing at 10 FPS (once every tenth of a second), less
than half the slowest movie rate. But setTimeout is not really accurate enough to draw a
frame every 16.6 milliseconds (60 FPS), so it can’t handle animation the way we would like.

The browser, however, knows when it is going to draw each of its own frames based on the
refresh rate of the display it’s using, and we can ask it to call our function at the same time
using requestAnimationFrame. Let’s use that instead of setTimeout. Here is the
full listing of our earlier spaceship program, but this time using
requestAnimationFrame (and simplified ship drawing).

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Draw a spaceship with the bottom center at (x, y).

function drawShip(x, y) {

ctx.beginPath();

ctx.fillStyle = 'blue';

ctx.moveTo(x, y-30);

ctx.lineTo(x-5, y);

ctx.lineTo(x+5, y);

ctx.lineTo(x, y-30);

ctx.fill();

}

var y = canvas.height;

function tick() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width/2, y);

if (y >= 0) {

requestAnimationFrame(tick);

}

y -= 5;

}

tick(); // start drawing right away.

</script>

Note that we are dispensing with immediate functions and with main, just to keep things
clean and clear for book format. Use one of them if you like.

Also note that because we aren’t doing this whole thing inside of a function, we aren’t
really using closures, but global variables, which any function can see at any time. It’s
helpful that it looks and works the way we want it to in this context.

ANIMATION FRAMES 217

Well, that was easy. We just changed setTimeout(tick, 100) to
requestAnimationFrame(tick). But hold on—where did the frame rate go? We
used to be able to tell it how often we wanted tick to be called, but now we can’t! In fact, if
you run this now, the ship will indeed be moving a lot faster. Give it a try!

Not only does the ship move faster, but if you hide this tab (by looking at a different tab or
switching to a different program), then switch back to it, it will look like our animation paused
while we were gone and resumed when we came back. That is one of the features of
requestAnimationFrame that sometimes sets it apart from setTimeout: it is
guaranteed to only run when things are visible. That can be useful on mobile devices, since it
means our code isn’t using up so much power when it isn’t doing anyone any good visually.

A few browsers now pause things for setTimeout as well to help with power use for
mobile devices, but this is not part of the spec and therefore can’t be assumed to happen
all the time.

If you run this multiple times, depending on your browser and the computer it is running on,
you might notice some jerkiness in the motion, as well. If you do see that, it is probably due to
one of a few factors:

1. You do not get precisely the same amount of time between frames, though it is usually
very close,

2. The browser might not be able to quite manage the highest possible frame rate all the
time, and

3. We are not requesting a new animation frame until after we have done a bunch of
work; we might be missing the deadline to ask for the next one, so we might end up
skipping frames.

Incidentally, games, particularly if they have a lot of complicated scenes that take time to
render, sometimes run at 30 FPS and lock that in because our visual system is much
more sensitive to changes in frame rate than it is to consistently lower frame rates. If a
game is running at 60 FPS and has to drop down to 45 FPS for a particularly complicated
scene, the illusion of motion is lost: our brains pick up on the change. Thus, many games
take the position that it is better to have a completely consistent and smooth 30 FPS
experience than to have the frame rate jumping around.

We can achieve this effect using setTimeout, which has sufficient accuracy if we
emulate some of the timing features of requestAnimationFrame in most cases, but
that’s beyond the scope of what we’re talking about here.

218 CHAPTER 9. SMOOTHER ANIMATION USING TIME AND ANIMATION FRAMES

Smoothness and Time

There is something in common with all of the above commentary, and that is time. Our
animation sped up because there is less time between frames than the 100 milliseconds we
were using before, sometimes it may appear jerky because the interval is not exactly
consistent or because we spent too much time drawing before requesting a new frame, and
we might want to consider letting more time pass between drawings to have better control
over our frame rate to keep things smooth. Thus, we need to start thinking much more
carefully about time.

Since we are trying to animate something moving at a constant velocity, that ties position
directly to time. If more time has passed between frames, more distance should be covered.
Since animation frames are not always coming at us evenly, though they generally do come at
about 60 FPS, we will want to know exactly how much time has passed between frames so
that we can calculate positions to make it look like things are traveling at a constant velocity.

Thankfully, requestAnimationFrame sets things up so that tick gets a “current time”
parameter. We have not made use of it before, but we will absolutely make use of it now. We
will call it t because that is such a common name for a time variable:

:javascript:

function tick(t) {

console.log(t);

ctx.clearRect(0, 0, canvas,width, canvas.height);

drawShip(canvas.width / 2, y);

if (y >= 0) {

requestAnimationFrame(tick);

}

y -= 5;

}

requestAnimationFrame(tick);

Note that instead of calling tick directly at the bottom, now we are requesting an animation
frame so that we can get an accurate time even on the first call. This will appear to be
instantaneous (16 milliseconds is the maximum time we will wait, if we just barely missed a
frame), so it doesn’t cause us any trouble to do it this way and get the benefit of consistency.

Good. Now we have the time (in milliseconds) in our local t variable, provided to us by the
browser’s animation frame routines. It dumps an awful lot of stuff to the console. The times
you see should be roughly 16.6 milliseconds apart, representing a frame rate of 60 FPS.
Yours might actually run at a slightly different rate, though, depending on your setup.

Now that we are outputting to the console, you might notice things get smoother.
Computers are like that, and browsers especially so. Sometimes changing what we
output in one place also changes the timing of what happens in another. The true solution
is to get our timing right, though, not to add statements that dump stuff to the console.

SMOOTHNESS AND TIME 219

That sort of behavior, where a change in one part of a program causes (or hides) behavior
in another part of a program, is often called a “heisenbug”, in reference to the Heisenberg
Uncertainty Principle in quantum mechanics. Scientists, including computer scientists,
are often endowed with a quarky sense of humor. You’re welcome.

If you don’t see any jerkiness to begin with, or any change when outputting to the console,
congratulations: you lucked out! Don’t read too much into it, though; lottery tickets are still
a terrible investment.

What is the actual time and how can we use it? The time given to our function is an accurate
count of how many milliseconds have passed since the page was loaded. That can be useful,
but when doing animations what we most often want is really the amount of time that passed
since the previous frame. In other words, we really want the difference in times between
frames. How can we get that? The simplest way is to keep track of the time we saw during
the previous call to our function. A simple tick function that demonstrates this idea (but
does no drawing) might look like this:

:javascript:

var lastTime = 0;

function tick(t) {

var dt = t - lastTime;

lastTime = t;

console.log(dt);

// Calculate position, draw stuff.

}

Now our tick function stores the time in lastTime. When it gets called again, that
previous time is remembered and we can use it to calculate how long it has been since the
last time tick was called. Pretty neat! It’s called dt because that means the difference in
time, and it is a standard way of communicating that idea. In algebra we might call it Δ𝑡.
If you integrate this into the larger program, you should see that frames are approximately
16.7 milliseconds apart. That’s about 60 FPS, but will vary a bit. Some, however, might
actually be much further apart than this. For example, in one of my runs, I had the following
dt values shown next to each other:

:console:

18.754000004264526

16.74899998761248

These are clearly not the same. What may be more surprising is that this difference of 2
milliseconds can be detectable to the human visual system if it keeps happening—you can
observe the jitter in the ship’s motion. That little change is enough to violate your built-in
assumptions about how things move.

Even more jarring is output like this:
:console:

220 CHAPTER 9. SMOOTHER ANIMATION USING TIME AND ANIMATION FRAMES

33.49799998977687

19.047000008868054

33.49799998977687

16.749000002164394

That run looked very jittery, as you might expect. You can see that sometimes we are missing
entire frames because we wait too long to request the next one. The first fix for this kind of
jitter is to move the call to requestAnimationFrame up to the top of the tick function,
ensuring that we request the next frame before we do any serious work. This means we won’t
accidentally miss the boat for the next frame if our drawing happens to take a tiny bit too long.
That fixes the biggest of the jitter problems quite nicely.

Some smaller jitter artifacts remain, however. In order to fix these, we will need to examine
what we have done in terms of physics, at least a bit. If you take a look at our code, we’re
doing something very simple at every step: subtracting 5 from y. We don’t use time anywhere
explicitly, but we do implicitly, because each frame is assumed to be coming at us at a
constant rate, and we therefore choose to move a constant distance every time. The frame
rate is not really constant, though, as we saw with our little console test above. What can we
do to reduce jitter, then? To answer that question, let’s look at how speed, distance, and time
are related to see if we can gain any insights.

Remember that with a “change in vertical position” Δ𝑦 and a “change in time” Δ𝑡, we can
compute vertical velocity 𝑣𝑦:

𝑣𝑦 = Δ𝑦
Δ𝑡

In other words, velocity is the change in position divided by the change in time (remember that
Δ means “difference” or “change”). We are familiar with this concept because it comes up
whenever we talk about vehicle speed, where we use terms like “miles per hour” or
“kilometers per hour”. The “per” indicates division.

In the equation above, the velocity needs to be held constant. We can choose that, but we can
only choose it once. Furthermore, we are given Δ𝑡 when requestAnimationFrame
runs, or at least, we can calculate it from t. That means we need to use a different Δ𝑦 every
time to make sure the equation is still valid: Δ𝑦 is the only free variable; the others are either
fixed (constant speed) or beyond our control (unpredictable frame delay). This calls for some
algebra:

Δ𝑦
Δ𝑡 = 𝑣𝑦

Δ𝑦 = 𝑣𝑦Δ𝑡

SMOOTHNESS AND TIME 221

Well, that’s handy. We can choose 𝑣𝑦 to be some constant value, and we already have Δ𝑡
(called dt in our function), which means we should be able to calculate the correct change in
y by just multiplying those together! That means our update rule will change from something
like y -= 5 to y += desiredVelocity * dt (we’ll make our desired velocity contain
the minus sign that just disappeared). Why is that? Because Δ𝑦 is the amount that we
change 𝑦 at each frame. So, we add Δ𝑦 to 𝑦, noting that Δ𝑦 = 𝑣𝑦Δ𝑡.
We don’t really know what 𝑣𝑦 should be, yet, but this is progress. At least we have some idea
of how to approximate a constant speed, which keeps things moving smoothly.

How do we choose a velocity? To answer that question, let’s first discuss what we were doing
before. When we chose to move our ship by 5 pixels each frame, we were kind of implicitly
choosing a velocity based on an assumption that dt was constant. If we are assuming 60
FPS, that means that the ship moves -5 pixels (because we subtract 5 from y every time), and
it does that 60 times in one second. That is a 𝑣𝑦 of -300 pixels per second. Does that seem
about right? Is it taking the ship about a full second to travel from position 300 to position 0?

Yes! If your canvas is still 300 pixels high, it takes about a second to go from the bottom of the
canvas to the top. Excellent. Always check that your answers make sense, and that can save
you hours of debugging time. Here, we can be reasonably confident that this is a good velocity
for us.

Note again that the velocity is negative. Velocities have direction, so negative in our case
means “up” since the canvas is oriented with larger 𝑦 values lower down. If the velocity were
positive, that would mean “down” in this canvas configuration.

We now have everything we need to smooth this animation out. We have Δ𝑡 (dt) in each
animation frame, and we have 𝑣𝑦 (we will call that Y_VEL and it will be equal to -300). To
compute the amount we want to change y each time, we simply multiply the two numbers
together, because according to our equation, Δ𝑦 = 𝑣𝑦Δ𝑡. We will add that to y each time.
Here is what the new tick function looks like when we make the change:

:javascript:

var y = canvas.height,

lastTime = 0,

Y_VEL = -300;

function tick(t) {

if (y < 0) {

return;

}

// Moved up to avoid jitter due to lost frames.

requestAnimationFrame(tick);

// Convert time elapsed from milliseconds to seconds,

// since velocity is in pixels/second.

var dt = (t - lastTime) / 1000;

222 CHAPTER 9. SMOOTHER ANIMATION USING TIME AND ANIMATION FRAMES

lastTime = t;

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width / 2, y);

// Add calculated change in position to y.

y += Y_VEL * dt;

}

requestAnimationFrame(tick);

Do you see the changes? There are a handful of them:

• We moved requestAnimationFrame almost to the top of tick for the reasons
mentioned earlier.

• We now bail out early if the ship is out of bounds (this keeps us from requesting a new
animation frame and from drawing things out of bounds).

• Y_VEL contains our desired constant velocity of -300.
• We convert dt to seconds instead of milliseconds by dividing by 1000 (because

𝑥 ms = 𝑥 ms 1 s
1000 ms = 𝑥

1000 s).
• The y position is changed not by subtracting 5, but by adding 𝑣𝑦Δ𝑡 (Y_VEL * dt in
code): the (constant) velocity times the (computed) change in time.

That’s it. Run it and see if it works! Hopefully the animation is more consistently smooth.

Note that our computation of y looks a bit different than what we had before. It used to be y
-= 5, but then it transformed to y += Y_VEL * dt, which is the formula we figured out
earlier. This change allows us to define direction by using the sign of the velocity instead of
directly using addition or subtraction. Our earlier approach was the same as saying y +=

-5, and that makes it more clear that we are moving in the negative direction (again, this is
“up” on the canvas).

It is instructive to output the value of Y_VEL * dt to the console inside of tick. You might,
if you were experiencing jitter before, notice that this change in y is not always the same, but
your animation is still smooth; it tracks the differences in frame rate to make it that way. It is
compensating for unwanted changes in time.

Name Your Constants

Why not just use -300 where we need it for the velocity instead of creating a new variable to
hold it? Because that would be a magic number. It is one thing to divide by 1000 in a place
where we know we want to convert from milliseconds to seconds: there is only one way to do
that. It is quite another thing to have a magic number like -300 sitting around in our code: that
was a choice, and we may want to change it without remembering all of the places we have
used it.

ANOTHER WRINKLE IN TIME 223

Naming constants like this is a very important practice in computer programming, so we will
do it even in small examples where it doesn’t seem to matter much. It’s a good habit to get
into, and it doesn’t take much time to do it right. Finding bugs because you have done it
wrong, however, can take a great deal of time. Also note that constants (even when they are
actually variables) are often named using ALL_CAPS_WITH_UNDERSCORES by common
convention. It doesn’t mean anything special to the interpreter; it is meant to be a signal to
humans.

Note that later versions of JavaScript (available pretty much anywhere you might care
about) also understand let and const for setting variables. These are strictly better
than var in several ways, but var still works and is simpler to talk about in an
introductory setting.

The let keyword works a lot like var, but has better behavior in certain circumstances,
particularly in loops containing closures.

The const keyword also declares a variable, but does not allow it to be reassigned.

Again, we don’t use them here, but it is good to know what they do, and you will want to
learn to use them instead of var as you progress in your programming career.

We have now dealt with smooth motion based on constant velocity calculations. This works
fine with a changing velocity, too. The key is to determine motion not based on a random
number of pixels we want to move, but based on what we actually want to see happen. In the
ship’s case above, what we want is a constant velocity, because we want smooth flying. If we
were working within the context of gravity, we would want a constant acceleration, which we
would use to compute velocity, which we would then use to calculate position. All kinds of
motion are possible using this idea, if you start from what you really want to see.

Another Wrinkle In Time

There is one more important oddity that we need to address with
requestAnimationFrame, and you might have run into it already; it is colloquially
referred to as the “teleportation” or “time warp” problem.

Remember how we talked earlier about the animation sort of “pausing” if we navigate away
from the page? That happens because the interpreter stops calling our onTick function if
the tab or window is not showing. If the window isn’t showing, the browser isn’t drawing it,
and we can’t hook into that to draw what we want.

When you are writing a game, this becomes important, especially when calculating the
positions of things based on how much time passes between frames. Remember, the time
given to our tick function is the wall clock time since the page was loaded. Consider this
scenario for a moment:

224 CHAPTER 9. SMOOTHER ANIMATION USING TIME AND ANIMATION FRAMES

• Load the page, start playing,
• Move away (maybe a calendar alert popped up), and
• Come back a few minutes later to continue playing.

What happens to the time in this scenario? While you are playing, the frames are coming
about once every 16.7 milliseconds, which is good. We compute the position of your
character or rocket or whatever based on that time, and the motion is relatively smooth. Then
you switch to a new browser tab for a few minutes, and your tick function is not called at all
during that time, so it cannot update lastTime. When you come back, the tick function is
called again, but the difference between the previous frame and the current frame will be
several minutes instead of a few milliseconds. This is often referred to as the “time warp”
problem with animation frames, because it makes everything look like it fast-forwarded in time
when you come back to the window. Some call it “teleportation”, since it can make it look like
your space ship suddenly disappears from its last location and reappears far away from it.

Our animation goes by too quickly for us to easily observe this problem, but you can try
changing the velocity to something like -50 instead of -300, load the page, change to another
tab for a few seconds, then come back and see if the ship suddenly jumps. You should be
able to actually see it jump, since navigating away stopped the frames, and coming back will
give the first frame a very large time.

To fix this problem, we first have to decide what we want to have happen when we come back
to a game after a long absence. Ideally, it would resume basically where we left off. In terms
of our equation, that means we would like to pretend Δ𝑡 is still small, as though we had a
normal time between frames. How can we do that?

One possibility that is easy and relatively common is this: if Δ𝑡 is much bigger than we
expect, just force it to be small and go on with life. For example, we might say “if the change in
time is bigger than four times what we normally see (we expect 60 FPS, but could get as low
as 24 FPS depending on the setup, and this allows for that), just pretend it was what we
normally expect to see.” In code, the skeleton of that idea looks something like this:

:javascript:

var EXPECTED_RATE = 1 / 60, // seconds

lastTime = 0;

function tick(t) {

requestAnimationFrame(tick);

var dt = (lastTime - t) / 1000;

// No teleporting!

if (dt > 4 * EXPECTED_RATE) {

dt = EXPECTED_RATE;

}

// Do other tick stuff.

}

ANOTHER WRINKLE IN TIME 225

After adding code like the above, the bizarre-looking jump won’t happen anymore. Instead,
the ship will just continue from where it was when you left. That is much better.

Because not all systems are running at 60 FPS, this isn’t really the best way to go about
deciding what is “expected”. There are various (comparatively advanced) techniques that
you can look up online for obtaining the actual frame rate, but what we have here should
be safe enough for our purposes. Because we are letting requestAnimationFrame
tell us the actual time elapsed, and we are using desired velocity against that time, the
speed of the ship should be the same in wall clock time no matter what system you are on.

We have come a long way. Let’s get the big picture again by looking at all of the code in one
place:

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Draw a spaceship with the bottom center at (x, y).

function drawShip(x, y) {

ctx.fillStyle = 'blue';

ctx.beginPath();

ctx.moveTo(x, y-30);

ctx.lineTo(x-5, y);

ctx.lineTo(x+5, y);

ctx.lineTo(x, y-30);

ctx.fill();

}

var y = canvas.height,

lastTime = 0,

Y_VEL = -300,

EXPECTED_RATE = 1/60;

function tick(t) {

if (y < 0) {

return;

}

requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_RATE) {

dt = EXPECTED_RATE;

}

lastTime = t;

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width/2, y);

226 CHAPTER 9. SMOOTHER ANIMATION USING TIME AND ANIMATION FRAMES

y += Y_VEL * dt;

}

requestAnimationFrame(tick);

</script>

The above is an HTML page that animates a space ship at a consistent velocity, that pauses
when we leave and resumes where we left off when we return. Not bad for so little code!
These are the fundamental building blocks for animating anything you like, and now you have
all you need to get it done using JavaScript in the browser.

Exercises

Exercise 9-1: Trivia for requestAnimationFrame
Solution on page 452

• How often is the function given to requestAnimationFrame called if it sets up a
new call every time?

• When is the function not called at all?
• What parameters are available when the function is called?
• Where in that function should the call to requestAnimationFrame reside (for
animation), and why?

Exercise 9-2: Lab: Constant Acceleration
Solution on page 453

For this lab, change the ship’s trajectory to act more like it was thrown upward in the presence
of gravity. This means that it is always experiencing an acceleration downward, and it only
has an initial velocity, not a constant velocity.

Requirements:

• Use an acceleration of 150.
• Use an initial velocity of -300.
• Stop the animation when the ship gets back to the bottom of the canvas.

Hints:

Acceleration is a change in velocity. Thus, if you have an acceleration of 5 pixels per second
per second, that means that your velocity will change by 5 each second. If you have less than
a second to work with (as is the case with our frame rate), then you can approximate reality by
multiplying it by the amount of time that has passed.

Thus, we might calculate the current velocity like this: yVel += ACCEL * dt. With that,
we can compute the new position just like we did before.

Chapter 10

Click and Key Events

Animations are fun, but not exactly interactive. We have essentially created a short movie.
You can consume it by watching it, and that’s all. There’s no way to even pause it other than
looking at another browser tab for a while. Let’s fix that. Let’s make it possible to pause and
restart our animation without looking away. For that, we will need some new events.

We have already been using events, since we are now familiar with setTimeout and
requestAnimationFrame. These are functions that allow us to indicate that we want
something to happen “in the event” that some time goes by. Now we are going to learn about
what to do in the event that a key is pressed or a button is pushed.

Are We There Yet?

Remember the way we constructed our tick function for animation? Its essence is
something like the following code. Note that this is a sort of template we have been following,
not the actual code we have been using, and we will come back to this template later on.
Meanwhile, look carefully at this code, and find done, draw, and move:

:javascript:

// How long we expect between frames.

var EXPECTED_DT = 1 / 60;

// Used in the calculation of dt below.

var lastTime = 0;

function tick(t) {

// Check whether we should quit ticking.

if (done()) {

return;

}

227

228 CHAPTER 10. CLICK AND KEY EVENTS

// Set up for the next frame after this.

requestAnimationFrame(tick);

// Calculate how much time has passed.

var dt = (t - lastTime) / 1000;

lastTime = t;

// Fix the time warp problem.

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

}

// Draw stuff, and calculate next positions.

draw();

move(dt);

}

In this code, every time we get an animation frame, we immediately queue up a request for the
next one (so we don’t miss out from slow calculations), but only if done() returns false. If
done() returns true, then we bail out of the function altogether and don’t try to set it up again.

If we’re still going, then we continue on to calculate dt, save the previous time for the next
time dt needs to be calculated, and adjust it in case we left the screen and came back to it
later.

Finally, we draw stuff where it is and figure out where it should be next time. We will come
back to the fact that most of this function has nothing to do with actually moving and drawing
what we are animating, but for now let’s take a closer look at what done() might do. Note
that it doesn’t have to be a function—it can be a variable or some other expression, as well.

In our previous animation, we stopped when a spaceship had left the canvas, but there is no
reason we can’t have more logic in there than that. Let’s remember this while we discuss
events, then we will come back and see how we can use done() to pause and restart our
animation while still keeping track of whether the ship has left the canvas or not.

Adding a Button

If we are going to start and stop our animation, we will need some way to communicate with it.
Let’s make a button we can push! HTML is great for this sort of thing because it has so many
facilities like buttons already built in. To add a button in HTML, we use the <button> tag,
like this:

:html:

<button id="pause-button">Pause</button>

The ID is familiar; our canvas has one of those, and we use it to ask the document for the

ADDING A BUTTON 229

element so we can do useful things with it in JavaScript. It can be anything, but this seems
like a reasonable choice.

The text on the button is “Pause”, and you can see where that goes: between the opening and
closing tags. If you are following along, it’s time to create a new program with a button and
some script tags in it, and it will soon be time to detect when the button is pressed. Our
program will look like this, at first, just so we can test out how buttons work. This is a good
idea in general when learning a new concept: create the simplest possible program that
exercises the idea, then expand it after you understand it.

:html:

<button id="pause-button">Pause</button>

<script>

// Magic happens here.

</script>

The first thing to know is that any element in an HTML page can create events. You can click
on them or tap them (if you have a touch device), you can hover over them with a pointer
(mouse or pad), focus them with the keyboard, and numerous other things. When you do,
those elements can be set up to notify your code that something happened.

Just like we tell the browser to call our function after a period of time using setTimeout, or
on the next animation frame using requestAnimationFrame, we can tell it we want to
respond to an event by calling addEventListener on the element we are interested in,
like this:

:html:

<button id="pause-button">Pause</button>

<script>

var btn = document.getElementById('pause-button');

function whenClicked(event) {

console.log('button clicked!');

if (event.shiftKey) {

console.log('-> with the shift key!');

}

}

btn.addEventListener('click', whenClicked);

</script>

Again, if you don’t have console access for whatever reason, you should be able to use
alert instead, or the fake console introduced early in the course.

When we call addEventListener on any element, we tell it what kind of event we are
interested in ('click') and what to do when it happens (call the function whenClicked).
There are many such events, and you can read about them in the online documentation1.

1https://developer.mozilla.org/en-US/docs/Web/Events

https://developer.mozilla.org/en-US/docs/Web/Events

230 CHAPTER 10. CLICK AND KEY EVENTS

Some elements accept different events than others, but most visual elements can accept
mouse, touch, and keyboard events.

Event listeners are functions that we register to be called when events happen, just like we
did with setTimeout. In this case, whenClicked registered as an event listener. That
means that it will be given a special Event2 object as its first argument that we can use to
find out more information about what happened. For example, we can find out whether the
shift key was held down during the click event.

If you run the above code with the console open, you will see text appear whenever you click
the button, and extra text will be displayed if you hold the shift key while clicking. This is one of
those things that you really need to try to see how it works. Go ahead; this text isn’t going
anywhere.

If you are feeling a little overwhelmed with new concepts, take a look at previous chapters
and see if they feel more comfortable to you. Those used to be new and strange, too, but
now you understand them better! That will happen with what you are learning now, as
well.

Events and Anonymous Closures

In our most recent event listener code, we created a function and then registered it. Just for
fun, let’s see what happens if we use an anonymous function instead! This code does the
same thing as the previous code:

:html:

<button id="pause-button">Pause</button>

<script>

var btn = document.getElementById('pause-button');

btn.addEventListener('click', function(event) {

console.log('button clicked!');

if (event.shiftKey) {

console.log('-> with the shift key!');

}

});

</script>

Quite often we define event-handling functions and only use them in one place, so they don’t
really need names—they can just be passed in directly to addEventListener as
anonymous functions; we are creating a function and passing it to addEventListener in
one step. Make sure you know how to read that code before moving on, because this
technique is about to get a lot more common.

2https://developer.mozilla.org/en-US/docs/Web/API/Event

https://developer.mozilla.org/en-US/docs/Web/API/Event

ACTUALLY PAUSING STUFF 231

One of the biggest missing features in Java (not JavaScript!) up until Java 8 was
lambdas. These are basically anonymous functions, and the lack of them was almost
entirely responsible for every joke ever made about a “FactoryFactory”. Anonymous
functions may seem like a mere convenience, but they can greatly improve clarity by
removing the need to name every single little thing, and JavaScript has had them from the
beginning. Most mainstream languages have a good anonymous function facility these
days. Languages that don’t tend to feel pretty clunky after a while (Python included, as its
lambda facility is so limited as to be almost useless).

Note that you are not required to use anonymous functions, but you will need to be able to
read them, and it is more than a little helpful to not have to come up with names for all of them.
If you prefer naming all of your event handlers, that’s fine; by all means continue to do so. We
will still do a little of both in this curriculum, and that should give you practice with how things
are done in the real world of programming.

Actually Pausing Stuff

In order to effectively pause our animation, we need to do some surgery on our previous
spaceship program. Here it is, with the button added to the file, plus a line break tag (
)
to make the button appear on the next line instead of right next to the canvas. We will make
multiple changes to get a completely working pause button, but it will be a pain to show the
entire program at every step, so let’s make sure we have a common starting point. This initial
code has a pause button, but it doesn’t do anything yet.

Here is the spaceship program from before, with the button specified right below the canvas:
:html:

<canvas id="drawing" width="300" height="300"></canvas>

<button id="pause-button">Pause</button>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Draw a spaceship with the bottom center at (x, y).

function drawShip(x, y) {

ctx.fillStyle = 'blue';

ctx.beginPath();

ctx.lineTo(x-5, y);

ctx.lineTo(x, y-30);

ctx.lineTo(x+5, y);

ctx.fill();

}

var y = canvas.height,

lastTime = 0,

232 CHAPTER 10. CLICK AND KEY EVENTS

Y_VEL = -50,

EXPECTED_RATE = 1/60;

function tick(t) {

if (y < 0) {

return;

}

requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_RATE) {

dt = EXPECTED_RATE;

}

lastTime = t;

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width/2, y);

y += Y_VEL * dt;

}

// BUTTON EVENT CODE GOES HERE.

requestAnimationFrame(tick);

</script>

If we run this, we will see a button and the ship will start moving as before. The button,
however, doesn’t do anything. That’s because we don’t have any code that knows how to
respond to a click. Our first order of business is thus to hook up a click listener for the button.
It won’t do anything but log to the console right now, but let’s at least get it hooked up. We can
do that by adding the following at the bottom of our script, replacing the BUTTON EVENT

CODE GOES HERE comment:
:javascript:

var btn = document.getElementById('pause-button');

btn.addEventListener('click', function(event) {

console.log('click!');

});

Great! We can now see things happen in the console when we click the button. The question
is, what should we really do when this button is clicked? Right now, when we load our page,
the ship takes off right away and keeps on going until it leaves the canvas, which happens
when y < 0. That behavior is managed with this code snippet:

:javascript:

if (y < 0) {

return;

}

requestAnimationFrame(tick);

// Do other stuff.

ACTUALLY PAUSING STUFF 233

If we want to pause from our click listener, we need to have an additional way of telling it to
stop creating frame requests, something other than “you went off the screen”. What if we had
a running variable and the logic looked more like this?

:javascript:

if (y < 0 || !running) {

return;

}

requestAnimationFrame(tick);

Remember the boolean OR operator ||? The logic above can be interpreted to say, “If the
ship is off the screen or the animation is not running, then quit immediately.” Thus, if we are
either off the screen or something sets running to be false, we won’t request another
animation frame. Since that means we won’t call tick again, no new position will be
calculated and nothing new will be drawn: everything will stop.

That’s all well and good, but now we need a running variable that is initially true so that
our animation doesn’t stop before it starts. We’ll add that right before the tick function, and
then use it as described above:

:javascript:

var running = true;

function tick(t) {

if (y < 0 || !running) {

return;

}

requestAnimationFrame(tick);

// ... everything else as before ...

}

Then we can change the code in our button click listener to change running to false:
:javascript:

btn.addEventListener('click', function(event) {

running = false;

});

Since running is in the event listener function’s outer scope, running is part of its
closure. When that function is called, it can change running to false. But running is also
part of the closure of tick, so it sees the change made by the click listener and stops
requesting animation frames accordingly: everything pauses.

Note that this really only works reliably because JavaScript is single-threaded. That
makes it safe for us to alter variables from what is otherwise an asynchronous process:

234 CHAPTER 10. CLICK AND KEY EVENTS

the button click might come at the same time that running is being accessed. This is
called a “race condition” and is something to be aware of when graduating to languages
with truly concurrent execution. Again, JavaScript is not one of those (in this context,
anyway), so we can get away with being a bit cavalier and just relying on intuition in this
course. Just be aware that you would need to be far more careful about this in many other
mainstream languages. It would require some kind of guard on the variable, like a mutex.

When you run this now, it should pause you click the button. What happens when you click it
again?

The answer is “nothing”. Nothing happens if you click it again. Because the code has already
changed running to false, setting it to false again has no effect. At least it paused our
program the first time, though! That part worked.

What if we wanted to restart it? Could we just change running back to true?

What do you think? What will that do?

The fact is that once things are paused, changing running to true won’t restart things by
itself. It will set things up so that things can continue once started, but it won’t actually get
them going again. The reason for this is pretty simple: changing running to true doesn’t
request any new animation frames, nor does it call tick directly, so tick never runs again.
Thus, when resuming the animation, we also need to request a new animation frame to kick
things off, like this:

:javascript:

btn.addEventListener('click', function(event) {

if (running) {

running = false;

} else {

running = true;

requestAnimationFrame(tick);

}

});

Does that work better? It looks like it does. If things are already running, we stop them by
setting running to false and letting nature take its course the next time tick is called. If
things are not running, we set it to true and instruct the browser to call tick again when
ready. That works.

There is another race condition here, though, and this time it actually matters. What
happens if your animation is running, and you manage to click the pause button twice in a
row between frames? You would have to be pretty quick, but it’s quite possible to do this.
If you do, the currently-running animation never realizes that it should have exited, and a
brand new animation is started in parallel with it. Give it some thought and see if you can
see the issue.

ACTUALLY PAUSING STUFF 235

Race conditions can be super subtle, and are often triggered by user input or other
outside events. We’ll deal with this one in particular later on.

Readability

Just because we can, let’s look at a slightly more succinct way of writing the same thing:
:javascript:

btn.addEventListener('click', function(event) {

running = !running;

if (running) {

requestAnimationFrame(tick);

}

});

In this code, we set running = !running, and thus re-encounter another old boolean
friend: the NOT operator !. If running is false, then !running is true, and vice
versa. Thus, we change running to be whatever is the opposite of its current state. We call
this “toggling” the variable. Then, after toggling running, we check to see if we should be
animating. If we should, we kick off the animation by requesting a new frame just like we do
when the page is first loaded, and it will take things from there.

Neither version of these is really strictly better than the other. Quite often these things are
simply a matter of taste, and in this way programming is much like art: you are communicating
with both computers and humans when you write code, and there is such a thing as an
elegant program, or a clear program, or a weird and discomfiting program. You might choose
the toggling version because a toggle is the simplest thing to understand for what you need to
do. You might, on the other hand, choose the if/else version if there is more work to be done
for each case.

The question I personally like to ask is this: is this the clearest expression of this idea?
Subject to correctness and reasonable efficiency concerns, that is often the most important
question you can ask when designing your programs, because they will be read by people a
lot more than they are ever written. Even the act of writing a program requires reading it first to
get your head right so you can modify the right parts in the right way. Always try to make your
code easy on the eyes as well as on the silicon.

A good rule of thumb for what “clear expression” means is this: the expression that will require
the least effort for a newcomer to understand. We call that “readable code”, and it’s important
not just because someday you might be doing this on a team, but because someday you
might want to dust off your own code and do something new with it, and you will have long
forgotten what you were thinking about when you wrote it. More often than not, your future self
is the newcomer to your current self’s code. Be kind to your future self.

With all of that philosophy behind us, let’s get back to making stuff happen. Did our
pause/resume change work? Give it a shot and find out!

236 CHAPTER 10. CLICK AND KEY EVENTS

Changing Button Text

It’s great to have a working pause/resume button, but other than the motion of the spaceship,
we have no indication of the state of our animation. Let’s fix that by changing the appearance
of the button when it is clicked:

:javascript:

btn.addEventListener('click', function(event) {

running = !running;

if (running) {

requestAnimationFrame(tick);

btn.innerText = 'Pause';

} else {

btn.innerText = 'Resume';

}

});

The innerText property of buttons (and other HTML controls) allows us to change their
appearance on the fly. If we’re running, we know we can pause, so we make sure the button
says that, and vice versa.

More Readability

Note that we are both toggling running and using an if/else statement here. That
seems to be the most readable approach because we change the button state based on what
we want, not on what we once had. If we were to remove the toggle and fold it into the
if/else statement, we would have to invert the logic. Contrast the toggle version with this:

:javascript:

btn.addEventListener('click', function(event) {

if (running) {

running = false;

btn.innerText 'Resume';

} else {

running = true;

btn.innerText = 'Pause';

requestAnimationFrame(tick);

}

});

Now it reads like “if running, stop running and set text to indicate that we can get started
again”. With the toggle approach, it reads “if currently running, set text to indicate that we can
pause”.

The principle here is to change the state once (meaning, we just changed the master
running state on which everything depends), and then compute all of the new things for
that new state. It can make code much easier to reason about, and this principle is part of the
foundation of many popular web frameworks: change state, then figure out the world should

CHANGING BUTTON TEXT 237

look like. Our animation works that way, too, when you think of it. We advance y, and later we
draw things where they are.

And now it’s time for an important exercise in removing race conditions, since there is still one
hiding in here if you click the pause button really quickly twice in a row.

What can happen? Let’s start with a running animation and look at what happens with one
call to tick, two rapid clicks of the pause button, and the next call to tick:

• Run tick, calling requestAnimationFrame.
• Click button: set running to false.
• Click button: set running to true, call requestAnimationFrame.

Uh oh. See how we now have two outstanding requests for an animation frame? We
assumed that setting running to false would stop the current animation, but we
accidentally set things up so that clicking the pause button can race with the tick function
checking on the state of running. In this scenario, the button click won the race, and tick
was never told to stop!

Race conditions pop up all the time when you have unpredictable events that change the state
of a variable that is needed by something on a separate schedule. You have to be pretty alert
for them in things like games because user input is precisely that kind of unpredictable event
that can cause a race condition.

To fix things like that, you can guard them with some kind of “mutual exclusion” lock (known
as a “mutex”) in some languages, but JavaScript doesn’t really have one of those because it
is single-threaded.

So why can it happen? In this case it’s because we actively start things, but we only passively
monitor a value (on a schedule) to stop them! It’s polling things on a schedule that creates this
race condition, since it allows for a window of time where tick is blind to what is happening
with the running variable.

To fix this, we have to actively stop the animation by removing the pending animation frame.
That way there is no waiting for tick to discover that it’s finished: it simply never runs again.
To accomplish this, we use cancelAnimationFrame, which accepts an animation frame
as a parameter, and then cancels it.

To get an animation frame, we will need to start using the return value of
requestAnimationFrame, which we have been ignoring up until now. Let’s store the
result of that call in the frame variable every time we call it:

:javascript:

var frame = null;

function tick(t) {

if (y < 0) {

frame = null;

238 CHAPTER 10. CLICK AND KEY EVENTS

return;

}

frame = requestAnimationFrame(tick);

// ... everything else as before ...

}

frame = requestAnimationFrame(tick);

var btn = document.getElementById('pause-button');

btn.addEventListener('click', function(event) {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

btn.innerText = 'Resume';

} else {

btn.innerText = 'Pause';

frame = requestAnimationFrame(tick);

}

});

This resolves the race condition. Now, if the button is pressed twice in quick succession while
the program is running, it cancels the animation frame that is currently waiting, and then
requests another one.

Recall that the test if (frame) tests for truthiness. Remember, null is falsy, and a
non-null object like that returned from requestAnimationFrame is truthy. If there’s a
real frame, we’re animating, and if there’s not, we’re not. That’s what the statement tests.
Thus, running is like frame, so we take advantage of that fact here (and swap the if and
else bodies to account for that).

If we really want a value like what running used to give us, a common shortcut for
taking a truthy or falsy thing and turning it into a real true/false value is to simply invert it
twice, like this:

:javascript:

running = !!frame

That’s a common idiom for saying “make a truthy thing true, or a falsy thing false”.

Canvas Clicks

Our little button for pausing is pretty useful! What if we set things up so that we could get the
same effect by clicking on the canvas, or pressing the space bar? Let’s do that. What we will
first want to do is actually give our handler function a name so that multiple events can trigger
it in exactly the same way. I know, I know, we went to all that trouble to use an anonymous

CANVAS CLICKS 239

function, and for what? For science, that’s what. Now we will get rid of it for science, too.
Science can be awfully demanding.

Let’s transform our button event listener into a separate togglePaused function and a
single line of addEventListener. Then we can add some more events:

:javascript:

function togglePaused(event) {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

btn.innerText = 'Resume';

} else {

btn.innerText = 'Pause';

frame = requestAnimationFrame(tick);

}

}

btn.addEventListener('click', togglePaused);

That was easy. Now how do we make the same thing happen if we click anywhere on the
canvas? Simple, we add a click event to the canvas:

:javascript:

canvas.addEventListener('click', togglePaused);

That’s it! Not only does it work to pause and resume our animation by clicking on the canvas,
but it also changes the button state so that it reflects what’s going on. Very nice.

Even More Readability

What we have just done is an instance of the Don’t Repeat Yourself (DRY) Principle, and it is
about much more than just saving keystrokes. When we have need of doing the same thing
from multiple different contexts, we really should extract a function and call it from all of those
places instead of copying and pasting the relevant code. That obviously saves us typing (or
pasting) in the long run, but more importantly, it saves us bugs. If there is some subtlety in our
pause toggle, and there definitely is (like needing to request an animation frame when we start
running again, and needing to get the button text changed no matter how the pause happens),
then we want to figure out that subtlety exactly one time and capture that wisdom in a function.
Then, no matter where we need pause/resume functionality, it will all work the same way.

That’s not all. If we decide to do other things when pausing or resuming the animation, we can
make those changes in just one place and have all use cases benefit simultaneously. That
can be very important when programming. Many bugs, including truly horrible security bugs in
popular web browsers, things that cause people to lose credit card information and have their
identities stolen, have been introduced because buggy code was copied to multiple places,
but only fixed in one.

240 CHAPTER 10. CLICK AND KEY EVENTS

Key Events

Let’s do one more thing. Let’s make it possible to pause and start our animation using the
keyboard, not just by clicking a button or the canvas. Once we have this concept, we will be
well on our way to creating an interactive game!

Keyboard events are kind of tricky because the element that receives the event depends on
what is currently “focused”. This gets into all kinds of advanced things like how events
propagate through the document object model (i.e., they start at the top of the hierarchy, move
down to the lowest level of detail, then propagate back up). Instead of getting into all of that
here, we simplify things as much as we can by watching for all keyboard events on the
top-level document object. There will likely come a time when that is overly eager for your
programs, but for now it is going to be perfect for our needs.

There are three fundamental key events of interest here:

• “keydown”
• “keyup”
• “keypress”

The short version of how to use “keypress” is “just don’t”3. It pretty much never does what
you want. Ignoring that one leaves us with just two events to choose from.

Most of us don’t really think about when certain things happen during our keystrokes, but it’s
an important question to answer. Do we want to respond to the action of pressing a key down,
or to the action of letting it up afterward? When you type characters into an editor, the
character appears immediately when you press the key down. You can tell by pressing and
holding a character key: the character immediately appears, then it starts repeating while you
hold it (which is one reason you don’t want to deal with “keypress”, since it triggers for all of
those). Thus, to have the most natural behavior, we will use “keydown” instead of “keyup”.

There are some common situations in which we will want to use “keyup”, and we will get to
those in later chapters. Stay tuned!

The next question is how to tell which key was pressed. If we listen for “keydown”, we are
listening for literally any key on the keyboard being pressed down, not just the space bar, and
there is no way to tell the document “only call me when space is pressed”. Instead, we will
listen for all keys, but do nothing when the key pressed is not the one we care about. For that,
we will ask the event for the key that was pressed, using event.key:

:javascript:

document.addEventListener('keydown', function(event) {

if (event.key === ' ') { // quote-space-quote

togglePaused(event);

3https://developer.mozilla.org/en-US/docs/Web/Events/keypress

https://developer.mozilla.org/en-US/docs/Web/Events/keypress

SUMMARY AND FULL LISTING 241

}

});

Why did we use an anonymous function here instead of just passing in togglePaused like
we did with the click handlers? Because as mentioned earlier, the “keydown” event is
triggered for every key on the keyboard, and we just wanted to respond to the space key. So,
we used a small anonymous function to only call togglePaused when we actually have a
space key event. If we just handed togglePaused to the addEventListener function
here, we would pause no matter which key was pressed.

Preventing Default Behavior

There is one more tidbit to share about events that could be useful, particularly when trapping
the space key, and that is event.preventDefault().

The space key usually scrolls the page down in a browser. Our page doesn’t have any
scrolling to do, so we don’t need it here, but sometimes this is really a problem. If you want the
space key to pause your animation, you probably don’t want it to also scroll the page. In that
case you signal to the browser that you’ve handled this event and don’t want any other code
to handle it for you. That’s what event.preventDefault() does: it stops the default
behavior for the event you just handled.

We won’t generally be using it in this course, but it was worth mentioning once. And, if you find
that weird scrolling happens when you use the space bar, you know what to do!

Summary and Full Listing

In this chapter we spent some time learning about events and how to use them to pause an
animation. That was pretty useful! We also spent a bit of time reorganizing our code to allow
more than one thing to trigger some behavior. Our pause/resume handler started out as a
named function, then became anonymous, then went back to being named because it started
being used in more than one place. The process of moving things around like that, particularly
of extracting out common functions, is called refactoring; we are factoring our code into
different-shaped pieces, and sometimes doing so repeatedly.

The process of refactoring is a natural and important part of any programming endeavor. You
will never get your ideas exactly right the first time, because there is always something to
change after the code is “done”: bugs to fix, functionality to add, or readability to improve.
That’s okay. Code evolves over time. It’s good to become comfortable with that.

Before we quit this chapter, here is our full animation code, complete with pausing using a
button, the keyboard, or a click on the canvas:

:html:

242 CHAPTER 10. CLICK AND KEY EVENTS

<canvas id="drawing" width="300" height="300"></canvas>

<button id="pause-button">Pause</button>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Draw a spaceship with the bottom center at (x, y).

function drawShip(x, y) {

ctx.fillStyle = 'blue';

ctx.beginPath();

ctx.lineTo(x-5, y);

ctx.lineTo(x, y-30);

ctx.lineTo(x+5, y);

ctx.fill();

}

var y = canvas.height,

lastTime = 0,

frame = null,

Y_VEL = -50,

EXPECTED_RATE = 1/60;

function tick(t) {

if (y < 0) {

frame = null; // no longer running

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_RATE) {

dt = EXPECTED_RATE;

}

lastTime = t;

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width/2, y);

y += Y_VEL * dt;

}

frame = requestAnimationFrame(tick);

var btn = document.getElementById('pause-button');

function togglePaused(event) {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

btn.innerText = 'Resume';

} else {

EXERCISES 243

btn.innerText = 'Pause';

frame = requestAnimationFrame(tick);

}

}

btn.addEventListener('click', togglePaused);

canvas.addEventListener('click', togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

togglePaused();

}

});

</script>

As you can see, things are starting to get just a bit unwieldy for a book format. Our code is not
terribly long just yet, but it is starting to be. That means we are ripe for a refactoring exercise.
Stay tuned!

Exercises

Exercise 10-1: Key Events
Solution on page 455

Write a program that registers an event listener on the document object for the “keydown”
event, and have it print the event’s key and shiftKey information to the console.
Remember that every event listener receives an event object as its first parameter, and in this
case we are interested in the key and shiftKey members of that object (capitalization
matters, so be careful of that):

• What happens when you press ‘a’? What happens when you press ‘A’ instead?
• What happens when you press the shift key, with nothing else?
• How do arrow keys appear when pressed?
• Log the entire event instead of just two members of it. What happens when you press
other modifiers like the control, alt, or command keys?

Exercise 10-2: Click Events
Solution on page 455

Write a program that has a canvas. Each time you click the canvas, draw a line from the
previous click location (start at 0, 0 by default) to the current click location. Note that you can
use the event object’s x and y members to get the coordinates of the click within the canvas.

Exercise 10-3: More Mouse Events
Solution on page 456

244 CHAPTER 10. CLICK AND KEY EVENTS

Taking inspiration from the previous program, alter it so that it draws lines as before, but every
time the mouse moves while the button is down. The events you will need to make this work
are called “mousedown”, “mouseup”, and “mousemove”.

Hint: set a boolean to true when “mousedown” happens, and only draw in “mousemove” if it is
true. Set it to false when “mouseup” happens.

Bonus: fix the program so that pressing the mouse button resets the line’s starting point.

Midterm 2

In the chapters leading up to now, we have covered several new concepts:

• Recurring for side-effects (like drawing on a canvas or outputting to the console)
• Recurring to build something, like an array
• Loops while and for
• The switch statement
• Random numbers
• Anonymous functions, passing them for event handling (e.g., to setTimeout)
• Immediate functions
• Variable shadowing
• Using time in animations, using requestAnimationFrame
• Click and key events

That’s a lot! In fact, that’s enough to do a lot of interesting things even if you learn nothing else
about the language. There is still more to come, but now is a good time to take a breath and
test what you’ve learned.

Before taking the test below, it might be a good idea to take some time to study these
concepts in the preceding chapters.

Also, if your educational situation had you skipping much of the recursion in previous
chapters, you might want to review it or ask to skip the related questions here.

Exercise 10-4: Output a Simple List of Numbers
Solution on page 458

Use recursion to output the numbers 1 to 100 in the console, in order. You may use any
recursive strategy you like (for example, it is fine to either output then recur, or recur then
output, it just depends on how you’re thinking of it).

Note: if you get an error about “maximum stack length” or something similar, just output fewer
numbers, like 1 to 50. My browser let me do well over 10,000, however, so it is unlikely that
you will run into this.

Exercise 10-5: Create an Array of Numbers

MIDTERM 2 245

Solution on page 459

Use recursion to create an array consisting of all numbers from 1 to 100. Remember that if a
is an array, you can create a new array consisting of a together with b by calling
a.concat(b). That doesn’t change a, but creates a new array with the contents of a,
followed by the contents of b. Use concat in your recursive code to create the array of
numbers.

Any working recursive strategy is allowed, but no loops, and do not edit any array in place:
always just return a new one.

Output the final array to the console when complete.

Note: it is fine to not make this efficient. Tail-call-optimizable is not a necessary condition for a
correct answer, in case you were worried about that.

Exercise 10-6: Output Integers
Solution on page 460

Use a while loop to output the integers from 0 through 99 to console.log.

Exercise 10-7: Do It Again
Solution on page 461

This time, use a for loop to output the numbers from 1 through 99.

Exercise 10-8: Randomness, Key and Click Events, and Anonymous
Functions

Solution on page 461

This exercise is more like a lab. Here we are going to ask you to write a program that creates
two event listeners, one for key presses, and one for page clicks. Each of these is going to log
a random number to the console, with text indicating which kind of event it was.

The requirements:

• Use document.body as the target for your events.
• In the click event, output “click:” and a random number (between 0 and 1).
• When a key is pressed down, output

– the word “key”
– the key that was pressed
– if the key pressed is “Enter”, output your name, otherwise
– output a random number (between 0 and 1).

• Use the switch statement to determine whether the key was "Enter".
• Use anonymous functions as the event listeners.

Exercise 10-9: Animate With Frames

246 CHAPTER 10. CLICK AND KEY EVENTS

Solution on page 462

Using a canvas and requestAnimationFrame, make an animation. You can use any
shape you like. Requirements: - Move at roughly 300 pixels per second, - Start in the upper
left corner, - Move in a straight line, and - Stop when it hits an edge.

Note that “a straight line” can be diagonal. Since your shape is starting in the upper left
corner, make sure that your straight line motion is to the right, down, or a little bit of both.
Though potentially clever, drawing a shape in the upper left and saying “it is traveling left, and
it stopped already” in order to avoid writing an animation loop is not really an acceptable
answer. Your shape should be seen to be moving.

Note also that you should be writing HTML with JavaScript within it, this time, since you need
a canvas element to operate on.

Bonus points: wrap all of your code in an immediate function.

Chapter 11

Behavioral Abstractions and Multi-File
Programs

It’s time for some more extensive refactoring. Our code is getting long enough that one listing
doesn’t fit well onto the page of a book, and that’s not only a problem for book readers and
authors, it’s a problem for programmers in general. When a single function gets too long, it
becomes harder and harder to follow what is happening, and therefore easier to accidentally
introduce bugs. The solution to this is to take a careful look at what can be safely split out into
its own unit of abstraction, which in this chapter will be the humble but powerful function.

More Files

We have, until now, written each of our programs as a single HTML file. In that file, we have
our layout (canvas and button elements, for example) and our code (in script tags).
Our code started out small, consisting of drawing on the canvas and some rudimentary
animation. Once we started adding event listeners, though, the code nearly doubled in length.
That’s pretty typical, and when that happens it’s a good idea to start looking for common
functionality that we can move elsewhere.

We are about to enter the realm of multi-file projects, but we are going to do it with minimal
changes to our normal workflow: just make sure that all of the files we create are in the same
folder, and things should work out fine.

Create a new program HTML file called “main.html”, but this time, it will have two script
sections: one for the main program as usual, but another one above it that loads code from a
totally different file that we haven’t written yet:

:html:

247

248 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

<script src="animate.js"></script>

<script>

// The main program goes here.

</script>

The first script tag instructs the browser to look in the current folder (the place where this
HTML file lives) for a file called “animate.js” and load it as though it were typed between the
script tags. That’s all the script tag does with the src attribute: it slurps the contents of the
given file and plops them down between the script tags. Note that you won’t see this; it
happens behind the scenes.

The “.js” extension stands for “JavaScript”, by the way. The “animate.js” file won’t contain
any HTML tags (including script tags!)—it will only contain JavaScript code.

This src approach is not a very sophisticated mechanism, and that has led to all sorts of
module libraries being invented to make it easier to safely import other code from
JavaScript itself, instead of from the HTML that contains it. That’s far too much to get into
here, though. This course is about learning to program, not about finding all of the
frameworks that might want to seduce you to their own version of modularity. Many of
them are excellent, though, so eventually you might want to learn more. Also, modules are
a first-class concept in later versions of JavaScript.

The mechanism we’re using here will do just fine for our pedagogical needs. It’s also still
extraordinarily common, so you should be right at home when reading other people’s
code that makes use of multiple JavaScript files.

As we mentioned before, the “animate.js” file doesn’t exist yet. When you load this program
into the browser without that file (do try it), you will see an error in the console that the file
couldn’t be found. Let’s fix that.

Go ahead and create the “animate.js” file in your favorite programming text editor, and save it
right next to your new HTML file, in the same folder. You should now have at least two files in
there: a new “main.html” file and the “animate.js” file. Don’t proceed until you do, otherwise
this will get confusing in a hurry. With the empty “animate.js” file next to “main.html” in the
same folder, you should be able to load your “main.html” program and have no errors in the
console. Congratulations, you just made a program consisting of two files! It doesn’t do
anything yet, but still!

Hiding the Plumbing

Remember our little animated spaceship? In that program, and those leading up to it, we have
been seeing the same pattern over and over again, particularly where tick and surrounding
variables are concerned. Here’s the template (pattern) that we have been following:

:javascript:

HIDING THE PLUMBING 249

var lastTime = 0,

frame = null,

EXPECTED_DT = 1 / 60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

}

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

If you look closely, you might notice that nowhere in here is a canvas or context mentioned.
Neither is there anything to do with spaceship motion or locations. They aren’t needed
here—this function knows about how to trigger animation frame drawing, but doesn’t know
anything about spaceships, canvases, contexts, positions, or anything specific to our previous
animation. All it needs to know is what functions to call to draw, move, and tell it to be done.
Those operations are now abstract rather than concrete. We know that something will happen
when draw is called, but we don’t know what, and we don’t need to, so long as there are
appropriate functions to call.

In other words, we have taken a behavioral pattern like “animating stuff using frames” and
removed all of the specifics from it so that it can work for any animation at all! We have
expressed the idea of animation in a much more general way. If we can provide the functions
above somehow, this will work for all kinds of stuff and we won’t have to think about the
details of teleportation, pausing, and requesting animation frames anymore—that will already
be done. That is the essence of abstraction, one of the goals of refactoring, and it becomes
ever more important as our programs become more interesting and capable.

But how do we make use of this abstraction in a real animation? The answer is to turn it into a
function. Not only will we move all of the above code into a function that we can use from
anywhere, but we will put that function out of the way in the “animate.js” file. Then, whenever
we need to do animation, we can just copy that file into our program’s folder and include it.

This is why we have two files now: one of them is a library file (“animate.js”), and the other is
ourmain program file (“main.html”). Libraries are collections of code that are basically

250 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

“finished”. You put them into your projects to use, not to edit.

Because you will be working with two files at once (this particular library is not finished, so we
will be editing it), make sure you know how to switch between “main.html” and “animate.js” in
your editor of choice. If you are using anything reasonable (even relatively simple
environments like Text in Chrome work just fine), your editor should make this easy, certainly
easier than finding and opening the file again. Find out how to switch quickly between files and
it will save you loads of hassle later on. Many editors, for example, let you open files in multiple
tabs, much like pages in a web browser, and you can switch between them in a similar way.

An Animation Function

The first thing to do is to organize the above code into its own function, inside of “animate.js”.
In that file, we might start like this:

:javascript:

// animate.js

// animate sets up an animation loop.

//

// Arguments:

// - move: a function accepting a duration dt,

// called when it is time to position things.

// - draw: a function called when it is time to draw.

// - done: a function that returns `true` only if the

// animation is permanently finished.

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

EXPECTED_DT = 1/60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

lastTime = t;

draw();

move(dt);

ANIMATING WITH ABSTRACTION 251

}

frame = requestAnimationFrame(tick);

}

That looks pretty familiar, right? We basically just took our animation code and shoved it into
a function called animate inside of “animate.js”.

But, there are a couple of additional things to note. First, it is now clear where move, draw,
and done are going to come from: they are parameters to our animate function. They will
need to be passed in when the function is called. Second, we have documented our new
function with a fairly structured comment. This is a good practice in general: if you don’t
document how to actually call your function, anyone who wants to use it will have to guess by
looking at your code, and that is a seriously not fun thing to do.

With all that said, documentation takes up a lot of space, so we will cheat in this book and not
show it most of the time. In real life, you usually can’t go wrong overdoing it a bit on library
documentation; your future self will thank your current self later.

This does not mean that everything should be documented. Too many comments in code
can be detrimental for several reasons, including a tendency for comments to get out of
sync with code changes and a lot of unnecessary noise when what the code does is really
clear already.

Assume your audience knows JavaScript, but doesn’t know what you’re trying to do or
how to use your function. Then comment accordingly.

You might also note that we are now checking for a negative value of dt, when we were not
doing that before. In the process of testing this code, I found that some browsers start with a
negative value for t on the first call to tick! That is really weird, so it became important to
check for negative dt values. This is another power of abstractions: if all of our animation
code is using this function, we can fix bugs like this once and have every user benefit
immediately instead of having to hunt down all of the times that we calculate dt. Of course,
that also means that introducing new bugs into the function will affect more programs, too. It
does cut both ways, but it is still the right thing to do, even if care is still required.

Animating With Abstraction

Let’s see what we can do with this animation function as it currently stands.

In your shiny new “main.html” file, the one with two script tags, it’s time to add a canvas
element. To make things a bit more interesting, we are going to build a brand new animation
instead of just launching a spaceship. This time we will bounce a ball around.

To start, set up your file like this:

252 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Animation stuff goes here.

</script>

Take a moment to ensure that everything in here makes sense, including the canvas tags, the
script that loads “animate.js”, and the main program script with the code to get a canvas and
a context. There is nothing new here, but it might be organized a little bit differently than you
are used to.

Specifying Animation Routines

Our animate function is available to us here because we included the “animate.js” file just
above our program’s script tags, and it was defined in the global scope. Therefore, we can
just call it. The question is what arguments do we give it? It requires a function that moves
things, a function that draws things, and a function that tells it when we are done. Let’s start
with empty versions of these for now, except maybe for the done function, which will always
return false:

Note that we could just leave done empty, as well, because undefined is the value
produced when a function doesn’t return anything, and undefined is falsy. The default
behavior, therefore, is to never be finished.

:javascript:

function move(dt) {

console.log("move", dt);

}

function draw() {

console.log("draw");

}

function done() {

return false; // never done

}

animate(move, draw, done);

Incidentally, when creating functions to be passed elsewhere and called later like we do
here, we often say they are callback functions. There is nothing special about a callback

ANIMATING WITH ABSTRACTION 253

function; it’s just a function. We merely use that name to indicate how they are used.
When you create an event listener and register it, that’s creating and registering a callback
function. When we create draw or move or done, etc., we are creating callbacks, and
we pass those into the animate function, which “calls them back” at appropriate times.

If we run this now, nothing will happen in the browser window, but the console will go crazy
with messages. The animation is running! If you want it to stop after a few frames, you can
change done to update a counter and return true after it reaches a certain number, like this:

:javascript:

var numFrames = 0;

function done() {

++numFrames;

return numFrames >= 50;

}

That will return true when done has been called 50 times, and the animation (just console
messages for now) will stop. Give it a try. It really is that easy.

Because we expect true or false to come from done, do you see exactly how we did
that? Remember that comparators like >= return boolean values, so we can just return
the result of one of those expressions to get the answer to “Are we at or over 50 frames
yet?”

This way, done() returns false if numFrames < 50 and true once it gets to be
greater or equal to 50.

This abstraction is looking pretty good so far—to build a new animation we don’t need to think
about how to compute time anymore, or how to deal with pauses that happen when we
navigate away, or when to move and draw. We just have to provide these three functions that
deal with only what we want to think about right now. A good abstraction will do that for you. It
gets things off your mind that you don’t need to be thinking about so you can focus on more
immediate tasks. We already solved these problems once, after all. We shouldn’t have to
solve them every time we want to do something new.

Tossing the Ball

We still haven’t drawn anything, though. Let’s do that now. We’ll draw a ball in the center of
the canvas:

:javascript:

function draw() {

ctx.beginPath();

ctx.arc(canvas.width / 2, canvas.height / 2,

10, 0, 2 * Math.PI);

ctx.fill();

}

254 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

Yeah, drawing circles is harder than it should be on the canvas. You have to draw an arc that
covers all 2𝜋 radians (360 degrees) of rotation. Let’s pause and create a fillCircle
function inside of “animate.js” to make it simpler:

:javascript:

// ... somewhere in animate.js ...

function fillCircle(ctx, x, y, r) {

ctx.beginPath();

ctx.arc(x, y, r, 0, 2*Math.PI);

ctx.fill();

}

Now when we include “animate.js”, we also get fillCircle coming along for the ride.
When we want to draw a circle, we can just call it like this in our draw function:

:javascript:

function draw() {

fillCircle(ctx, canvas.width / 2, canvas.height / 2, 10);

}

That’s better. It is easier to specify (x, y, r) for a circle and let the function handle things
that remain the same. We no longer have to remember the angle arguments, and it’s all one
line to actually fill it. Having this extra library file is kind of handy. What is handier still is the
fact that you can just copy it to your next project and it will be ready to use if you need it.

Dropping the Ball

We have now specified done and draw, but we don’t really have any animation going on.
That’s kind of boring, so let’s fix that now. We currently have three small functions defined,
and they are all going to need to know about the ball’s position: move needs to know so it can
update it, draw needs to know so it can draw it, and done needs to know so things can stop
if the ball leaves the canvas. That means these are all going to be closures, so we should set
up some variables in their outer scope, like this:

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var RADIUS = 10,

xVel = 0,

yVel = 100,

x = canvas.width / 2,

y = canvas.height / 2;

ANIMATING WITH ABSTRACTION 255

function move(dt) {

x += xVel * dt;

y += yVel * dt;

}

function draw() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

fillCircle(ctx, x, y, RADIUS);

}

function done() {

return y + RADIUS > canvas.height;

}

animate(move, draw, done);

</script>

That gets us started. Keep in mind that nothing here is new to you, really. You have seen it all
before. We’re simply using three nice, simple functions to do the work instead of one big, ugly
one.

The move function adds the time-scaled velocities to x and y, as we learned to do previously.
This creates a new position. In this case, though, we have both xVel and yVel. yVel is
100, so y will move down the canvas at a rate of 100 pixels per second; xVel is 0 so the ball
will not move sideways at all. The draw function clears the canvas and draws a circle at x
and y with the specified radius. The done function returns true when the ball’s bottom
edge has hit the bottom of the canvas. Shall we try it?

This basically works! And, the code we wrote in “main.html” is only what is relevant to this
specific animation. The generic animation stuff is all in the animate function inside of
“animate.js”. That’s very neat. Literally. Our code is neater because of it. You know, in the
organizational sense, like “tidy” neat. Like “you just cleaned your room and found a floor
there” neat.

These things matter.

Moving Diagonally

As animations go, this isn’t the most interesting thing we could do. What would be more fun
would be to have the ball move diagonally around the canvas. Our code already handles any
velocity in either the horizontal or vertical direction, so all we have to do is set it differently.
Here is what it looks like if we use a non-zero xVel to produce some sideways motion while
the ball drops:

:javascript:

256 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

var RADIUS = 10,

xVel = 110,

yVel = 100,

x = canvas.width / 2,

y = canvas.height / 2;

Well, that was pretty easy. Only one value changed. As before, the ball drops, but this time
diagonally to the right, before stopping at the bottom edge (off the right side).

Bouncing Off the Walls

The last item of business is to get the ball bouncing off of the walls. This is where things get
interesting. In order to make this happen, we have to think about what “bouncing” means in
terms of the mathematics of motion. In a very basic sense, it means to reverse direction. If a
ball bounces off of the right wall, for example, it must have had a positive horizontal velocity.
When it finished bouncing, it will have a similar but negative horizontal velocity. That logic
applies to all bounces. Here is what bouncing off the right wall might look like:

:javascript:

function move(dt) {

if (x + RADIUS >= canvas.width) {

xVel = -Math.abs(xVel);

}

x += xVel * dt;

y += yVel * dt;

}

All we did was add a test: if the ball is going past the right side, make sure the new xVel is
negative. Why not just say xVel = -xVel? Because the ball might be just barely far
enough off the right side that reversing course won’t get it all the way back onto the canvas. In
that case, it will reverse again next time, and we really don’t want that. So, we take the
absolute value of the velocity and make absolutely sure that the new velocity is negative. Yes,
this was a fix applied after sad experience.

There is actually an important principle hiding in this small matter of whether to use
Math.abs when bouncing, and it is this: try to make your reactionary code idempotent.
In other words, if your code executes twice because the condition is still true, make sure
that the result doesn’t change after the first execution. That’s what happens in the case of
the ball getting slightly off the edge: the bounce code can sometimes execute twice for the
same bounce: the first time starts it moving away from the edge, but it hasn’t quite
escaped it yet (still some overlap), so the condition is true next time around, as well.

In that case, if you merely “reverse direction” from what you had before, your ball ends up
jittering forever, stuck with a little bit of it outside of the canvas. The condition triggers,
you reverse, then reverse again, etc., so on forever.

ANIMATING WITH ABSTRACTION 257

The xVel = -Math.abs(xVel) statement ensures that no matter how many times
it is called for a right-side collision, the x velocity will always end up moving it away. That
is a really nice example of idempotence, and a principle to remember.

The same thing can be done for, say, the bottom wall:
:javascript:

function move(dt) {

if (x + RADIUS >= canvas.width) {

xVel = -Math.abs(xVel);

}

if (y + RADIUS >= canvas.height) {

yVel = -Math.abs(yVel);

}

x += xVel * dt;

y += yVel * dt;

}

But this might not actually bounce because of the way our done function currently works.
You can delete the contents of that function if you want to see these two wall bounces
succeed, but it will work much better if you first have all four wall bounce routines in place:

:javascript:

function move(dt) {

if (x - RADIUS <= 0) {

xVel = Math.abs(xVel);

} else if (x + RADIUS >= canvas.width) {

xVel = -Math.abs(xVel);

}

if (y - RADIUS <= 0) {

yVel = Math.abs(yVel);

} else if (y + RADIUS >= canvas.height) {

yVel = -Math.abs(yVel);

}

x += xVel * dt;

y += yVel * dt;

}

There you have it. We guarantee that wall collisions put us back on the right track using
Math.abs and properly-placed negatives based on which wall we have run into.

Finally, we just need to allow the animation to continue all the time:
:javascript:

function done() {

return false;

}

And with that, we have a bouncing ball that stays within bounds and doesn’t stop.

258 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

Furthermore, we did it without having to rewrite all of the timing stuff that we abstracted away
into the “animate.js” file. When you look at the main program, all you see is code pertinent to
this specific animation. There is no longer any boilerplate for calculating dt and requesting
animation frames, just code to move and draw a ball on a canvas.

Here’s the full program (without the contents of “animate.js”):

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var RADIUS = 10,

xVel = 110,

yVel = 100,

x = canvas.width / 2,

y = canvas.height / 2;

function move(dt) {

if (x - RADIUS <= 0) {

xVel = Math.abs(xVel);

} else if (x + RADIUS >= canvas.width) {

xVel = -Math.abs(xVel);

}

if (y - RADIUS <= 0) {

yVel = Math.abs(yVel);

} else if (y + RADIUS >= canvas.height) {

yVel = -Math.abs(yVel);

}

x += xVel * dt;

y += yVel * dt;

}

function draw() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

fillCircle(ctx, x, y, RADIUS);

}

function done() {

return false;

}

animate(move, draw, done);

</script>

ABSTRACTIONS THAT PROVIDE BEHAVIOR 259

Abstractions That Provide Behavior

The abstraction we wrote is nice because it keeps all of the subtle and ugly timing code out of
the way. When we want to animate something now, pretty much anything, in fact, we can just
use “animate.js” and call animate with three functions very specific to our animation. Time
is handled for us.

You may have noticed, however, that our abstraction is not quite as flexible as what we used
to have. In particular, we have the frame variable but no way of pausing or restarting the
animation once it has been paused. Our pause button situation is looking bleak. How can we
add pause functionality to our animate abstraction?

We can’t get at the frame variable from outside of animate—that’s stuck in the function’s
local scope. At least, we can’t get at it directly. We could, however, return a function from
animate that closes over that variable and allows it to be manipulated. In fact, we can
return multiple such functions from animate to allow outside callers to control things. Let’s
start by adding a pause capability, and we will add more shortly afterward.

Pausing Again

The frame variable is pretty much all we need in order to allow the animation to be paused.
We just need to expose functionality around it somehow. Here is one technique for doing just
that. Recall our animate function:

:javascript:

// ... somewhere in animate.js ...

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

EXPECTED_DT = 1/60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

lastTime = t;

draw();

260 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

move(dt);

}

frame = requestAnimationFrame(tick);

}

This function doesn’t return anything, but it could. What we are going to do next is create a
function inside of this one and return it. The full listing is given to make it clear where it goes.
Note the comment indicating what is new:

:javascript:

// ... somewhere in animate.js ...

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

EXPECTED_DT = 1/60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

// NEW:

// Create a function that closes over

// the "frame" variable.

function pause() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

}

}

// Return the pause function.

ABSTRACTIONS THAT PROVIDE BEHAVIOR 261

return pause;

}

The new parts are at the end. Remember how closures work? When you create a function, it
remembers all of the variables and functions in its outer scope. That means this function can
see frame, lastTime, and EXPECTED_DT. It can also see tick. The thing that makes
closures special is that they can always see those things, no matter who calls them, or from
where they are called.

When we call animate now, it will return a function that we can use to pause the animation,
like this:

:javascript:

// ... somewhere in main.html ...

var pauseFunc = animate(move, draw, done);

// Now if you click on the canvas, it will pause.

canvas.addEventListener('click', pauseFunc);

There are a few things going on here, so you might need to break this down to understand
what is happening. First, we created a pause function inside of the animate function. That
pause function can see frame and even change it to null because frame is part of its
lexical closure. The pause function is then returned by animate, allowing callers to use it if
they want to.

We take that return value and assign it to a variable named pauseFunc when we create our
animation. That variable now holds the pause function that animate created for us, and that
function can see the frame variable that we need to set. Note that we can’t see the variable,
but if we call pauseFunc, it can, and therefore it can do what we ask it to. This is
sometimes called encapsulation, because we are getting access to something we need, but
we can’t get at it directly. It’s inside of a capsule of sorts, and we can only access it by calling
the function we’ve been provided.

Finally, we tell the canvas that it should call our pause function whenever it is clicked.

If you run this, the animation proceeds as normal, but clicking on the canvas pauses it!

Resuming Again

Pausing is great, but it is better if we can also resume things later. We don’t currently have
any way to do that. In order to make that happen, we need to run frame =

requestAnimationFrame(tick), so let’s create a function that does that for us and
return it with our pause function.

Since we now need to return two closures from our animate function, we will return an
object that contains both of them. In fact, we’ll do it with anonymous functions this time just to

262 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

get some more practice with that concept:
:javascript:

// ... somewhere in animate.js ...

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

EXPECTED_DT = 1/60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

// NEW: Changes here.

return {

'running': function() {

return !!frame; // convert to true/false

},

'pause': function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

}

},

'start': function() {

if (!frame) {

frame = requestAnimationFrame(tick);

}

},

};

}

Again, the changes are at the bottom. This time we are creating and returning a new object all

ABSTRACTIONS THAT PROVIDE BEHAVIOR 263

at once, and it has several keys: “running”, “pause”, and “start”. The running function just
allows outsiders to know whether the animation is busy running or not. We use the common
trick of double-boolean-inversion to get a true/false value out of a truthy or falsy object. We’ve
seen the pause function already, and the start function kicks things back into motion in
the familiar way. The only noteworthy thing is that we test whether things are running or not
before starting up again. It wouldn’t make much sense to start an already-running animation.

Moving on, we can use the functions in this object to implement togglePaused again (in
“main.html”):

:javascript:

// main.html

// Functions move, draw, and done omitted,

// but they would go here.

var animation = animate(move, draw, done);

function togglePaused() {

if (animation.running()) {

animation.pause();

} else {

animation.start();

}

}

canvas.addEventListener('click', togglePaused);

// Add space bar pausing for good measure.

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

togglePaused();

}

});

See how that works? The animate function returns an object with members running,
pause, and start, all of which are functions we can call to do what we need. We store that
object in the animation variable.

The togglePaused function uses animation.running() to determine whether it
needs to pause or start the animation. That running function is pretty handy for cases like
these. If the animation is running, then it calls animation.pause() to pause it, otherwise
it is already paused and it calls animation.start() to get it going again.

This idea really showcases the power of having closures at our disposal. You can create
systems where you pass behaviors in (like move) and those systems can create and provide
new behavioral controls that get passed out (like start). Again, this idea is often called
encapsulation because it takes functionality, hides it away inside a capsule (a function), and

264 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

only allows you to get at certain bits of it that it wants to expose. The idea of animation is now
encapsulated in the animate function and the closures it provides us.

You can see how you would expose even more of the internals through other closures as you
see fit. For example, you could move the togglePaused function into “animate.js” by
returning it as a closure alongside the other functions returned.

Summary and Listings

In this chapter we learned how to

• Move code into a separate file,
• Create an abstraction that uses callbacks,
• Allow that abstraction to pass controls back to us, and
• Animate something in two dimensions, with collisions.

That is actually a lot. The important thing is that you are equipped to understand all of it. No
new language concepts were introduced (other than the separate file), just more practice with
the ones you already know.

As promised, the complete listings of both files come next.

main.html
:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var RADIUS = 10,

xVel = 110,

yVel = 100,

x = canvas.width / 2,

y = canvas.height / 2;

function move(dt) {

if (x - RADIUS <= 0) {

xVel = Math.abs(xVel);

} else if (x + RADIUS >= canvas.width) {

xVel = -Math.abs(xVel);

}

if (y - RADIUS <= 0) {

yVel = Math.abs(yVel);

} else if (y + RADIUS >= canvas.height) {

SUMMARY AND LISTINGS 265

yVel = -Math.abs(yVel);

}

x += xVel * dt;

y += yVel * dt;

}

function draw() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

fillCircle(ctx, x, y, RADIUS);

}

function done() {

return false;

}

var animation = animate(move, draw, done);

function togglePaused() {

if (animation.running()) {

animation.pause();

} else {

animation.start();

}

}

canvas.addEventListener('click', togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

togglePaused();

}

});

</script>

animate.js
:javascript:

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

EXPECTED_DT = 1/60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

266 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

return {

'running': function() {

return !!frame; // convert to true/false

},

'pause': function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

}

},

'start': function() {

if (!frame) {

frame = requestAnimationFrame(tick);

}

},

};

}

function fillCircle(ctx, x, y, r) {

ctx.beginPath();

ctx.arc(x, y, r, 0, 2*Math.PI);

ctx.fill();

}

Exercises

Exercise 11-1: Library Functions
Solution on page 465

Add a clearContext(ctx) function to “animate.js” that clears the canvas. Note that you
can get the underlying canvas object from the context thus: ctx.canvas.

Exercise 11-2: Toggle Pause Behavior
Solution on page 465

EXERCISES 267

Our animate library function returns several useful behaviors as functions, stored in an
object. Since toggling paused state is something we’ll want to do with many animations, move
the togglePaused function into animate and return it with the rest.

268 CHAPTER 11. BEHAVIORAL ABSTRACTIONS AND MULTI-FILE PROGRAMS

Chapter 12

Our First Game: State, Configuration,
Clocks, and Winning

Now that we have worked out a pretty useful abstraction for animation, it’s a lot easier to get
one going without remembering all of the boilerplate for time and frame management,
including pausing. All we have to do is provide move, draw, and done functions to our
animate abstraction, and it gives us back the controls we need.

Furthermore, we also have a little bit of experience getting events from the keyboard, which
we have thus far used to pause animations.

With all of this at our disposal, we are ready to make a complete, interactive game. What
game should we make? Given that we already know how to make a ball bounce around and
interact with the edges of the canvas, let’s adapt that idea to using a paddle to keep it from
falling off the bottom edge. We will use the keyboard to control the paddle.

Our code is getting longer, so this chapter is full of code “snippets”, little bits of text that don’t
show all of their surrounding context. That means you will want to follow along in your own
editor, otherwise it will be easy to get lost. From here on out, homework will become more like
labs all the time, and the expectation is that you will have followed along through the chapter
and can continue your assignments where the text left off. So, dust off your text editor, start a
project, and type things in and test them as you read.

In other words, follow along through this chapter, with hands on the keyboard, writing the
code and running it as you go.

If you get lost, don’t worry, that happens to everyone. Just read back a bit, reorient yourself,
and try again.

269

270CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

A Matter of State

Let’s revisit the idea of the “pause” control. When you pause the animation, it is as though
time has stopped for it. When you resume it, it begins again from where it left off. How exactly
does it do that?

The easy but incomplete answer is that we simply stop calling tick (by canceling the
animation frame request). When we pause, tick doesn’t get called. That is absolutely
correct, but it is useful to step back and think about what happens outside of “animate.js”,
specifically in the HTML file where the behaviors of our animation are actually defined. All of
that business with tick and frame (or running, for the earlier approach) is just an
implementation detail for our animation loop. We shouldn’t normally have to think about things
at that level, not now that we have abstracted it away into the animate function. What we
really want to think about is what it means for time to “stop” for our animation.

In reality, we already know that time doesn’t truly stop, even in the context of the web page the
game is running in. When the game resumes, it gets the number of milliseconds since the
page was loaded, just like it always has. That means there will be a big jump in the time
elapsed, which the tick function handles by clipping it to EXPECTED_DT.

What it really means for time to stop is this: the state of the things we care about does not
change. The “state” of something in this case is “the values of things we are keeping track of”.
For the bouncing ball animation, that means x, y, xVel, and yVel, so when time stops,
those are not changing and the ball is not moving. Remember this clause at the beginning of
our ball animation?

:javascript:

var RADIUS = 10,

xVel = 110,

yVel = 100,

x = canvas.width / 2,

y = canvas.height / 2;

At least some of those variables are changed in move, and accessed in draw. They
represent the current state, or status, of the animation. Time is only useful in that it tells us
how and when to change that state. If the state doesn’t change, it doesn’t matter how much
time is going by; our little world, the one that we created here in our program, is stopped.

Technically, there was another bit of state in our animation, and that was whether it was
currently paused or running. As this is a piece of state in every animation or game we
might conceive of, we will leave it implied, but it is definitely state. You can tell by looking
at how we deal with it to pause or resume: what we see in animation.running()
determines how we behave.

Time travel, if such a thing existed, would have to work like this, really. If you were to travel
back in time, that would mean that every particle of the universe would have to go back to the

WHERE TO STORE STATE 271

state it was in at that time, perhaps with the magical exception of yourself, somehow protected
by a fictional machine that got the universe to do that in the first place. It works the same way
in animations and games: time travel, or even stopping time, is really all about changing state.

When creating a game or an animation or even a boring business web page, figuring out what
the state should contain is often the first order of business. What does the page need to
remember? What parts of it can change? What should happen when these things change?
These are the questions to ask. Let’s ask them for our one-player Pong knockoff:

• What does the page need to remember?
– The position of the ball and the position of the paddle,
– The number of seconds of play time so far,
– The score, and possibly
– The speed of the ball and the width of the paddle, if we make the game more
challenging as time progresses.

• What parts of the state can change?
– The paddle position changes with user input (like key presses), and the position
and direction of the ball change with time and collisions.

– If we alter difficulty over time, the speed of the ball and the width of the paddle
change.

– The score changes each time we get a successful hit.
– Time changes constantly without our help.

• What should happen when these things change?
– The paddle position and width affect the way it is drawn and how easy it is to hit,
– The ball position and speed affect where it is drawn,
– A clock should be shown in the game window, and
– A score counter should be shown in the game window.

OK, wow. For a simple game, there sure are a lot of interesting answers up there. We will
tackle all of those in this very chapter, and by the end of it, the game will have a clock, a
scoreboard, a moveable paddle, and a ball that bounces off of it convincingly. Let’s get
started!

Where To Store State

With our recent animation, we stored state in variables that lived in the surrounding scope of
the move, draw, and done functions. When we declared them, we also set them to their
beginning values. This is the initial state.

Then we called animate and handed it our closures, which access and change these state
variables to do their work.

Another deep question is this: why doesn’t all of this state disappear when our main program
falls off the end? The answer is possibly a bit surprising, and it has everything to do with

272CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

registering listeners.

When we call requestAnimationFrame, we pass it the function tick. That function
closes over variables like frame and EXPECTED_DT, so those stay alive as long as tick
does, and tick stays alive (meaning it is not erased to reclaim space) as long as it is
registered with requestAnimationFrame.

Back when we only had the ability to pause, not to resume, we could call
cancelAnimationFrame(frame) to stop the animation. Consider for a moment what
that means: any animation frame that was waiting to call tick is canceled, so tick is never
called, nothing remembers it anymore, and our program finishes. At that point (or possibly a
bit later), all of that stuff (tick, its surrounding variables, etc.) is deleted; the browser has no
need of any of it anymore. We couldn’t start it back up if we wanted to: it’s out of our reach.

When we added back the ability to resume, how did we do that? We added an event listener
to a button that is always on the page, and gave it another closure to call. This closure could
see the tick function; it had to in order to reregister it with requestAnimationFrame,
so that kept it from being deleted: the interpreter doesn’t delete things when it can tell that
they might be needed again, and it could tell in this case because we registered a function
that can see tick (a function that resumes things).

In other words, the pause button sees the event listener, the event lister sees tick, and
tick sees its enclosing scope, so all of that stuff sticks around as long as the button is there.
The pause button is what keeps the code around!

In our most recent animation, we call animate, which returns an object whose values are
closures. Those closures also have access to the tick function and all of the surrounding
variables, so all of that stuff stays alive as long as our animation object does. That object
is in the surrounding scope of togglePaused, and that is in the surrounding scope of the
keyboard event listener that we register. The browser is holding onto all of those listeners, so
it is also keeping all of their transitive dependencies. So things also stick around because the
keyboard listener is registered for us to use the spacebar for toggling the pause state.

It’s kind of mind-boggling when you think about it that way, but also really sensible. The
reason our code sticks around after our main program exits is because something (a button,
or a key press) is hanging around that will need to access it, and the interpreter detects that
for us. Thus, our state, currently in the outer scope of our animation functions, sticks around
as long as there’s a registered listener that might use it.

There are many ways to reclaim useless objects in a runtime environment, including
“reference counting” and “mark and sweep” (and similar) garbage collection. We won’t
get into either of these, but it’s good to know the vocabulary in case you would like to learn
more about how the language is helping you out.

ANIMATION AUGMENTATION 273

Animation Augmentation

It’s time to improve our animate function a little more. There are a few useful things that we
can have it do for us that aren’t yet in there.

Elapsed Animation Time

One thing that jumped out at me as I was looking over the list of things we need to keep track
of was the need to keep track of total time played. That seems like something our animation
object should be able to tell us. In fact, it might be hard to get it any other way without a lot of
repeated effort, since time is getting manipulated in very particular ways by animate. We
should just update the animate function to track all of that for us!

For reference, here is the starting point for our animate function:
:javascript:

// ... somewhere in the file animate.js ...

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

EXPECTED_DT = 1 / 60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

return {

'running': function() {

return !!frame;

},

'pause': function() {

274CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

if (frame) {

cancelAnimationFrame(frame);

frame = null;

}

},

'start': function() {

if (!frame) {

frame = requestAnimationFrame(tick);

}

},

};

}

We need to add something that keeps track of total time elapsed (while running) and provides
a function to get it from outside. The necessary changes will happen throughout and will be
marked with a // CHANGE comment so you can see where the differences are. Before
looking below, keep in mind that you already have all of the tools you need to build this
yourself. Give it a try before peeking.

:javascript:

// ... somewhere in the file animate.js ...

function animate(move, draw, done) {

var lastTime = 0,

frame = null,

elapsed = 0, // CHANGE

EXPECTED_DT = 1 / 60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

elapsed += dt; // CHANGE

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

ANIMATION AUGMENTATION 275

return {

'running': function() {

return !!frame;

},

'elapsed': function() { // CHANGE

return elapsed;

},

'pause': function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

}

},

'start': function() {

if (!frame) {

frame = requestAnimationFrame(tick);

}

},

};

}

Do you see the changes? They’re fairly simple. We first create an elapsed variable,
initialized to 0. Then we increment it by the change in time inside of tick, which will only
happen while the game is running. Finally, we return a function that provides it in our
animation object. To access the elapsed time in seconds, we can just ask that function to tell
us, just like we ask it whether it is running by calling the corresponding function.

We could easily have put this into our main program, since we get dt in the move function,
but it seems like something we will need all the time for all animations, so it makes sense to
tuck it away in our “animate.js” library instead. Figuring out what should go into a library is
something of an art that requires experience, and you won’t always get it right at first. The
neat thing is that you don’t have to. It’s your code, you can factor it any way you like, and you
have the power to change your mind.

Pause Toggling

The togglePaused function is something that we are going to want to use all the time, and
is also not going to change. That seems like an opportunity—perhaps we should move it into
our animate abstraction and provide it as a function on the animation object. Indeed,
that is a homework assignment from earlier. Still let’s examine what it looks like and discuss it
a little further.

We will just change the animate function’s return clause and leave everything else alone.
Here is what it looks like inside the return clause:

:javascript:

276CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

return {

// ...other pre-existing stuff here...

togglePaused: function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

} else {

frame = requestAnimationFrame(tick);

}

},

};

From now on, we can call this new togglePaused function returned by animate to do
the work of pause toggling, which allows us to remove that function implementation from our
main program. One more abstraction is now out of our way so that we can focus on our game!

Why didn’t we implement it in terms of the functions running(), start(), and pause()
like we had it before in our main program? Because inside the object where the
'togglePaused' key exists, those functions can’t be seen. They aren’t in the scope of
the object, but are rather inside of it. Object literals don’t create scopes. If we wanted to reuse
those functions, we would need to define them with names outside of the returned object, first.
We wouldn’t be able to use anonymous (or even named, inlined) functions the way we do.
Rather than refactor things, we just implemented it slightly differently this time around.

Configuration Arguments and Defaults

Let’s make a final change to our animate function: let’s specify the move, draw, and
done functions in an object instead of directly as arguments. We will provide that object as a
single argument instead of three function arguments.

Why might we want to do this? For one thing, it makes it easier to see what we’re doing when
we call it. Right now you just have to get things in the right order. For another, it allows us to
leave some things unspecified and have the animate function fill in a suitable default.

Let’s look at how that works by making a couple more changes to animate. In particular, we
will replace this

:javascript:

function animate(move, draw, done) {

...

}

with this
:javascript:

ANIMATION AUGMENTATION 277

function animate(config) {

var move = config.move || function() {},

draw = config.draw || function() {},

done = config.done || function() {};

...

}

What does this do? It basically says, “Set move to either the value of config.move or to
an empty function if config.move isn’t there.” It works like that for the other two, as well.
The variables move, draw, and done will either get the values passed in via config, or a
suitable default if none exists. It takes advantage of some of the special behavior of ||, which
we will cover shortly.

You might notice that the “suitable default” for all of them is just an empty function that
returns nothing (well, it returns undefined). This works as a default for all of them. It
even works for done, since undefined is falsy. That was no accident. In general, it’s
nicest when the “empty” or “zero” value of something is the most suitable default; it aids
intuition.

Anyway, this does the trick. It allows us to call animate this way:
:javascript:

var animation = animate({

move: function(dt) {

console.log("move", dt);

},

draw: function() {

console.log("draw");

},

});

That’s kind of nice—we can name our arguments this way because they’re just keys in an
object. We can also more clearly use anonymous functions, since they are right next to the
key names. Also, we can omit done altogether because its default is fine for our needs right
now. That’s handy!

Unfortunately, this also means that we just snuck in a concept that maybe wasn’t fully
explained earlier, and that is how the boolean OR operator || actually works. Let’s explore
that before moving on and using this new feature of animate.

Short-Circuit Boolean Operators

A curious feature of many programming languages is the behavior of the || (OR) and &&
(AND) boolean operators. Let’s review just a bit about what those mean:

• || is the OR operator: truthy if either the left side or the right side (or both) is truthy. It
is only falsy if both sides are falsy.

278CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

• && is the AND operator: truthy only if both the left and right sides are truthy. It is falsy if
either side is falsy.

These expressions are always evaluated left-to-right, and they have a property called
“short-circuiting”. What this means is that if the left side makes the outcome inevitable, the
right side is never evaluated. Consider this:

:javascript:

function loggingTrue() {

console.log('got here');

return true;

}

var outcome = true || loggingTrue();

What happens in this code? Is “got here” written to the console or not?

The answer is “no”. The logging never happens because the function loggingTrue is
never called. Why is that? Because if either side of the || expression is truthy, the whole
expression has to be truthy. The first thing we encounter there is a true value, so we already
know that this expression will be true and we can be done. There is no need to continue.

A similar thing happens with &&: if either side is falsy, then the answer has to be falsy, so if the
first thing it encounters is falsy, the outcome is inevitable, and the right side is not evaluated.

This should feel pretty reasonable. Now for the mind-bending part: the outcome of || or &&
is not necessarily just true or false: it is the value of one of its operands. The logic of ||
is more succinctly described thus:

• Return the left-side value if it’s truthy,
• Otherwise return the right-side value.

Similarly, for &&, we have this:

• Return the left-side value if it’s falsy,
• Otherwise return the right-side value.

This behavior, coupled with short-circuiting, allows us to use || for the default value idiom:
:javascript:

var draw = config.draw || function() {};

If config.draw has a function value (functions are truthy), then draw will be assigned that
function. Otherwise it gets whatever is on the right, truthy or not. In this case, if
config.draw is falsy (e.g., undefined), then draw gets assigned a blank do-nothing
function.

You can see how this is strictly more general than thinking of && and || being applied only to
boolean operands. They work just the way you would expect them to, but they have this

WRITING THE GAME 279

additional (and powerful) behavior of short-circuiting and returning one of their operands
instead of just returning true and false. This works in many modern programming
languages.

Again, the principle is this: if the left side makes the outcome inevitable, then that’s the value
of the expression: there is no need to evaluate the right side. But, if the right side is evaluated,
that is the value of the expression. Both operators take the left operand if that’s enough to get
an answer, otherwise they take the right operand.

Writing the Game

Let’s test all of this out by creating a new main program for our game, but with just a skeleton
of functionality (we know we will need a canvas, so that’s included even though we don’t use it
yet):

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var animation = animate({

move: function(dt) {

console.log("move", dt, animation.elapsed());

},

});

canvas.addEventListener('click', animation.togglePaused);

</script>

Much of this looks familiar. We are creating a canvas element just like before. We are pulling
in our “animate.js” script, where our animate and fillCircle functions live. We have
done that before, as well. And, in the beginning of our main HTML file, we have variables for
the canvas and its context. That’s all pretty familiar.

Where things get to be different is in the way that we create our animation. Instead of passing
in three functions as in the call animate(move, draw, done), we are passing in a
single configuration object like this: animate({...}). That object has one key, "move",
and the value under that key is an anonymous function that logs timing information. Once you
get used to seeing this sort of thing, it makes it easier to see what the things being passed into
a function actually mean.

Our configuration strategy also allows us to not bother with the done and draw functions,
since they now have suitable defaults.

Finally, instead of implementing togglePaused like we have in the past, we are just

280CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

passing animation.togglePaused directly into our event listener. That function is
already defined, and it’s part of our animate object, so we can just register it as the canvas
click listener.

To see this in action, open the console, load this into the browser, and try pausing and
resuming things by clicking on the canvas. What happens to elapsed time in the console
(shown in seconds)?

Displaying Text on a Canvas

Let’s put that elapsed time on the canvas instead of the console. The time might be a number,
but when we want to display it, we’re going to be interested in the text describing that number:
a sequence of digit characters that we will interpret as seconds. That means we need to
display a string on the canvas somehow. We haven’t really done that yet, and it isn’t
necessarily the most straightforward thing to do.

The shapes that make up the letters we see on the screen are actually quite complex
(especially compared to triangles and circles), and drawing them all by hand is probably not
what you had in mind for a nice relaxing game-writing session. Thankfully, we have fonts. A
font is just a library of instructions for how the computer should draw each character that you
might want to display. “Scalable” fonts are usually represented as “splines” (mathematical
descriptions of curves). Many modern fonts are scalable, which means we can make them
any size we like and they’ll still look reasonably good. That’s good news—we don’t have to
worry about size affecting how pretty our characters are. The browser has a lot of built-in
fonts, so we will just use the default one for “sans-serif” characters.

Modern browsers have generic font names like “sans-serif” available, which is really
helpful for making sure your web site works in multiple environments. That said, it is often
the case that what one browser on one operating system thinks of as “sans-serif” can be
very different than another. They usually look fine, but if you want them to look exactly the
way you see them, everywhere, then you have to pick a more specific font, and that font
may or may not be installed on the target system.

To solve this, you use web fontsa, and that’s a larger discussion for another time.
ahttps://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts

Text is actually really interesting to draw. When we draw text, we draw it into a bounding box.
We specify what we want to draw and where we want to draw it, along with some other
properties that indicate things like how big it is and which corner of the box we’re talking about.
Since I just decided that the clock will be displayed at the top of the screen, and you can’t
argue with a textbook, we will use the “hanging” baseline, which means that the text is drawn
below and to the right of the coordinates we specify: the box’s upper left corner is given.

Remember how we drew paths and filled them to make a triangle? We will do something

https://developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Web_fonts

WRITING THE GAME 281

similar here: we will set the properties on a context object, then we will fill our text shapes.
Here is a new animation specification that draws the text “Clock!” in the upper left corner of
the canvas. Give it a try!

:javascript:

var animation = animate({

move: function(dt) {

console.log("move", dt, animation.elapsed());

},

draw: function() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.font = '20px sans-serif';

ctx.textBaseline = 'hanging';

ctx.fillStyle = 'black';

ctx.fillText('Clock!', 2, 2);

},

});

That’s a good start! We have the word “Clock!” drawn in our canvas, but, of course, it isn’t
really a clock—it doesn’t reflect the number of seconds elapsed. Maybe we should put the
seconds elapsed into the fillText function instead, like this:

:javascript:

ctx.fillText(animation.elapsed(), 2, 2);

Figure 12.1: Clock using animation.elapsed().

Recall that the “floor” operator (Math.floor) rounds to the nearest integer, always
downward. A similar function is the “ceiling” operator (Math.ceil), which always
rounds upward to the nearest integer.

What did you notice about this immediately? It’s a bit … distracting. There are an awful lot of
digits being displayed there. Let’s just make it show integer seconds instead of more accurate
but distracting fractions of seconds by using Math.floor like this:

:javascript:

ctx.fillText(Math.floor(animation.elapsed()), 2, 2);

That’s much better. We now have seconds ticking away in our game window. Hooray! The
full listing of “program.html” is here. Note that we snuck in a “keydown” listener to pause

282CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

Figure 12.2: Clock using Math.floor(animation.elapsed()).

when the space key is pressed, as well. It makes use of animation.togglePaused just
like our click handler does.

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var animation = animate({

move: function(dt) {

console.log("move", dt, animation.elapsed());

},

draw: function() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.font = '20px sans-serif';

ctx.textBaseline = 'hanging';

ctx.fillStyle = 'black';

ctx.fillText(Math.floor(animation.elapsed()), 2, 2);

},

});

canvas.addEventListener('click', animation.togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

animation.togglePaused();

}

});

</script>

There are a number of things we could do with this. If you leave this ticking long enough, you
will notice that it always shows seconds. It will display “92” instead of “1:32” to mean “1
minute 32 seconds”. For now let’s not worry about that—we will just leave it as a number of
seconds. And, since the game is all about survival, that can double as our score, as well.

WRITING THE GAME 283

A Good Paddling

Now we have a clock. Our animation routine works, clicking or pressing the space bar to
pause works, and we know where our state is and how to use it to draw something. Let’s
move on to drawing a paddle.

A paddle is just a short, wide rectangle that moves side to side in hopes of catching a ball
before it falls off the screen. What data do we need to keep track of for the paddle? Basically,
we need its position and its size, and some parts of those will be constant.

Let’s suppose we have x and y coordinates for our paddle. The first question is this: what do
those coordinates really mean? Do they represent the lower left corner of the paddle? The
dead center? What meaning will be the most useful?

Since we will be drawing the paddle at the bottom of our screen, and the ball will need to
strike the top of it, we will be testing ball coordinates against the top of the paddle quite often.
It’s therefore probably most convenient to have the y coordinate represent the top. The x
coordinate might as well represent the left side, so (x, y) will be the top left corner of the
paddle.

Figure 12.3: Paddle Coordinates

What is our paddle state, then? It is two coordinates (horizontal and vertical) and two sizes
(horizontal and vertical). We can represent this in our state variables like this:

:javascript:

var PADDLE_HEIGHT = 10,

PADDLE_Y = canvas.height - PADDLE_HEIGHT;

var paddleWidth = 100,

paddleX = (canvas.width - paddleWidth) / 2;

What did we just do there? We first defined the size of the paddle, then we defined the y
coordinate of the top left corner: the height of the canvas minus the height of the paddle.
These are in all caps because they are constants—we don’t expect to ever need to change
them.

Then we created variables that are meant to change: the width of the paddle and the location
of the paddle. We won’t change the width just yet, but we will do so eventually as the game

284CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

progresses, just to make it an interesting challenge. The x coordinate of the paddle initially
places the rectangle centered in the canvas. The reason it works is this little equivalence:

𝑤𝑐
2 − 𝑤𝑝

2 = 𝑤𝑐 − 𝑤𝑝
2

where 𝑤𝑐 is the canvas width, and 𝑤𝑝 is the paddle width. Basically, if you find the center of
the canvas, then subtract half the paddle width, you find out where the left side of the paddle
should be when it’s in the middle. But, that’s the same as subtracting the entire paddle width
from the canvas width, then taking half of that.

Math.

With that state, how should we draw the paddle? We need to choose a color, which will be
blue on these pages, but you should feel free to change it to your liking. The paddle will be a
simple rectangle, and we already know how to draw those. We just need to provide the upper
left corner and the width and height as is familiar:

:javascript:

ctx.fillStyle = "blue";

ctx.fillRect(paddleX, PADDLE_Y, paddleWidth, PADDLE_HEIGHT);

Let’s give this a try! Add the new state where it belongs, and add the drawing functions into
the draw closure. When you load the page and start the game, the paddle should be right
where we put it, at the bottom of the screen. Neat!

It doesn’t really do anything, though. For that, we will need to add some event listeners.

Moving the Paddle

Here we need to ask some more interesting questions, like “How do we want to control this
thing?” How about this: when we are holding down one of the left or right arrow keys, the
paddle will move, and when we aren’t holding down any of those keys, it will stop.

We can tell whether a key (say, the “a” key) is currently being pressed by keeping track of its
“keydown” event as well as its “keyup” event, something like this:

:javascript:

var aDown = false;

document.addEventListener("keydown", function(event) {

if (event.key === "a") {

aDown = true;

}

});

document.addEventListener("keyup", function(event) {

WRITING THE GAME 285

if (event.key === "a") {

aDown = false;

}

});

Do you see what we did there? We have a variable aDown that tells us whether the key is
currently pressed down or not. We change it to true when we get an appropriate “keydown”
event, and we change it back to false when we get an appropriate “keyup” event. We have
basically converted events into states. That’s a useful technique.

This way, if we have code that wants to behave differently based on whether the “a” key is
currently being pressed, we can just have it check the value of aDown. This idea is
something we can use for our paddle, since we just want it to move differently based on which
arrow key, if any, is currently down.

This was all well and good for the letter “a”, but how do we figure out whether an arrow key is
what caused an event? They don’t exactly make any characters appear, so they won’t have
single-character names. Let’s go to the console and figure out what they do:

:console:

> function logEventKey(e) { console.log(e.key) }

> document.addEventListener("keydown", logEventKey);

After typing that in (you can see what it does), do the following:

• Click on the document window (outside of the developer tools). This focuses the
document so it will receive your key events.

• Start typing. You will see what you type appear in the console. Try typing the arrow
keys and see what appears.

Here’s what might happen after you

• Add the event listener above into the console,
• Click on the main window, and
• Start pressing some keys:

:console:

a

b

ArrowLeft

ArrowRight

ArrowDown

Tab

In that example, I typed the ‘a’ key, the ‘b’ key, some arrow keys, and the ‘tab’ key. You can
see what the event model calls those keys. It turns out that the left and right arrows are called
“ArrowLeft” and “ArrowRight”, which is useful to know.

286CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

To do this next part, we can either register a new event listener for key events, or we can add
to the event listener that we already have. Either way is fine, but let’s just add to the current
“keydown” event listener to see what that looks like. Remember, the current listener looks like
this:

:javascript:

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

animation.togglePaused();

}

});

To add the ability to keep track of the left and right arrow keys, we will need a couple of
variables that hold their current state, like this:

:javascript:

var keyLeft = false,

keyRight = false;

Then we will start by upgrading our “keydown” handler like this:
:javascript:

document.addEventListener('keydown', function(event) {

switch (event.key) {

case ' ':

animation.togglePaused();

break;

case 'ArrowLeft':

keyLeft = true;

break;

case 'ArrowRight':

keyRight = true;

break;

}

});

Remember our old friend the switch statement? We could have written this using else
if statements, but it’s good to get practice with switch, too. When we get a “keydown”
event, we handle different keys differently (and leave all the rest alone). If we get a space key,
we toggle the paused state as before, but now if we get a left or a right arrow key, we set it as
being down. All that remains is to unset it when the key is released. For that we use “keyup”:

:javascript:

document.addEventListener("keyup", function(event) {

switch (event.key) {

case 'ArrowLeft':

keyLeft = false;

break;

case 'ArrowRight':

WRITING THE GAME 287

keyRight = false;

break;

}

});

This one is very similar to the “keydown” event, but it doesn’t handle the space bar because it
really doesn’t need to. If you want to see what’s happening with the keyLeft and
keyRight variables during the animation, you can add some logging statements to the
move or draw function, like this:

:javascript:

console.log('keyLeft', keyLeft);

console.log('keyRight', keyRight);

Of course, that quickly logs a huge amount of stuff quickly and doesn’t really do anything
interesting, but you should at least see the key states change from false to true and back
when you press the arrow keys while the game is running. Note, however, that you have to be
careful to click in the game window first: if the console is the last thing you were interacting
with, then the key events won’t fire: the handlers are registered on the document, so the
document needs to be what we’re interacting with in order to capture the events.

Now we’re ready to make the paddle move. How fast should it go? Let’s say it should be able
to cross the entire canvas in one second, so the speed will be canvas.width -

paddleWidth because speed is going to be in pixels per second, and moving from the left
side to the right means the left corner changes from 0 to canvas.width -

paddleWidth (when the right side touches the right wall).

We will add the speed to our variables and call it paddleSpeed, like this (we could have
named it like a constant, as well—sometimes it isn’t clear which way to go when you first start
on an idea, and that’s okay):

:javascript:

var paddleWidth = 100,

paddleSpeed = canvas.width - paddle.Width,

paddleX = (canvas.width - paddleWidth) / 2;

Then we can change our move function to actually move the paddle (note that this is just a
snippet of the animate call’s argument, which is much longer than this):

:javascript:

move: function(dt) {

if (keyRight) {

paddleX += paddleSpeed * dt;

}

if (keyLeft) {

paddleX -= paddleSpeed * dt;

}

288CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

},

Awesome. Let’s give that a try. What happens when you start the game and press the arrow
keys now? It’s alive! It moves in response to your key presses!

It also doesn’t stop when you reach the border. Uh-oh. That is probably not what we want.
How should we fix that? Well, when we calculate the new paddleX, we shouldn’t let it go out
of bounds. Since paddleX is at the left edge of the paddle, that means it shouldn’t be less
than 0, and it shouldn’t be more than canvas.width - paddleWidth:

:javascript:

move: function(dt) {

if (keyRight) {

paddleX += paddleSpeed * dt;

if (paddleX > canvas.width - paddleWidth) {

paddleX = canvas.width - paddleWidth;

}

}

if (keyLeft) {

paddleX -= paddleSpeed * dt;

if (paddleX < 0) {

paddleX = 0;

}

}

},

Now that’s better. The paddle stops when it reaches the right wall or the left wall, depending
on which way you are pushing it.

Something To Shepherd

We have a moving paddle, and we have a clock. What we lack is a ball to keep inside the
canvas walls. We just learned how to animate one of those recently, though, so it should be
pretty easy to add it back in. We will have ours start in the center of the canvas, and we will
use the fillCircle function from our “animate.js” library to draw the ball.

Since we are adding yet another moving thing to our game, we need to keep track of all of its
state. Here are the things we kept track of in the past, with different names to keep them
separate from all of the state we are keeping track of now:

:javascript:

var BALL_RADIUS = 10,

ballX = canvas.width / 2,

ballY = canvas.height / 2,

ballVelX = canvas.width / 2,

ballVelY = canvas.height / 2;

The velocity variables could be set to anything, really, so this is just an experiment to see if we

WRITING THE GAME 289

like how fast things move with the velocity components set to half the canvas width and height
(per second). At least we know the paddle can move fast enough!

We have state for the ball, so all we need to do is move it and draw it. Do you remember what
you need to do in the move and draw functions to make that work? Drawing should be pretty
easy, actually; just draw a ball with radius BALL_RADIUS at the coordinates ballX and
ballY. That’s a one-line call inside of draw somewhere:

:javascript:

fillCircle(ctx, ballX, ballY, BALL_RADIUS);

To move it, you just need to add two lines to the move function:
:javascript:

ballX += ballVelX * dt;

ballY += ballVelY * dt;

If you run the program with these changes, it works as before, but now the ball appears in the
center of the screen and moves down to the right. It keeps on going, too. Forever.

The paddle still moves, and the clock still runs, so that’s all still good. What we are missing is
the test for the walls that reverses the velocity components to make the ball bounce. We had
that test in our previous animation’s move function, and it looked like this (but with different
variable names):

:javascript:

if (ballX - BALL_RADIUS <= 0) {

ballVelX = Math.abs(ballVelX);

} else if (ballX + BALL_RADIUS >= canvas.width) {

ballVelX = -Math.abs(ballVelX);

}

if (ballY - BALL_RADIUS <= 0) {

ballVelY = Math.abs(ballVelY);

} else if (ballY + BALL_RADIUS >= canvas.height) {

ballVelY = -Math.abs(ballVelY);

}

ballX += ballVelX * dt;

ballY += ballVelY * dt;

Quick quiz: why don’t we use else if between the horizontal and vertical tests? In other
words, why do we check both horizontal and vertical directions every time? (HINT: it’s a literal
“corner case”. There are metaphorical ones, too.)

Given that our playing field is a perfect square (unless you changed it, which you are perfectly
welcome to do), the ball just bounces back and forth between two corners. We can move our
paddle while that is going on, but it doesn’t really do anything. It just moves around while the
ball does its thing. That is completely expected, since we haven’t programmed any interaction
between the ball and the paddle. We’re tackling this game one step at a time, and it’s good to

290CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

make progress wherever we can.

Failure Is An Option

With the ball bouncing off the walls and our paddle moving around, we are ready to introduce
the potential for a “Game Over” scenario, where the ball goes off the bottom of the screen and
we lose. Right now it’s impossible to lose because the ball stays in the field all the time. It is
also impossible to win, since there is no score and no way to make it go up. Opposition in all
things. Let’s start with failure and move on to success from there.

How do we make the ball go off the bottom of the screen? That’s pretty easy: just remove the
test for ballY + BALL_RADIUS >= canvas.height. Then it will be free to fly right
off the bottom. Again in the move function, that leaves us with this update code:

:javascript:

if (ballX - BALL_RADIUS <= 0) {

ballVelX = Math.abs(ballVelX);

} else if (ballX + BALL_RADIUS >= canvas.width) {

ballVelX = -Math.abs(ballVelX);

}

if (ballY - BALL_RADIUS <= 0) {

ballVelY = Math.abs(ballVelY);

}

ballX += ballVelX * dt;

ballY += ballVelY * dt;

If we run this now, the ball will go off the bottom when it reaches it, just like we told it to. But
the game doesn’t stop when that happens. Also, it isn’t really the bottom of the screen that we
need to be concerned about, but the ball passing below the top of the paddle. Once it has
done that, there is no redeeming it, so the game is over. Let’s alter our checks a bit to stop the
game once the ball goes below the top of the paddle, remembering that we can stop the
animation by providing a done function that returns true when the game is over.

Here is the done section we want to add to our animate function call:
:javascript:

done: function() {

if (ballY + BALL_RADIUS > PADDLE_Y) {

alert("Game Over!");

return true;

}

return false;

},

We could have made this simpler (e.g., just done return ballY + BALL_RADIUS <

PADDLE_Y;), but it’s nice to be able to tell the user that the game is over. Note the pattern of
putting an exceptional case first, then the default case last. Since the if statement issues a

WRITING THE GAME 291

return, the function will immediately be finished at that point and its result will be true.
But, if the if body doesn’t run, the final return false; will be executed. This is a useful
pattern to follow because it aids readability. A person reading this function can read and
understand the first part, then forget about it while focusing on what comes next. This is
merely a small example of something that starts making a big difference in larger functions.

Where are we now? Now the game stops once the ball reaches the bottom, but it bounces if it
hits something else first. It currently doesn’t hit anything else first, unless you have exercised
your freedom of expression and made the game taller than it is wide, which you are of course
completely welcome to do. Go on, I’ll wait.

Success Is Better

There is currently no way to actually hit the ball, since we just test for it passing the top of the
paddle and we quit. That’s really no fun, is it? It would be nice if we could actually hit the ball
with the paddle, but we currently don’t check for that. Let’s do that now.

This will go into the move function, just like all of the rest of our collision tests. Our test for
vertical collision will change to something like this:

:javascript:

if (ballY - BALL_RADIUS <= 0) {

ballVelY = Math.abs(ballVelY);

} else if (ballY + BALL_RADIUS >= PADDLE_Y) {

if (ballX >= paddleX && ballX <= paddleX + paddleWidth) {

console.log('Hit');

ballVelY = -Math.abs(ballVelY);

}

}

See what we did there? We added the test for the top of the paddle back in, but this time we
only reverse velocity if we’re actually hitting the paddle, meaning that the center of the ball is
within the left and right paddle edges when it touches the top of it.

If you think about this carefully, though, you will notice that there is a problem, and you’ll see it
in the console if you try running it. A hit is registered, but so is “Game Over”, because the test
for a hit is so similar to the test for a failed game! Oops. To fix that, let’s have the move
function be completely in charge of indicating whether we hit or failed, and we will store that in
a variable that done simply returns (don’t forget to add that variable to our state!).

You have probably realized by now that there are many ways of going about this. We
could, for example, change the code in done to ensure that it only triggers when the ball
goes below the paddle without hitting it, or while still traveling downward. You should feel
free to try that out. Here we do it with a variable to avoid code repetition, but other ways
work fine.

292CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

With that change, things look like this:
:javascript:

// ... somewhere above ...

var gameOver = false;

// ... somewhere in the move function ...

if (ballY - BALL_RADIUS <= 0) {

ballVelY = Math.abs(ballVelY);

} else if (ballY + BALL_RADIUS >= PADDLE_Y) {

if (ballX >= paddleX && ballX <= paddleX + paddleWidth) {

ballVelY = -Math.abs(ballVelY);

} else {

gameOver = true;

}

}

Let’s go over what we’ve done. First, as before, we check that the ball hasn’t hit the ceiling,
and bounce if it has. If it hasn’t, we check whether it has gone below the top edge of the
paddle. This is all as it was before. But now, instead of just terminating the game
unconditionally, we do some more checks.

The first thing we check is whether the ball is to the right of paddleX, which is the left edge
of the paddle. If it is, we check that it is also to the left of paddleX + paddleWidth. If it
is, then the ball has been hit by the paddle. Note that we don’t bother with BALL_RADIUS
here, because if the center of the bottom of the ball is within the bounds of the paddle, that’s a
hit. Putting the radius into that condition would make it seem like we should have succeeded
when we fail, and that can be frustrating. Go ahead and try it, though; it’s good to see what
these things feel like and to experiment with different things to make the game interesting.

Finally, if those checks fail, it means we missed the paddle and the game is over, so we set
gameOver = true. To make the game actually fail properly now, we will need to update
the done function to notify the user of the failure, then return the value of gameOver, like
this:

:javascript:

done: function() {

if (gameOver) {

alert("Game over!");

}

return gameOver;

},

Now, if you start the game, you will notice that you can actually play it! Congratulations, that’s
a huge step! The full listing is below. You should be pretty happy with this, because you can
look at this listing and understand exactly what each part of it does, and how it all fits together.
If you look back over this chapter, you will also see a very important technique for building

LISTINGS 293

software: we figured out what we wanted to do, then we put it together a little bit at a time,
making sure to have small successes along the way. That is not always possible, but it often
is, and it’s important to be able to cut and idea into pieces and build one at a time.

You will also notice that we didn’t get everything right. We did some things, realized they
needed adjustments, and took a couple of steps backward to finally move all the way forward.
That is part of the spirit of programming; it’s a world where you can experiment, learn, adjust,
and experiment again until you understand enough to be completely successful.

The full listing comes up next, including our additions to “animate.js” to include configuration
parameters, elapsed time, and pause toggling.

While this is the longest listing yet, you can still follow everything that is happening within it.
The state variables are all at the top, the move function handles moving the paddle and the
ball (as well as determining when the game is over), and the draw function just sticks things
where they go. The done function is very straightforward as well, merely returning the state
of the gameOver variable set inside of move.

All told, it’s actually a small amount of code for a relatively complete game. The exercises will
explore adding a couple more features to it, so make sure you’re comfortable with all of the
pieces here and then dive in!

Listings

animate.js
:javascript:

function animate(config) {

var move = config.move || function() {},

draw = config.draw || function() {},

done = config.done || function() {};

var lastTime = 0,

frame = null,

elapsed = 0,

EXPECTED_DT = 1 / 60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

294CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

} else if (dt < 0) {

dt = 0;

}

elapsed += dt;

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

return {

running: function() {

return !!frame;

},

elapsed: function() {

return elapsed;

},

pause: function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

}

},

start: function() {

if (!frame) {

frame = requestAnimationFrame(tick);

}

},

togglePaused: function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

} else {

frame = requestAnimationFrame(tick);

}

},

};

}

function fillCircle(ctx, x, y, r) {

ctx.beginPath();

ctx.arc(x, y, r, 0, 2*Math.PI);

ctx.fill();

}

program.html
:html:

LISTINGS 295

<canvas id="drawing" width="300" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var PADDLE_HEIGHT = 10,

PADDLE_Y = canvas.height - PADDLE_HEIGHT;

var paddleWidth = 100,

paddleSpeed = canvas.width - paddleWidth,

paddleX = (canvas.width - paddleWidth) / 2;

var BALL_RADIUS = 10,

ballX = canvas.width / 2,

ballY = canvas.height / 2,

ballVelX = canvas.width / 2,

ballVelY = canvas.height / 2;

var keyLeft = false;

keyRight = false;

var gameOver = false;

var animation = animate({

move: function(dt) {

// Move the paddle.

if (keyRight) {

paddleX += paddleSpeed * dt;

if (paddleX > canvas.width - paddleWidth) {

paddleX = canvas.width - paddleWidth;

}

}

if (keyLeft) {

paddleX -= paddleSpeed * dt;

if (paddleX < 0) {

paddleX = 0;

}

}

// Move the ball.

if (ballX - BALL_RADIUS <= 0) {

ballVelX = Math.abs(ballVelX);

} else if (ballX + BALL_RADIUS >= canvas.width) {

ballVelX = -Math.abs(ballVelX);

}

if (ballY - BALL_RADIUS <= 0) {

ballVelY = Math.abs(ballVelY);

} else if (ballY + BALL_RADIUS >= PADDLE_Y) {

if (ballX >= paddleX &&

296CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

ballX <= paddleX + paddleWidth) {

ballVelY = -Math.abs(ballVelY);

} else {

gameOver = true;

}

}

ballX += ballVelX * dt;

ballY += ballVelY * dt;

},

draw: function() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.font = '20px sans-serif';

ctx.textBaseline = 'hanging';

ctx.fillStyle = 'black';

ctx.fillText(Math.floor(animation.elapsed()), 2, 2);

ctx.fillStyle = "blue";

ctx.fillRect(paddleX, PADDLE_Y,

paddleWidth, PADDLE_HEIGHT);

fillCircle(ctx, ballX, ballY, BALL_RADIUS);

},

done: function() {

if (gameOver) {

alert("Game Over!");

}

return gameOver;

},

});

canvas.addEventListener('click', animation.togglePaused);

document.addEventListener('keydown', function(event) {

switch (event.key) {

case ' ':

animation.togglePaused();

break;

case 'ArrowLeft':

keyLeft = true;

break;

case 'ArrowRight':

keyRight = true;

break;

}

});

document.addEventListener('keyup', function(event) {

switch (event.key) {

case 'ArrowLeft':

keyLeft = false;

break;

case 'ArrowRight':

EXERCISES 297

keyRight = false;

break;

}

});

</script>

Exercises

Exercise 12-1: Short Circuit Logic Operators
Solution on page 467

For all expressions below, indicate whether anything is written to the console.

• var a = false || console.log("hi")

• var b = true || console.log("hi")

• var c = false && console.log("hi")

• var d = true && console.log("hi")

Note that we are only interested in whether "hi" gets written, not in the actual value of the
expressions.

Exercise 12-2: Logic Operator Evaluation
Solution on page 467

For each expression below, predict what it evaluates to:

• 1 || undefined

• 1 && undefined

• 0 || 1

• undefined || false

• true && 6

Exercise 12-3: Lab Part I: Adding a Score and Increasing Difficulty
Solution on page 468

For this lab you will add some improvements to the paddle game that we hinted at while
creating the first version. These are

• Add a score (at upper right) that increments for each successful hit,
• Make the paddle slightly smaller (multiply its width by 0.99) with each successful hit,

In other words, we will make this more like an actual game, one that keeps score and gets a
little harder and more interesting to play as time goes on.

Note that every context has a textAlign property that you can set to “left”, “right”, or
“center” and it affects how the fillText method decides where to draw your text. For

298CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

displaying time, we used the default value (because we didn’t specify it at all), which is “left”.
Now that we will be changing it, we will need to specify it for time (“left”, since it’s on the left
side), and then specify a different one for the score (“right”, since it will be on the right side).

Exercise 12-4: Lab Part II: Adding Randomness and Speed Changes
Solution on page 471

To continue the lab, we will make the game more difficult by adding some randomness to how
the ball bounces off of the paddle, and by making it go slightly faster every time it does. This
requires a bit more vector math, so let’s start with some hints about how that should work.

• Make the ball a bit faster with each successful hit, and
• Add randomness to the movement of the ball so it isn’t so predictable,

Previously, we just reversed x and y velocity every time a bounce occurred. Among other
things, this guaranteed that the overall speed of the ball never changes. Simply reversing one
of the components of the velocity doesn’t change its speed, only its direction. That is nice, but
we’re about to fiddle with things on a deeper level now, so we have to be extra careful about
maintaining speed.

How do we know that reversing direction doesn’t change speed (aside from intuition, I mean)?
We know that because speed is the magnitude of the velocity vector, and that’s calculated like
this:

𝑠 = √𝑣2𝑥 + 𝑣2𝑦

Or, in code, like this:
:javascript:

speed = Math.sqrt(ballVelX*ballVelX + ballVelY*ballVelY);

Do you see why the speed doesn’t change when we change the sign of ballVelX or
ballVelY? It’s because they’re squared, and that always produces a positive value.

Our goal is to change the direction of the ball in more ways than just “bouncing” it, and we
want to slowly increase speed with every bounce. That formula we just used is going to come
in handy. Here are some hints for how to go about making this change:

Use Math.random to slightly alter the ballVelX value when bouncing off of the
paddle:

We already change ballVelY to be its negative when that happens, but now we will also
change ballVelX, just a bit, just to keep things interesting. It should increase or decrease
the value by a small amount, say up to 10%. How would you accomplish this using
Math.random?

EXERCISES 299

The first thing to do is to break this idea down into small pieces. How much will we add to (or
subtract from) ballVelX? It it’s up to 10% of its current value, let’s start with getting a
random percentage from 0 to 10: Math.random() * 0.1. That will do it.

Now that we can compute a random percentage up to 10%, how do we apply that to
ballVelX to get a velocity delta (change)? We multiply. The amount we will want to change
ballVelX by is thus ballVelX * 0.1 * Math.random().

Finally, we want to either add or subtract that value. There are a couple of ways to approach
this. You can flip a coin (use Math.random() > 0.5 for this) to decide whether to add or
subtract, or you can generate a number that is randomly positive or negative and always add.
Your choice (there are others, but let’s keep it simple).

There are some problems with the idea presented here, and you may notice them as you
play for a while. Because the randomness is multiplicative, it’s possible (likely, even) to
get into a state where the x velocity just keeps getting smaller over time: it’s harder to
increase its magnitude (because we do so by a percentage) than it is to decrease it: 10%
added to a small number doesn’t make up for the 10% previously subtracted from a larger
one. There are better ways, but this was simple to explain and implement. You may want
to try other things.

Keep track of speed, and make sure it only changes exactly how you want it to:

Speed can be a tricky thing. If you don’t keep a careful eye on it, you could easily end up in a
situation where random changes to direction result in a very large increase in overall speed,
and that’s not intended: we want to control speed in this game, not let it go haywire. That
means we will need to make absolutely sure that it doesn’t get messed up by our introduction
of random motion.

Here’s the basic idea. Right when a paddle hit is detected, do this:

• Calculate the speed of the ball and remember it (we will call this originalSpeed),
• Change direction and add randomness as above,
• Calculate the new speed (we will call this newSpeed),
• Scale ballVelX and ballVelY to make the new speed the same as the original
speed.

Most of this is pretty straightforward using the speed formula. If you can calculate speed
using the formula given above, then you can do most of the steps in this process. The one that
might be a little new is figuring out how to scale things once you have originalSpeed and
newSpeed.

The answer can be found with a little algebra, which you are encouraged to do. This, however,
is not an algebra course, so here’s the answer: scale the velocity components by
originalSpeed / newSpeed after changing them. Intuitively, if the new speed is
smaller than the original, this makes it bigger by the right amount, and if it is bigger, it makes it

300CHAPTER12. OURFIRSTGAME: STATE, CONFIGURATION, CLOCKS, ANDWINNING

smaller. What you end up with is the same speed you started with, but a different direction.
You are “renormalizing” the speed.

You don’t want it to just stay the same, though. You want it to get slightly faster in a controlled
way. Well, that should be pretty simple since we have the original speed. Instead of scaling
everything by originalSpeed / newSpeed, we will scale it by that times some factor
that makes it a bit quicker. For example, you could imagine multiplying that whole thing by
1.01 to add 1% to the speed every time, making the new scale factor 1.01 *

originalSpeed / newSpeed.

Chapter 13

Snakes On a Page

We have now created a complete, playable game. That’s an accomplishment, and we did it
using only basic from-scratch concepts in JavaScript and HTML. Along the way we have
covered a number of interesting and useful programming ideas and techniques that apply to
just about any software you may want to write. That’s pretty great! You are getting to know
JavaScript pretty well at this point, certainly well enough to do interesting things with it.

The language has grown a lot, starting with its first massive upgrade in 2015, and we haven’t
really covered any of the new features introduced then or in the intervening years, but the
original language base is plenty powerful as well as being easier to reason about when first
learning how to program. This book thus intentionally avoids some of the newer language
features even though many of them are quite nice, because it’s just too much for an
introduction to the art and practice of programming. If what you have seen is exciting, you will
definitely want to dive deeper into the language at some point. Fortunately, this text will
provide a solid foundation on which to build and there are many great resources for moving on
from here.

That the language has changed—even dramatically—isn’t just true for JavaScript, by the way.
All languages worth using tend to evolve over time. Some improve, some don’t, but
exceedingly few really remain both stagnant and relevant for long. Learning is a lifelong
pursuit when you do this sort of thing as a career. That’s one of my favorite things about it.

For now, however, let’s pause our climb and take some time to practice what we have learned.
There will be just a couple of new things in here, particularly where canvas coordinates are
concerned, but no new fundamental language features. This chapter is all about solidifying
your grasp of everything learned thus far.

We’re going to use our animate abstraction to create a different kind of game this time: the
game of snakes. In this game, food (shown green in the example image) randomly appears on
the canvas, and your snake starts out as a very tiny critter. Every time it eats, it gets longer
and faster. The goal is to get the snake to be as long as possible without running into itself or

301

302 CHAPTER 13. SNAKES ON A PAGE

Figure 13.1: The Classic Game of Snakes

the wall.

Game Scaffolding

To begin, create a new folder and copy “animate.js” from your previous project into it (or just
make a new “snakes.html” file wherever “animate.js” is). You get all of that work for free, now!
That’s the beauty of a good library: once it’s done (and has its bugs worked out), you can just
use it over and over again.

In your “snakes.html” file in this new folder, you will put the familiar scaffolding for the game: a
canvas, the script tags for “animate.js”, and some basic animation stuff, consisting of empty
functions for animating and event listeners for pausing. This should all be very comfortable at
this point.

:html:

<canvas id="drawing" width="300" height="300" style="border: 1px solid black"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// State variables typically go somewhere around here.

var animation = animate({

DESIGNING THE GAME 303

move: function(dt) {

// Change state based on time and events.

},

draw: function() {

// Clear the canvas, draw stuff.

},

done: function() {

// Quit when we lose.

},

});

// We pretty much always want a pause feature:

canvas.addEventListener('click', animation.togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

animation.togglePaused();

}

});

</script>

As you can see, even with our animate abstraction, there is some repetition here. We aren’t
going to spend any time fixing that, since it’s repetition in things that won’t always be the same
(all games won’t use the space key for pausing, for example), but when you do see a repeated
pattern and can see how it might be meaningfully reused in other circumstances, that can be
good opportunity for refactoring. We did that earlier with togglePaused, and now our
skeleton is shorter and even clearer than before.

Of course, this is just the minimal skeleton that you need to get through this chapter. You
should always feel free to play around and add your own features.

Designing the Game

First things first: what state do we need to keep track of for a snake game?

In the game of snakes we have a current position, but that isn’t really enough. We actually
have a whole snake’s worth of current positions! That sounds like an array, since they’re all in
order and we have to move things appropriately, so we know we will have an array of position
coordinates. That’s pretty easy.

We will also need to know which direction the snake’s head is moving in. Each time an arrow
key is pressed, we may change direction; but if nothing is pressed, the head keeps moving in
the same direction. We need to keep track of that.

There will always be a bit of food around for us to eat, so we will also need to keep track of
where the food is. There is only one bit of food around at a time, so we can just store that as a
single set of position coordinates.

304 CHAPTER 13. SNAKES ON A PAGE

Figure 13.2: Food: [5,7], Snake: [[1,3], [2,3], [2,4], [3,4], [4,4]]

And that’s basically all! There are some tricky parts, however, especially since the snake
moves very differently from our ball or paddle from the previous chapter. We will get to that
when the time comes, and it will be one of the biggest changes in our approach so far. The
animate function we created can handle it, though.

Positions Are Picky

In the state section, we will set up an initial snake and some food. Before we do that, however,
we kind of need to know what we mean by “position”. We can’t just mean “pixel locations”
anymore, because that’s not how the snake game works.

The snake is sitting on a grid with (relatively) large cells, and can only move up, down, left, or
right, one whole cell at a time. The figure shows an example of a valid position (solid) and an
invalid position (outlined). Because each cell contains numerous pixels, we won’t be moving
things based on pixel units; each pixel is only a fraction of a cell. Instead, we need to position
things using integer cell units.

Unit Conversions

We might as well pick a grid size. Let’s make it 20 cells wide and 20 cells high, but let’s do so
in a way that is easy to change using suitable constants. From the grid size we can easily
compute the size of each cell in pixels, which will tell us how to move our snake and where to

POSITIONS ARE PICKY 305

Figure 13.3: The outlined circle wouldn’t be allowed.

draw its body pieces. Our position will be an index into this grid, so it can have x and y values
from 0 to 19 (inclusive).

In order to go from “snake position” to “pixel location”, we’re going to need to do some unit
conversion. We will start by computing how big the cells are based on the canvas size and the
number of items in each direction:

:javascript:

var CELLS = 20, // Cells on one side.

CELL_PIXELS = canvas.width / CELLS;

Note that some folks like to use really descriptive names for constants. That’s generally a
good idea, and we have sort of skimped here. CELLS is not really the number of cells in
the grid, but the number of cells on a side. Perhaps we should have called it
CELLS_ON_A_SIDE. But this is actually a short program, and in the context of this
code, the name CELLS is unambiguous, so we’re going with that. A similar argument can
be made for CELL_PIXELS. In short programs, a small comment in one place can allow
for shorter names everywhere else.

There is often a balance to be struck when there is a temptation to use descriptive but
super-long-and-unwieldy names. As a rule of thumb, I like to give things names that are
appropriate for their scope. If a variable is used in a large program or by things outside of
a library, a more descriptive name makes a lot of sense. If, however, it is in a small scope
and you can see all of its uses really easily, a shorter name makes sense. In general,

306 CHAPTER 13. SNAKES ON A PAGE

make a variable as descriptive as necessary given its scope and the distance to its use,
but no more descriptive than that.

We declare CELLS (cells along each side of our grid) to be 20. That’s the number of cells on
a side, so the full grid will be 20 by 20. We then compute from that and the canvas size how
many pixels are on a side of each individual cell. The reasoning is this: if there are 20 cells
across the full canvas, and the canvas is, say, 300 pixels wide, then each cell will be 300 /

20 === 15 pixels wide. We can easily check that reasoning: if we have 20 cells, each 15
pixels wide, then the canvas has to be 300 pixels wide to accommodate them.

Note that we assume that the width is the same as the height, since later we use
CELL_PIXELS for both width and height. If that assumption is wrong, things will look really
strange. We will stick to a square canvas for this game.

Figure 13.4: Lengths for cells (large) and pixels (small).

Armed with this information, you can start to see how we would transform grid cell coordinates
to canvas coordinates. If you look at the coordinates we’ve been using for snake segments
and food, we have been using integer values like (5, 7). To convert those to pixels, we need to
scale up from cell coordinates to pixel coordinates. If each cell is 15 pixels wide, for example,
cell (5, 7) would correspond to pixel (75, 105), which we obtain by multiplying each coordinate
by CELL_PIXELS. That’s a good start! If our cell coordinates are in x and y, the calculation
might look something like this:

:javascript:

var xPx = x * CELL_PIXELS,

yPx = y * CELL_PIXELS;

So far, so good, but we’re going to draw a circle in that cell, which means we need to find the
center of it. What we have computed is actually the upper left corner. To get to the center, we
need to add half of CELL_PIXELS in each direction, like this:

:javascript:

var xPx = x * CELL_PIXELS + 0.5 * CELL_PIXELS,

yPx = y * CELL_PIXELS + 0.5 * CELL_PIXELS;

And, we can make the computation a bit simpler by factoring CELL_PIXELS out of each
equation:

:javascript:

POSITIONS ARE PICKY 307

var xPx = CELL_PIXELS * (x + 0.5),

yPx = CELL_PIXELS * (y + 0.5);

All we did was factor the common element there, but that makes it look like we’re adding half
to our cell coordinates, then converting that to pixel coordinates. It turns out to be the same
thing. If we are thinking about things in cell coordinates, we can find the center of any cell by
adding 0.5 to it in cell coordinates. If we then scale things up to pixel coordinates, everything
works. That’s comforting: algebra works the same as the geometric interpretation of it.

If, every time we go to draw something, we convert to pixel coordinates in this way, we will get
things exactly where they need to be in the canvas. The radius of our circle will be roughly
CELL_PIXELS / 2 so that it fills the entire cell.

Let’s make this concrete: if we have a canvas that is 300 pixels wide and 300 pixels tall, and
we’re using a 20-by-20 grid of cells, then there will be 300 / 20 = 15 pixels on each side
of a cell. We figured that out earlier. Now, to find the pixel location of the center of a circle in
cell (3, 5), we get xPx = 15 * 3.5 which is 52.5. We also get yPx = 15 * 5.5,
which is 82.5. The canvas doesn’t have a problem with fractional pixel values (and we will
see why in a moment), so it allows us to draw a circle at location (52.5, 82.5) without any
trouble. The radius of our circle will be 7.5, and that lets it fill in the cell as much as possible.

All told, this isn’t too bad. The computations are pretty simple, and we can make them
convenient by putting them inside of functions. We can just keep track of cell coordinates until
we actually need to draw something.

Scale and Translation

There is another way to go about this, though. We can have the canvas do all of these
calculations for us by applying a transform1 to the context.

We kind of encountered this earlier when doing that little bit of algebraic manipulation.
Converting from cell to pixel coordinates involves translating (adding) by 0.5, then scaling
(multiplying) by CELL_PIXELS.

When we do this with the context, we do it in reverse because instead of changing our values
from cell coordinates to pixel coordinates, we’re changing the canvas from pixel coordinates
to our more desirable cell coordinates. After scaling, each unit square occupies a larger
space of the canvas, and then the translation by 0.5 of those units makes sense.

We accomplish this using the scale and translate functions of the canvas object. There
are other transform operators as well, but these are the most straightforward, specifying how
much to translate and scale in the x and y directions:

:javascript:

1https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations

308 CHAPTER 13. SNAKES ON A PAGE

ctx.scale(CELL_PIXELS, CELL_PIXELS);

ctx.translate(0.5, 0.5);

Once those transforms have been applied, the canvas accepts our cell coordinates directly.
Thus, when we go to draw a circle at coordinates (3, 5), those will be put into exactly the place
we want them: in the center of cell (3, 5). We can draw circles with radius 1/2 and they will
look exactly the way we want. This simplifies life for us quite a bit!

There is one thing that gets a smidgen more complicated, though: clearing the canvas before
drawing on it. There are lots of options for this, as well, including saving and restoring canvas
state and resetting to a pixel transform, but look at the clearRect call below: we just opt to
clear it in grid coordinates instead (remembering that the coordinates correspond to the
centers of cells, not their corners).

Putting this together with the standard game skeleton, we can see exactly how it looks to
output all of the cell circles:

:html:

<canvas id="drawing" width="300" height="300"

style="border: 1px solid gray"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var CELLS = 20,

CELL_PIXELS = canvas.width / CELLS;

ctx.scale(CELL_PIXELS, CELL_PIXELS);

ctx.translate(0.5, 0.5);

var animation = animate({

draw: function() {

// Clear the canvas.

ctx.clearRect(-0.5, -0.5, CELLS, CELLS);

for (var x = 0; x < CELLS; ++x) {

for (var y = 0; y < CELLS; ++y) {

fillCircle(ctx, x, y, 0.45);

}

}

},

});

// Allow pausing.

canvas.addEventListener('click', animation.togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

animation.togglePaused();

POSITIONS ARE PICKY 309

}

});

</script>

Note that the radius is 0.45 because 0.5 doesn’t actually look all that nice. It completely,
uncomfortably fills the cells, and that ends up making things a bit cluttered. Go ahead and
experiment with different values.

The most important thing to notice, though, is this: we still make the calculations of how big the
cells will be, but when we go to draw, we just pretend that we’re drawing in grid coordinates
and it all works out. The fillCircle call is using grid cell coordinates, and the radius of
the circles is roughly 1/2 instead of whatever the number of pixels should be to fill out a cell.

We can now draw circles right where we want them, using coordinates that feel natural.

Alternate Canvas Clearing Method

The clearRect method in the previous section is somewhat unfortunate, because we can’t
change our canvas transformation without also changing our clearing code. That feels wrong,
because clearing a canvas shouldn’t depend on how we draw on it, we just want to clear it no
matter what its coordinate system looks like. When you have strange dependencies in your
code like that, it’s a good idea to find out whether you can get rid of them.

In this case, we definitely can. The current transformation is represented as a 3x3 matrix with
scale and translation factors in it, and we can reset it by forcing it to be the identity matrix,
then we can clear it using its width and height like before.

Note that you can see the current transform matrix by calling ctx.getTransform()
on the canvas context.

In our case, resetting the transform means changing one matrix to another:

⎛⎜
⎝

15 0 7.5
0 15 7.5
0 0 1

⎞⎟
⎠

→ ⎛⎜
⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

The transform can be set using the ctx.setTransform(a, b, c, d, e, f)

function, where the variables sit like this in the matrix:

⎛⎜
⎝

𝑎 𝑐 𝑒
𝑏 𝑑 𝑓
0 0 1

⎞⎟
⎠

310 CHAPTER 13. SNAKES ON A PAGE

That’s reasonably straightforward: we can call ctx.setTransform(1, 0, 0, 1,

0, 0) to reset it to identity. We can take advantage of the context’s save and restore
functions to keep from messing with our scaling and translation in other parts of the code, too.
In fact, we can write a function to do this and put it into animate.js. Let’s see what that
looks like:

:javascript:

// somewhere in animate.js

function clearContext(ctx) {

ctx.save();

ctx.setTransform(1, 0, 0, 1, 0, 0);

ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

ctx.restore();

}

We could easily move this into the library because it no longer needs to know anything about
how draw likes to think of canvas coordinates. It is independent of anything in any of our
animation logic and will always clear the canvas no matter what state it is in.

Now you can just call clearContext(ctx) after importing animate.js.

Representations

It’s time to start talking more about how to keep track of things in this game. The state will
include

• All snake positions,
• The current direction of the snake’s head, and
• The current location of food.

Since the position of each snake segment is needed, we will use an array. Since each
segment has two values for the position (x and y), we will store those coordinates in an object
with x and y keys. This declares the segments and starts the game off with only one segment
(the head) in the middle of the grid. Note how segments is an array with one element, an
object containing x and y values:

:javascript:

var segments = [

{x: Math.floor(CELLS / 2),

y: Math.floor(CELLS / 2)},

];

We use the Math.floor function because we have to work with integer cell numbers. In
the case of a 20-by-20 grid, this won’t do anything since the halfway point is 10, and that’s
already an integer. If we had an odd number of cells on a side, however, this would pick
something slightly off-center to make sure it was occupying a whole cell.

DRAWING THE SNAKE AND FOOD 311

The location of the food will generally be random, and that can be computed in the normal
way, again making sure that we get integer cell coordinates out of it:

:javascript:

var food = {

x: Math.floor(Math.random() * CELLS),

y: Math.floor(Math.random() * CELLS),

};

Finally, the snake will have a random initial direction. How should directions be represented?
They could be represented as numeric changes to x and y, but we will represent them as
letters and interpret them as grid motion later:

:javascript:

var direction = "UDLR"[Math.floor(Math.random() * 4)];

Because strings can be viewed as arrays of characters, this selects a random character out of
the "UDLR" string (one of “up”, “down”, “left”, or “right”). When it’s time to move the snake,
the current direction will be used to determine where the head goes. After that’s determined,
the rest of the snake will follow it.

We are now ready to make something happen—as per our usual practice, we will get a
simplistic version of the game working first and then start adding things until it’s all done.
What we have right now is enough to draw the food and the snake. Motion will come later.

Drawing the Snake and Food

The skeleton game now looks like this. Note the scale and translate functions to get
the context into cell coordinates, and the use of fillCircle to draw the food, the snake’s
head, and the rest of the snake’s body (currently non-existent). There should be no surprises
here.

:html:

<canvas id="drawing" width="300" height="300"

style="border: 1px solid gray"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Put things into grid coordinates.

var CELLS = 20,

CELL_PIXELS = canvas.width / CELLS;

ctx.scale(CELL_PIXELS, CELL_PIXELS);

ctx.translate(0.5, 0.5);

var segments = [

312 CHAPTER 13. SNAKES ON A PAGE

{x: Math.floor(CELLS / 2),

y: Math.floor(CELLS / 2)},

];

var food = {

x: Math.floor(Math.random() * CELLS),

y: Math.floor(Math.random() * CELLS),

};

var direction = "UDLR"[Math.floor(Math.random() * 4)];

var animation = animate({

draw: function() {

// Clear the canvas.

clearContext(ctx);

// Draw the food.

ctx.fillStyle = 'green';

fillCircle(ctx, food.x, food.y, 0.45);

// Draw the snake head.

ctx.fillStyle = 'purple';

fillCircle(ctx, segments[0].x, segments[0].y, 0.45);

// Draw the rest of the snake a different color.

ctx.fillStyle = 'blue';

for (var i = 1; i < segments.length; ++i) {

fillCircle(ctx, segments[i].x, segments[i].y, 0.45);

}

},

});

// Allow pausing.

canvas.addEventListener('click', animation.togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

animation.togglePaused();

}

});

</script>

When you run this, you will see a snake head and some food on the canvas. The food will
change positions each time you reload the page because its location is random. The snake
head should always be roughly in the center.

Moving the Snake

To make the snake move, the current direction determines where the head will go, and then
each other segment will take the place of the one in front of it (playing follow-the-leader).
Conceptually, when the snake moves, the head goes to a new cell, and every segment behind

MOVING THE SNAKE 313

it moves to take the place of what used to be in front of it. But we can make things easier on
ourselves than that. We can just create a brand new head in the new location and throw the
tail (the last segment) away. That looks exactly the same and is easier to code.

Figure 13.5: Removing a tail and adding a head is like motion.

In general, even if it isn’t the most efficient approach, a simple and correct approach is the
right way to start. Then, change to a more complex approach only once things are working
and there is a clear need for the complexity. For example, sometimes a more complex
approach is a lot faster. In our game it just isn’t going to matter much, so simplicity wins.

Since we have an array of segments and we are going to be adding heads and removing tails
all the time, now is a good time to talk about some useful array methods:

• push2: Add an element to the end.
• pop3: Remove an element from the end.
• unshift4: Add an element to the front (position 0).
• shift5: Remove an element from the front (position 0).

The shift and unshift operations do exactly what they say: they shift all of the other
elements around to either fill in the space created with a removed element (shift) or make
room for the new element (unshift). This sounds like exactly what we want. We chose 0
as the position of the head (check the code), so moving will simply create a new head based
on the direction of motion from the old head, and everything else will scoot over to make room.
Then the last element—the end of the tail—can be removed with pop:

:javascript:

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
3https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/pop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift

314 CHAPTER 13. SNAKES ON A PAGE

Figure 13.6: Array push/pop and unshift/shift operations.

move: function(dt) {

// Create a new head, same as the old head.

var newHead = {

x: segments[0].x,

y: segments[0].y,

};

// Then change it based on current direction.

switch (direction) {

case 'U': --newHead.y; break;

case 'D': ++newHead.y; break;

case 'L': --newHead.x; break;

case 'R': ++newHead.x; break;

}

// Remove the tail.

segments.pop();

// Add the new head.

segments.unshift(newHead);

},

That looks simple enough: copy the old head, set the copy to occupy one space over, remove
the tail, and add the new head copy. That’s how you move a snake.

MOVING THE SNAKE 315

Note that the cases each only take one line, since the test, resulting code, and break are
all together. Sometimes that’s not very readable, but I think it works pretty well in this
situation, particularly since it puts the differences right next to each other and the lines are
not very long. Readability is sometimes about making the right trade-offs, not about blind
adherence to a rulebook (though sometimes blind adherence is the least of all available
evils).

It’s the principles that count.

Now, there is something pretty wrong with all of this. Before you run it, can you guess what it
is?

Hint: how fast will the snake move?

Got it yet?

We aren’t using dt at all! It isn’t affecting our motion calculations in the slightest. Therefore,
every single frame, 60 times per second, we advance the snake. Oops. That’s super fast.
We could slow it down by making those ++ and -- operations instead be addition and
subtraction by some velocity times dt, but that won’t quite work for this game: the circles
can’t occupy two cells at once; they’re either in a cell or not. They need to advance discretely,
not continuously.

What we really need to do is advance only after a certain amount of time has passed, then
teleport into the next square all at once. That’s going to require a different kind of logic than
what we have used previously. Instead of moving a smaller amount with each frame, we need
to move all at once, every few frames. To do that, let’s first determine our speed in terms of
the grid.

Because this is all happening in a universe of our own creation, we are not constrained by
physics, and we get to choose our own units! Let’s talk about speed in terms of “cells per
second”.

Suppose we wanted to advance 5 grid cells per second. In our universe that means our speed
is 5 cell

s (“s” is “seconds”). But since we aren’t moving continuously, what we really want to
know is how long to spend in each cell. That means we need time, not speed, so we need to
flip this over (multiplicative inverse):

5cell
s

⟹ 0.2 s
cell

OK, that works. If we want to move 5 cells per second, we need to stay in our current position
for 0.2 seconds before moving to the next one.

So, we basically just wait between moves. Waiting sounds like something we can do! In the
move function, if we aren’t done waiting from last time, we just won’t change anything. We

316 CHAPTER 13. SNAKES ON A PAGE

Figure 13.7: Segments on the left are okay. On the right, not so much.

can do that with an early return.

When we finally reach a moment when we have waited long enough to move again, we will
advance the snake, figure out when the next time to move will come, and start ignoring frames
once more until that time.

To make that work, we need to keep track of our next allowed time to move, then only move
when we get past that new time. Add the following to the state section:

:javascript:

var MOVE_EVERY = 0.2,

nextMoveTime = 0;

Then, in the very beginning of move, decide whether it is time to move based on elapsed time.
If not, return immediately (no motion), otherwise compute when the subsequent move will be
and go ahead and execute this one.

:javascript:

move: function(dt) {

// Don't move if it isn't time, yet.

if (animation.elapsed() < nextMoveTime) {

return;

}

// Time to move - store the *next* move time for later.

nextMoveTime = animation.elapsed() + MOVE_EVERY;

CHANGING DIRECTIONS 317

// Actual move code goes here.

},

Do you see how that works? We don’t move at all if it isn’t time yet, we just wait for another
frame to try again. Then, when enough time has passed that the current time (elapsed) is past
our “wait until here” time, we move and set up the next time we want to move again. We
always move on the first call, since the next time to move starts out at 0.

That works!

Now if you reload the page, you will see the snake progressing, one cell at a time, at roughly 5
cells per second. Excellent. Our change worked. Now all we need to do is respond to arrow
keys and we will have something we can control!

Changing Directions

The simplest thing is to let the arrow keys be the controls for the snake. When a key is
pressed, it will change the current direction character. We can control this behavior with a
switch statement, or with an else if pattern.

Or we can learn a new thing!

Let’s look at yet another way of handling multiple cases: using an object to map the key event
to the outcomes we want. Note: we will just add this event listener, not adjust the one already
there that handles the space key. It’s fine to have two event listeners for the same event, and
this is a good chance to see that in action. After all, it is called addEventListener, not
replaceEventListener, setEventListener, or
obliterateAllPreviousEventListeners.

When two or more event listeners have been added for the same event, they will be run in the
order added when that event occurs. In our case, that’s the “keydown” event:

:javascript:

document.addEventListener('keydown', function(event) {

var keyDirs = {

'ArrowUp': 'U',

'ArrowDown': 'D',

'ArrowLeft': 'L',

'ArrowRight': 'R',

};

var dir = keyDirs[event.key];

if (dir) {

direction = dir;

}

});

318 CHAPTER 13. SNAKES ON A PAGE

This technique takes advantage of the fact that a missing key in an object returns the value
undefined, which is “falsy” and therefore doesn’t set the direction variable. We only
set the direction variable when one of the expected arrow keys is pressed, and we set it to one
of the values ‘U’, ‘D’, ‘L’, and ‘R’.

This should allow you to control the snake head. The most recent press before the snake
moves is honored and makes the snake change direction.

A cute way of not even creating the dir variable in the first place is to use ||
short-circuiting to have a sensible default. Instead of this…

:javascript:

var dir = keyDirs[event.key];

if (dir) {

direction = dir;

}

…we can actually do this:
:javascript:

direction = keyDirs[event.key] || direction;

It’s a common-enough pattern that it is readable by sheer ubiquity, so it’s also fine to do it
this way if you like.

Limiting Motion

The snake can actually go backwards through itself right now. That usually isn’t allowed in this
game, so we should make sure it can’t happen. To fix it, we will need to disallow backward
motion in our mapping, and we can use a ternary conditional operator ?: to do that.

Recall that the value of an expression condition ? trueValue : falseValue is
determined by the truthiness of the condition. If it is true, the whole expression evaluates
to trueValue, otherwise it evaluates to falseValue. The new mapping that disallows
backward motion should give an idea of how that works:

:javascript:

document.addEventListener('keydown', function(event) {

var keyDirs = {

'ArrowLeft': direction === 'R' ? 'R' : 'L',

'ArrowRight': direction === 'L' ? 'L' : 'R',

'ArrowUp': direction === 'D' ? 'D' : 'U',

'ArrowDown': direction === 'U' ? 'U': 'D',

};

var dir = keyDirs[event.key];

if (dir) {

EATING 319

direction = dir;

}

});

The map now leaves the direction alone if we try to go backwards, effectively ignoring what
we told it to do. Take a look at the 'ArrowLeft' entry to see how this works: if the left
arrow is pressed, and we are already going right, we keep going right, ignoring the left press.
Otherwise, we go left as requested. This isn’t perfect (it is possible to change direction quickly
several times before a move occurs, creating a race condition), but it is good enough for our
purposes for now.

What we have done here, though, is a bit overly cute and fairly repetitive. Sure, these things fit
on one line each, but they aren’t exactly readable and easy to follow. If you were coming at
this fresh, not having seen it for a while, would you understand what was going on? No? Me
neither. In fact, I had exactly this problem when editing this book; I could not remember why
this code worked! That is a danger sign if ever there was one, and we will talk more about
how to improve it in the exercises.

Eating

The snake never gets bigger in this game. In our move function, we always pop the tail, and
we never check for a collision with the food. Let’s change that.

Recall that the move function has this statement near the bottom:
:javascript:

// Remove the tail.

segments.pop();

Instead of unconditionally removing the tail, we should only remove it if the snake has not just
eaten. If the snake has just eaten, a new head will be added (part of moving), and we can just
leave the tail there, effectively expanding the snake by one segment:

:javascript:

// Eat or remove the tail.

if (food.x !== segments[0].x || food.y !== segments[0].y) {

segments.pop();

}

Here we took advantage of De Morgan’s Laws, though it might not be quite obvious. What we
want to say is this: “If the snake’s head is not on the food, pop the tail.” The head is on the
food when the x and y coordinates of segments[0] are both equal to those of food. That
would most directly translate to the following:

:javascript:

320 CHAPTER 13. SNAKES ON A PAGE

if (!(food.x === segments[0].x &&

food.y === segments[0].y))

But that’s kind of cumbersome. We can take advantage of De Morgan and distribute that !
(NOT) operator into the inner parentheses. It will cause && to become || when it does so,
and it will invert each of the interior expressions, producing

:javascript:

if (food.x !== segments[0].x || food.y !== segments[0].y)

In other words, if either the x or y coordinate is not equal between food and
segments[0], then remove the tail (because the head can’t be on the food—at least one of
the coordinates doesn’t match).

Sometimes using these laws can really help readability. Here, though, both approaches are
pretty ugly and not terribly easy to read. When that sort of thing happens, it is probably time to
write a function with a helpful name. Consider this:

:javascript:

// ...somewhere in the file...

function sameCell(p1, p2) {

return p1.x === p2.x && p1.y === p2.y;

}

:javascript:

// Back in the move function:

if (!sameCell(food, segments[0])) {

segments.pop();

}

That reads much better. Now it’s clear what we are testing for: we want to pop the tail if the
first segment (the head) is not in the same place as the food.

One thing remains: the food needs to be moved after the snake eats. That means we need to
add an else clause to our new test:

:javascript:

// Eat or remove the tail.

if (!sameCell(food, segments[0])) {

segments.pop();

} else {

food.x = Math.floor(Math.random() * CELLS);

food.y = Math.floor(Math.random() * CELLS);

}

When we only needed to know whether to remove the tail or not, the !sameCell version of
this test made sense, but now it kind of feels backwards: we test for “not hitting the food”, and
then when we get an else we move the food.

CRASH 321

It sure seems like it would be clearer to do things the other way, now:
:javascript:

// Eat or remove the tail.

if (sameCell(food, segments[0])) {

food.x = Math.floor(Math.random() * CELLS);

food.y = Math.floor(Math.random() * CELLS);

} else {

segments.pop();

}

There is a moral to this story: sometimes the expression of a condition is clearer one way with
one action, but clearer the other way when there is an else body. So it goes. Programming
is all about making things work, but maintainable programming is all about communicating to
humans, and that is part art and part skill. The skill part is to remember to consider your
audience. Read through the code and see if the logic makes more sense with fresh eyes one
way or the other. The art part is in picking the clearest way whenever there is a choice. Quite
often clarity translates to “fewer negations”.

Crash

And with that, we have food that moves. What’s left? Oh, yes, a way to lose the game. That is
currently not possible. The way you lose in a real game of snakes is to crash the snake, either
into a wall or into itself. That sounds like a bunch of tests in the done function. Let’s add
them. First, the walls:

:javascript:

done: function() {

var head = segments[0];

if (head.x < 0 || head.x >= CELLS ||

head.y < 0 || head.y >= CELLS) {

alert("Game Over: wall crash");

return true;

}

// Self-collisions here?

return false;

},

That was easy! How do we test for crashing into the body? Well, if the head’s x and y
coordinates overlap with any of the other segments, that’s a crash. That sounds like a loop
where we test each non-head segment to see if we have crashed into it. Since the head is at
position 0, we will just loop through everything starting at 1. Note that we can use our
sameCell function again, which is a nice touch and a sign that it was a good function to
write. This code is also inside of the done function:

322 CHAPTER 13. SNAKES ON A PAGE

:javascript:

for (var i = 1; i < segments.length; ++i) {

var pos = snake.positions[i];

if (sameCell(head, pos)) {

alert("Game over: self crash");

return true;

}

}

The entire done function looks like this:
:javascript:

done: function() {

var head = segments[0];

if (head.x < 0 || head.x >= CELLS ||

head.y < 0 || head.y >= CELLS) {

alert("Game over: wall crash");

return true;

}

for (var i = 1; i < segments.length; ++i) {

var pos = segments[i];

if (sameCell(head, pos)) {

alert("Game over: self crash");

return true;

}

}

return false;

},

That’s all there is to it. If we find any segment that overlaps with the head, we are done. We
quit. The game ends.

We now have a playable snakes game!

There are several things that we did not do in this game that we did in other contexts, such as
showing the pause state in a button, or showing the clock or a score (which could be the
length of the snake, here). There are also a few interesting bugs that you might find amusing
to try to solve. For example, if you are moving up, then you quickly hit the right arrow key
followed immediately by the down arrow key before the snake has a chance to react, you will
crash into yourself. True story. That probably should not be possible in a real game, but it is in
this one, and it requires a bit of thought to get the directions to only change when the snake
can actually move.

We also have no indication that the game has ended, and we don’t speed up as time goes on.
All of these are things you can implement yourself with the skills and knowledge that you have
right now.

LISTINGS 323

Listings

animate.js

This one gained the ability to clear canvas contexts, so it’s the same as before, with one more
function in it:

:javascript:

function animate(config) {

var move = config.move || function() {},

draw = config.draw || function() {},

done = config.done || function() {};

var lastTime = 0,

frame = null,

elapsed = 0,

EXPECTED_DT = 1 / 60;

function tick(t) {

if (done()) {

frame = null;

return;

}

frame = requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

if (dt > 4 * EXPECTED_DT) {

dt = EXPECTED_DT;

} else if (dt < 0) {

dt = 0;

}

elapsed += dt;

lastTime = t;

draw();

move(dt);

}

frame = requestAnimationFrame(tick);

return {

running: function() {

return !!frame;

},

elapsed: function() {

return elapsed;

},

pause: function() {

if (frame) {

cancelAnimationFrame(frame);

324 CHAPTER 13. SNAKES ON A PAGE

frame = null;

}

},

start: function() {

if (!frame) {

frame = requestAnimationFrame(tick);

}

},

togglePaused: function() {

if (frame) {

cancelAnimationFrame(frame);

frame = null;

} else {

frame = requestAnimationFrame(tick);

}

},

};

}

function fillCircle(ctx, x, y, r) {

ctx.beginPath();

ctx.arc(x, y, r, 0, 2*Math.PI);

ctx.fill();

}

function clearContext(ctx) {

ctx.save();

ctx.setTransform(1, 0, 0, 1, 0, 0);

ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

ctx.restore();

}

snakes.html
:html:

<canvas id="drawing" width="300" height="300"

style="border: 1px solid black"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

// Put things into grid coordinates.

var CELLS = 20,

CELL_PIXELS = canvas.width / CELLS;

ctx.scale(CELL_PIXELS, CELL_PIXELS);

ctx.translate(0.5, 0.5);

var segments = [

LISTINGS 325

{x: Math.floor(CELLS / 2),

y: Math.floor(CELLS / 2)},

];

var food = {

x: Math.floor(Math.random() * CELLS),

y: Math.floor(Math.random() * CELLS),

};

var direction = "UDLR"[Math.floor(Math.random() * 4)];

var MOVE_EVERY = 0.2,

nextMoveTime = 0;

// Indicates whether p1 and p2 cell locations

// are the same.

function sameCell(p1, p2) {

return p1.x === p2.x && p1.y === p2.y;

}

var animation = animate({

draw: function() {

// Clear the canvas.

clearContext(ctx);

// Draw the food.

ctx.fillStyle = 'green';

fillCircle(ctx, food.x, food.y, 0.45);

// Draw the snake head.

ctx.fillStyle = 'purple';

fillCircle(ctx, segments[0].x, segments[0].y, 0.45);

// Draw the rest of the snake a different color.

ctx.fillStyle = 'blue';

for (var i = 1; i < segments.length; ++i) {

fillCircle(ctx, segments[i].x, segments[i].y, 0.45);

}

},

move: function(dt) {

if (animation.elapsed() < nextMoveTime) {

return;

}

nextMoveTime = animation.elapsed() + MOVE_EVERY;

// Create a new head, same as the old head.

var newHead = {

x: segments[0].x,

y: segments[0].y,

};

// Then change it based on current direction.

switch (direction) {

326 CHAPTER 13. SNAKES ON A PAGE

case 'U': --newHead.y; break;

case 'D': ++newHead.y; break;

case 'L': --newHead.x; break;

case 'R': ++newHead.x; break;

}

if (sameCell(food, segments[0])) {

food.x = Math.floor(Math.random() * CELLS);

food.y = Math.floor(Math.random() * CELLS);

} else {

segments.pop();

}

// Always add the new head.

segments.unshift(newHead);

},

done: function() {

var head = segments[0];

if (head.x < 0 || head.x >= CELLS ||

head.y < 0 || head.y >= CELLS) {

alert("Game Over: wall crash");

return true;

}

for (var i = 1; i < segments.length; ++i) {

var pos = segments[i];

if (sameCell(head, pos)) {

alert("Game Over: self crash");

return true;

}

}

return false;

},

});

// Allow pausing.

canvas.addEventListener('click', animation.togglePaused);

document.addEventListener('keydown', function(event) {

if (event.key === ' ') {

animation.togglePaused();

}

});

document.addEventListener('keydown', function(event) {

var keyDirs = {

'ArrowLeft': direction === 'R' ? 'R' : 'L',

'ArrowRight': direction === 'L' ? 'L' : 'R',

'ArrowUp': direction === 'D' ? 'D' : 'U',

'ArrowDown': direction === 'U' ? 'U': 'D',

EXERCISES 327

};

var dir = keyDirs[event.key];

if (dir) {

direction = dir;

}

});

</script>

Exercises

Exercise 13-1: Lab: Improving the Snake Game
Solution on page 474

For this lab, several improvements will be made. Some of them will come from things we did
in the ball and paddle game, and some of them will be new. Here they are:

• Add a score to the game (the length of the snake minus 1).
• Increase the speed of the snake every time it eats.
• Fix it so the snake can never go backward, not even if you go sideways and backward
really fast.

The first two should be pretty easy to make work, given that we’ve done things like them in the
previous chapter. The third one might require some more thought. Some possibilities for fixing
it might include

• Keep track of all direction changes and process them in order, or
• Keep track of the current direction separate from the requested direction, and only
change the current direction when moving, if it’s allowed.

• Simply don’t let the snake head hit the very next segment. It would not be possible in
normal play anyway.

The last of these is easiest. Feel free to toy around with the others, but a valid solution can
also be an easy solution.

328 CHAPTER 13. SNAKES ON A PAGE

Chapter 14

Abstractions With Classes and Objects

Until this point we have made good use of the abstractions in “animate.js”. They tend to allow
us to get down to the business of designing our games, freeing us from thinking about
low-level details that are always the same, like how to manage time, and what pausing should
accomplish.

Closures are a powerful mechanism for creating these abstractions, and we have made
abundant use of them. Not only do we pass closures into the animate function to get the
behavior that we want, but it also passes closures back to us so that we can control things
while they’re happening and get information out of our animations.

We have also used objects (in the sense of “maps from keys to values”) to collect similar bits
of data together, like the x and y coordinates of snake segments. In this chapter, we are
going to look at a different way of specifying these object and function abstractions using
classes. This is part of what is called “Object-Oriented Programming”, although JavaScript’s
version of it is fairly unique.

We will cover the fundamental language features that make classes possible, and then we will
introduce the newer ECMA 2015 (ES 6) syntax for classes that makes things a bit cleaner.
Understanding both the old and the new ways is unfortunately necessary for now, because
there is still a tremendous amount of code out there using the original approach, because
online documentation still references prototype methods, and because the new syntax is
just that: syntax. It does the same kinds of things inside.

Let’s begin with a review of objects as data.

Objects as Data Containers

As mentioned in the introduction, this next topic is going to touch on a few
intermediate-to-advanced features of JavaScript, and has some brand new concepts in it.

329

330 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

These concepts can themselves be somewhat abstract, so it may require a bit of
head-scratching and a lot of playing around to get through this section. That’s okay. These
concepts usually require multiple exposures to get right; if this is your first time, it’s not
expected that things will just click. That said, I will make every effort to ease your way.

We are going to talk more about objects now, and we are going to introduce special objects
that are also instances of classes. There is some new vocabulary in here, and we will start to
understand it in detail as we continue on.

Let’s start with the basics. Take another look at the state that we keep track of in our paddle
game from a couple of chapters back:

:javascript:

var PADDLE_HEIGHT = 10,

PADDLE_Y = canvas.height - PADDLE_HEIGHT;

var paddleWidth = 100,

paddleSpeed = canvas.width - paddleWidth,

paddleX = (canvas.width - paddleWidth) / 2;

var BALL_RADIUS = 10,

ballX = canvas.width / 2,

ballY = canvas.height / 2,

ballVelX = canvas.width / 2,

ballVelY = canvas.height / 2;

That’s quite a number of variables and constants! If you squint at it, you can see that we sort
of grouped things that belong together. Paddle values are all in one place and ball things are
in a different place. That was for sanity’s sake. We could easily have mixed them all up and
moved them around so long as their initial values came before the code that uses them, but
then it would be hard to keep track of what is happening.

Unfortunately, this grouping doesn’t help us much when trying to pass values around our
program. If, for example, we want to pass information about a ball into a function in a library,
we have to pass a lot of variables into it. If we later add more data about the ball, we have to
remember to change all of the places that we send ball data and add yet another parameter.
And, with a lot of parameters, it’s easy to forget their order when programming.

We already know how to group things, though, and to name them so it’s easier to pass them
into functions: we pass an object. Let’s change the variables in our game program into
objects, one per “thing” in the game:

:javascript:

var paddle = {

height: 10,

width: 100,

};

paddle.speed = canvas.width - paddle.width;

OBJECTS AS DATA CONTAINERS 331

paddle.x = (canvas.width - paddle.width) / 2;

paddle.Y = canvas.height - paddle.height;

var ball = {

radius: 10,

x: canvas.width / 2,

y: canvas.height / 2,

velX: canvas.width / 2,

velY: canvas.height / 2,

};

What do you notice about the above code? Here are some of my observations:

• The internal names of things are shorter because they “belong” to something that
helps to differentiate them. We don’t need to say “ballX” because we will be using it as
ball.x, which is plenty descriptive.

• Sometimes you can create an object all at once, as with ball, but sometimes an
object’s values are derived from other values, so we set them later, as with paddle.

• We haven’t really saved much space, yet, and this still looks fairly messy.
• There are only two variables, now, instead of whatever ridiculous number there were
before.

While it is true that it still looks fairly messy, we have actually greatly simplified our lives and
made our code more flexible. If we want a function to do something with a ball and a paddle
(like test whether we have a hit), we can have it accept only 2 arguments and tell us the
answer. Let’s see what that would look like:

:javascript:

function hit(ball, paddle) {

if (ball.y + ball.radius >= paddle.Y) {

if (ball.x >= paddle.x &&

ball.x <= paddle.x + paddle.width) {

return true;

}

}

return false;

}

That’s pretty nice, and we only gave it two parameters. Each of those parameters has
everything in it that we need. They also have more than we need, but that’s okay—we just use
what we need and don’t worry about the rest.

If we had needed to pass in all necessary variables for hit before, it might have looked like
this instead:

:javascript:

function hit(ballX, ballY, paddleX, paddleWidth) {

...

332 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

}

Now imagine calling that. There are several parameters (even assuming some constants
don’t need to be passed), and order is important. We could, of course, accept a parameter
object like we now do with animate, but that just points us back to our new approach:
passing objects instead of long parameter lists. The new idea here is that things are already
objects when we pass them to (the first version of) hit.

This idea of grouping data together is powerful and you should make liberal use of it. It’s easy
to see that grouping bits of data together can keep things clean and clarify how things are
related.

But things don’t just have state, they also have behavior. How do we group behaviors in with
state? It’s not so easy to motivate this question right now, so you might be wondering why we
even care. The reason is the same as for grouping variables: many functions that we write in
our program only operate on one kind of data. They are not really useful for anything else, so
they might as well go with the data they operate on. Stick with this and it will become more
concrete very soon.

We already know that functions and data can go together, because when we created the
animate function, we had it pass out closures that operate on the data in their outer scopes,
allowing us to control behavior.

This was very useful—the animate function gave us back an object that had state and
provided behaviors that manipulated that state. The trouble with using closures to do this,
however, is that the interpreter has to create them from scratch every time you make an object.

Consider how many behaviors the String1 type exports via its prototype: creating all of
those functions every time we make a new string would take a nontrivial amount of time and
would be very wasteful of computer memory; functions take up space just like data,
particularly when they are closures. It’s particularly wasteful because functions like split or
toUpperCase always do the same thing no matter what string they’re applied to; the only
thing that changes between string objects is the data being manipulated, not the behavior of
the manipulation.

We touched on this very briefly at the beginning of the course when talking about how
functions like "hello".toUpperCase() can operate on the thing to the left of the dot,
and now we’re going to dig in and see more about how to make our own functions do the
same thing without relying on closures.

We will do this by creating a brand new Animation class that has the same functionality as
our previous animate function (though we will have to exercise more care than before when
using things like animation.togglePaused; stay tuned).

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

ANIMATION CLASS 333

Animation Class

When we call animate, it returns an object that contains functions we can call to work with
only that animation. We call this a “class by closure”. It contains data and behaviors, and it
exposes them using closures. As mentioned before, there is nothing wrong with that in most
cases, and it is perfectly fine to leave that class alone. We are only poking at it because it is a
good case study for learning a language feature.

Constructor

Let’s turn it into a class. Every class needs what is called a constructor, meaning a function
that sets it up and gets it ready to go. It also returns a new instance of the class. An instance
is an object that is “patterned after” the class, and is created before the constructor body is
entered.

A common metaphor for a class is a “blueprint”. The blueprint details how a house is to be
built, including doors, windows, roofing, walls, etc. It also details how water and electricity and
ductwork interact, which is part of the house’s “behavior” (faucets, light switches, outlets, and
thermostats are points of interaction). In this ages-old metaphor, a blueprint is to a class as
the actual house is to an instance. Calling a constructor creates an instance of our class.

Here is a very basic constructor for our new Animation class. It just stores the things
passed into it:

:javascript:

function Animation(config) {

this._move = config.move || function() {};

this._draw = config.draw || function() {};

this._done = config.done || function() { return false };

this._EXPECTED_RATE = 1/60;

this._lastTime = 0;

this._elapsed = 0;

this._frame = null;

}

Let’s start by getting the trivial bits out of the way. We are naming implementation details like
elapsed and lastTime using a leading underscore—this signals to people looking at our
class that they should not be accessing those things directly, because they are not part of
what we expect them to be using. It’s just a convention, but it’s a fairly standard one.
JavaScript allows you to access all sorts of things no matter how they are named, but this at
least sends humans a message that some of your variables are not safe to rely on from the
outside because they are implementation details that might change. They aren’t part of the
“contract” for the class.

The most important thing to note is the use of the special this variable, which is available to

334 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

all standard functions as a hidden parameter (the first one, in fact), and of particular interest in
functions defined on classes. You can think of this as “this instance of this class”. It is a
special object that we can add data to, and we do that inside of our constructor. It sort of
magically appears for us when the constructor is called with the special keyword new:

:javascript:

var animation = new Animation({...});

The new keyword signals to the interpreter that Animation should not just be called, but
that it should be treated like a constructor and it should return an instance of the Animation
class. It dutifully creates one, sets it as this in the Animation function, and then calls it,
returning the new object it just created.

For most intents and purposes, this is just a plain old JavaScript object, so you can do all of
the expected things to it: setting, getting, and deleting properties.

Methods (Prototype Functions)

So far, so good. We now have an overly complicated way of creating an object using a
constructor, but there are no behaviors on it, yet. In object-oriented parlance, functions that
operate on an instance are calledmethods. We add methods to a class using the
constructor’s prototype object, so it is now time to talk a little bit more about what that object
does.

Every object in JavaScript has a prototype property. We will not get into all of the details
of what that means, but we will make use of it, because prototype objects are the key to
JavaScript classes and implementing common behaviors that are relatively space-efficient.

If you have looked at any of the documentation for JavaScript, you have seen evidence of
prototype objects already. For example, the string method toUpperCase is
documented as String.prototype.toUpperCase. That means if you have an
instance of type String (that is its class name), you have to get its prototype first, and then
get the toUpperCase function from that. But you never really use it that way. Why is it that
you can call it like "hello".toUpperCase() and not
"hello".prototype.toUpperCase()?

The answer has to do with how JavaScript searches for functions on objects, and what it does
when it finds them on a prototype. Consider a call like this:

:javascript:

"hello".toUpperCase()

The JavaScript interpreter knows to look at the object itself (the string "hello") for
something called toUpperCase and, when it can’t find it there, it knows to search the
object’s prototype for it. There’s one critical feature of this search that makes it all work:
the interpreter will set this = "hello" if it finds toUpperCase on the prototype

ANIMATION CLASS 335

object. Otherwise it does something far less useful that we will talk about later. The important
thing to note is that prototype functions have this set to the instance of the class when
called directly on it, like "hello".toUpperCase().

This feature of prototype search and automatic this-setting gives us just what we need to
add common behaviors to our classes that are shared across all instances.

Our First Prototype Function

We can create our own prototype functions (methods). To do this, get
Animation.prototype and add a new item to it, like this:

:javascript:

Animation.prototype.elapsed = function() {

return this._elapsed;

};

Remember when we said that semicolons were important and should never be left off?
This is one of those places where they are routinely forgotten and can in some
circumstances cause a lot of debugging pain. When creating prototype functions, you
really want to have semicolons. This is particularly true in the browser, where scripts are
frequently included verbatim and your missing semicolon can cause a bug to appear to be
in someone else’s code because it came after yours. It’s sad but true. There are ways to
mitigate this (like always using an immediate function to contain your code) and those
tricks are common for a reason. You will see them used all over the web if you know what
to look for.

Semicolon reminders are always worth repeating: you really need them here, and this is a
place where they are routinely forgotten. A prototype function is set using an anonymous
function, which is an expression, and needs to be terminated with a semicolon.

This simple function will now exist for any animation we create using new Animation().
Again, when trying to find functions, JavaScript searches the current object, and then
searches its prototype if not found, setting this accordingly. This means that functions on
the prototype will be called even though they aren’t strictly part of the object itself. We can
therefore now do this:

:javascript:

var a = new Animation();

console.log(a.elapsed());

Even though elapsed is not part of the instance stored in a, it is still found and called
correctly because it is part of its prototype. Since a is on the left of the dot, it will be the value
of this when a.elapsed() is called.

Of course we could also have just done this:

336 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

:javascript:

var a = new Animation();

console.log(a._elapsed);

But that would be terribly impolite and perhaps even a bit dangerous. The author of
Animation decided that _elapsed was an implementation detail, and therefore that it
might disappear or change meaning any time. It is not part of the public interface to the
class, so we should not give in to the temptation to use it.

A Rather Large Wart

Let’s create a function for requesting an animation frame and use it in a start function,
since we will be needing one of those:

:javascript:

Animation.prototype._requestFrame = function() {

var that = this;

this._frame = requestAnimationFrame(function(t) {

that._tick(t);

});

};

Animation.prototype.start = function() {

if (!this._frame) {

this._requestFrame();

}

};

The start function looks straightforward enough, but what is going on with the
_requestFrame function? That seems overly complicated for something that used to just
be requestAnimationFrame(tick), doesn’t it?

This is where a rather large wart on JavaScript becomes evident. There is an unfortunate
convergence of facts that requires the var that = this; idiom above (a very, very
common one):

• Every function declared using the function keyword has a this variable. Every
single one, even anonymous functions.

• A function does not know about its instance unless directly called on it through dot
notation.

Thus, if we tried to say requestAnimationFrame(this._tick), it would not work.
That function is found on the prototype, but this is assigned when it is called, not when it is
created, which means that the browser will (eventually, during an animation frame event) call
it without an instance, and it therefore, quite unhelpfully, gets the global window object as
this instead of what we want it to have.

ANIMATION CLASS 337

Not only that, but we have to save the outer this into that because the inner anonymous
function gets its very own this that shadows the outer one. Double trouble.

Variables that are set as arguments at call time and implicitly present within a function are
said to be in the dynamic scope, which as you can see, is a lot more magical and
confusing than the lexical scope that we are used to. You can’t tell where they are set by
visually examining the surrounding scopes of the function, but instead have to know how it
was called. There is a good reason that most languages went to lexical scoping after
Lisp’s brief and ill-fated flirtation with default dynamic scopes: they are hard to reason
about. Anything that is hard to reason about is a potential source of subtle bugs.

This trips people up all the time and is sadly not really fixable because this ugly behavior is
actually relied upon in many situations. There have been multiple bandages put onto it, like
the bind method of functions, but they are just that: bandages. The patient is sadly
chronically and, to some extent, incurably ill.

That gives rise to the that = this pattern and the use of a closure where it seems
unnecessary. Here is the above code, heavily annotated with comments:

:javascript:

Animation.prototype._requestFrame = function() {

// Save our "this" into the lexical scope,

// under a name that won't be shadowed.

var that = this;

// Create an anonymous function that closes

// over "that". Pass that closure into

// requestAnimationFrame.

requestAnimationFrame(function(t) {

// Since we're calling this *directly* on

// "that", the _tick function will have

// its own "this" set to our "that", which

// is the "this" of _requestFrame, and

// is thus exactly what we want.

that._tick(t);

});

};

But there is hope with ECMAScript 2015: arrow functions do not have an automatic this
variable, so they are saner to use (no dynamic scope!). They are also more concise, so they
are popular and nice to work with. We are not going to get into much of ECMAScript 2015 or
later because wow, it adds a lot to the language and we’re just trying to learn the basics, here
(it does make the language far nicer to use, though). But here is how you would avoid using
the var that = this; idiom above in modern browsers, which all support arrow
functions:

:javascript:

338 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

Animation.prototype._requestFrame = function() {

this._frame = requestAnimationFrame(

t => this._tick(t));

};

The gist of this syntax is function parameters go on the left of the arrow (use parentheses if
there are zero arguments, or more than one), and what the function does (and returns) on the
right, where braces can be used if more than one line is needed in the body. It is reminiscent
of the function boxes that we showed earlier: we take inputs and follow the arrow to function
outputs. The entire arrow function expression is just this part: t => this._tick(t).
That’s the arrow function. Parameters on the left, body on the right.

And with that, requesting an animation frame is nice and simple, so we could just inline it
instead of having a special _requestFrame method, like this:

:javascript:

Animation.prototype.start = function() {

if (!this._frame) {

this._frame = requestAnimationFrame(

t => this._tick(t));

}

};

There is more to these kinds of functions, but we will stop here. We will use them to avoid the
“dynamic this” trap going forward, though. They are too nice to ignore for that.

The Rest of the Class

With that out of the way, you should be able to understand what the rest of this stuff is
doing. Let’s look at a larger piece of it in context:

:javascript:

function Animation(config) {

this._move = config.move || function() {};

this._draw = config.draw || function() {};

this._done = config.done || function() { return false };

this._EXPECTED_RATE = 1/60;

this._lastTime = 0;

this._elapsed = 0;

this._running = false;

}

Animation.prototype._tick = function(t) {

if (this._done()) {

this._frame = null;

return;

}

ANIMATION CLASS 339

this._frame = requestAnimationFrame(

t => this._tick(t));

var dt = (t - this._lastTime) / 1000;

if (dt > 4 * this._EXPECTED_RATE) {

dt = this._EXPECTED_RATE;

} else if (dt < 0) {

dt = 0;

}

this._elapsed += dt;

this._lastTime = t;

this._draw();

this._move(dt);

};

Animation.prototype.elapsed = function() {

return this._elapsed;

};

Animation.prototype.running = function() {

return !!this._frame;

};

Animation.prototype.start = function() {

if (!this._frame) {

this._frame = requestAnimationFrame(

t => this._tick(t));

}

};

Animation.prototype.pause = function() {

if (this._frame) {

cancelAnimationFrame(this._frame);

this._frame = null;

}

};

Animation.prototype.togglePaused = function() {

if (this.running()) {

this.pause();

} else {

this.start();

}

};

There are no surprises here, hopefully. Instead of passing closures out of a function, we define
functions on a prototype, and rely on this to get us access to the object we care about.

340 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

Using Instances With Events

To use our new Animation class, we create it with new and start calling stuff on it. For
example, to make a simple animation, our code might look like this:

:html:

<canvas id="drawing" width="600" height="300"></canvas>

<script src="animate.js"></script>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

var x = 0, vx = 100;

var animation = new Animation({

move: function(dt) {

x += vx * dt;

},

draw: function() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.fillRect(x, canvas.height/2, 15, 15);

},

done: function() {

return x >= canvas.width;

},

});

canvas.addEventListener('click',

() => animation.togglePaused());

animation.start();

</script>

Again, it is very important that we use new Animation() instead of just calling
Animation() without new: that makes it create an instance of our class.

Our animation object looks much the same as it ever did (but it doesn’t start
automatically—so we call animation.start() manually). We can call
animation.pause() and other functions on it just as before. Where things get weird is
when we try to use togglePaused in an event listener:

:javascript:

canvas.addEventListener('click',

() => animation.togglePaused());

It used to be that we could just say canvas.addEventListener('click',
togglePaused), passing a function directly into the listener registration, but now it is a
prototype function that depends on this, so that will not work for all of the reasons we’ve
already discussed.

USING INSTANCES WITH EVENTS 341

Again, the arrow function has parameters on the left (none), body on the right: () =>

animation.togglePaused(). That expression creates an actual function.

The dynamic this variable is the reason you will often see arrow functions that only do one
thing. You need to get the instance (here it is animation) into a closure to call it properly (it
has to be on the left of a dot during the call), or it is lost. Be wary of that anytime you need to
pass a prototype function into another function, always wrap it in a closure, and you might as
well get comfortable doing so as an arrow function: it provides this safety as well as being
more succinct.

There is yet another approach to doing this because all functions have a bind method that
binds this properly (among other things):

:javascript:

canvas.addEventListener(

'click', animation.togglePaused.bind(animation));

That isn’t necessarily clearer and it does essentially the same thing as the arrow function. It is
basically creating a new closure with this bound to the thing we pass into bind. The thing
we just referenced on the left of the dot. It also stutters. Just be aware that it exists so that you
understand it when you see it.

But Why?

With all of the extra effort we have to go to just to get events working right when using
prototype-based classes in JavaScript, why should we even do that instead of just passing
out closures like we did for most of this course? We have, after all, talked an awful lot about
favoring clarity over efficiency, and this seems like a place where that argument has a lot of
merit.

There are various reasons given for preferring prototypes for behavior rather than an object
full of closures, including things like enumerability, memory efficiency, tooling to aid the
developer, a mechanism for inheritance, and others. The main reason I keep using
prototype-based objects is actually a lot simpler than all of these reasons: it is standard .

There is more than one dimension along which clarity matters. We have focused a lot on
obviousness and clarity through the use of homogeneous structures for our code, and that
really does make a lot of sense: once you have learned what a function does, you can
suddenly use it to create incredibly interesting and complex software and you really don’t
need much else. That is the basic idea behind a lot of Lisp and Lisp-inspired languages
(including Racket, which is even simpler underneath), and there is undeniably power in that
way of thinking.

However, while the prototype-based approach in JavaScript has power of its own that we
have not explored in this course, the main reason to become acquainted with and make liberal
use of it where it makes sense is that anyone familiar with standard JavaScript idioms will look

342 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

at your prototypes and immediately know what they are doing. Because everyone does it this
way, using this approach lends a certain amount of readability to your code by default. Every
language has its syntax and vocabulary, but a huge chunk of communication is accomplished
through agreed-upon cultural idioms. That is also true of programming languages.

Furthermore, as alluded to earlier, the rise of ES6 (ECMAScript 2015) and later provides
language support for classes. That support is basically a wrapper around the more manual
prototype definition that we have shown here, so it is worth getting at least a little bit
comfortable with it.

Here, for your viewing pleasure, is our class defined using the new syntax, including object
unpacking with default empty arrow functions. You will immediately notice that there is a lot
less repetition:

:javascript:

class Animation {

constructor({move=()=>{}, draw=()=>{}, done=()=>false}) {

this._move = move;

this._draw = draw;

this._done = done;

this._EXPECTED_RATE = 1/60;

this._lastTime = 0;

this._elapsed = 0;

this._frame = null;

}

_tick(t) {

if (this._done()) {

this._frame = null;

return;

}

this._frame = requestAnimationFrame(

t => this._tick(t));

var dt = (t - this._lastTime) / 1000;

if (dt > 4 * this._EXPECTED_RATE) {

dt = this._EXPECTED_RATE;

} else if (dt < 0) {

dt = 0;

}

this._elapsed += dt;

this._lastTime = t;

this._draw();

this._move(dt);

}

elasped() {

return this._elapsed;

KEEP IT CLASSY 343

}

running() {

return !!this._frame;

}

start() {

if (!this._frame) {

this._frame = requestAnimationFrame(

t => this._tick(t));

}

}

pause() {

if (this._frame) {

cancelAnimationFrame(this._frame);

this._frame = null;

}

}

togglePaused() {

if (this.running()) {

this.pause();

} else {

this.start();

}

}

}

That really is a lot clearer, isn’t it? And it is essentially the same—with benefits—as what we
did before; it just makes prototype-based classes a lot nicer to create and read.

Keep it Classy

When developing code, I usually start with closures because I don’t often have the whole
picture in mind when I begin. As it becomes clear that an object is getting complex, and there
is more and more data to keep track of, I switch to a class.

It is perfectly fine to not know how to organize a program from the very beginning. This is
essentially a creative process, and as such it will evolve as your understanding changes.
Many programs end up being object-oriented at some level eventually, though, and class
syntax makes it pretty easy to take things in that direction, keeping related data and behaviors
together.

That’s really what this is about. Functions are a wonderful, powerful abstraction, but an
abstraction is only as useful as the data it operates on. If a function really is specific to a
particular set of data, there is no reason for it to exist outside of that environment. Classes

344 CHAPTER 14. ABSTRACTIONS WITH CLASSES AND OBJECTS

make expressing that idea straightforward and natural.

Exercises

Exercise 14-1: Lab: Create a Segment Class For the Snake Game
Solution on page 478

We just finished making our snake game work really well, and now it’s time to change the
implementation without hurting game play. For this lab, you will create a new Segment class
that accepts x and y coordinates and keeps track of them. Each instance of this class will
have three methods:

• move(dir): moves the segment in the direction specified,
• copy(): returns a copy of the segment, and
• collides(other): returns true if this instance is at the same position as
other.

Once done, make all segments into instances of this class and change your code to use these
new methods where possible.

Chapter 15

Practical Web Programming

We have come a long way!. We covered a lot of the surface area of JavaScript, including the
most important syntax, structures, and even a handful of useful program design techniques.
We wrote simple animations and games together, and in the process we explored some ideas
about how to write library code and generate useful abstractions.

We have admittedly been writing code in a way that is not very common. Our HTML files, for
example, do not have any of the usual tags in them. Our scripts are essentially running inside
of the document body, and we are relying on browser default behavior. That is not often the
best plan.

In this section we are going to get things a little bit more mainstream and introduce some good
practice with document structure and organization, as well as hit a few miscellaneous bits that
we have missed along the way.

You can write working programs without the tools in this part of the course, but you will be
swimming upstream if you continue with some of the simplifying practices we have embraced
until now. There is no reason to do that with the knowledge you have!

A More Complete Document

HTML documents have two major sections, and we have generally only been using one
(implicitly): the body. The other section is called the “head”, and it contains setup for the
document. Included in this setup is nearly always the JavaScript that the page will be using.

What we have been doing, with our bare script tags (often after a canvas or button tag), has
basically been this:

:html:

345

346 CHAPTER 15. PRACTICAL WEB PROGRAMMING

<!DOCTYPE html>

<html>

<head>

</head>

<body>

<canvas id="drawing" width="600" height="300"></canvas>

<script src="animate.js"></script>

<script>

// Our program goes here.

</script>

</body>

</html>

All of those other tags, including the html and head tags, have been implied. Browsers try
to be pretty lenient with what they accept, but if you don’t specify what the document contains,
sometimes you will be surprised at how the browser interprets it. We have been very careful
to keep things simple enough in this course that the default interpretation stayed predictable,
but it wouldn’t have been difficult to stray into dangerous territory (where “dangerous” means
“every browser does it differently” or “behavior is unspecified and may change with another
browser update”).

For example, if we had not used an HTML canvas tag in our game programs, instead
relying on JavaScript to create and insert the tag (via document.createElement and
document.body.appendChild), they would not have worked at all. When there is no
tag other than a script tag, the browser assumes you meant it to go in head instead of in
body, and that means that there is no body to append a canvas to when the script runs. More
is said about this process below.

Hopefully you didn’t run into that, since all of the examples did it as shown above, with an
actual canvas tag, but you can see how this could get brittle if we weren’t explicit about
things. From now on, it’s best practice to specify all of these essential tags in your document.

Head Scripts

Script tags often go inside of the head, rather than the body, but moving them there
introduces a bit of a wrinkle: they run before the document elements exist! That means, for
example, that the following code will simply fail:

:html:

<!DOCTYPE html>

<html>

<head>

<script src="animate.js"></script>

<script>(function() {

// THIS WILL NOT WORK!

var canvas = document.getElementById('drawing'),

HEAD SCRIPTS 347

ctx = canvas.getContext('2d');

}());</script>

</head>

<body>

<canvas id="drawing" width="600" height="300"></canvas>

</body>

</html>

Can you see why? The script that is asking the document for the “drawing” element is running
before that element has been created, below. Therefore, the getElementById function
will just return undefined. The undefined value has no member called getContext,
so you will get an error in the console to that effect. Oops. We will talk about how to fix this
using an event, later on.

We do have one safety feature in here, and that is the immediate function in the inline script:
a funtion that is defined and called in one step. We can also avoid global variable mistakes by
putting "use strict";1 at the beginning of our immediate function. It’s a special directive
that tells the interpreter that we should only ever allow assigning to existing variables, either in
the global scope via window or something we have declared with var. That’s a nice safety
feature in case we forget var somewhere; we will get an error instead of silently polluting the
global scope.

:html:

<script>(function() {

"use strict";

// Our code goes here.

}());</script>

For our “animate.js” file, we should probably use something like that. Then we can just create
one global object that contains all of our functions. At the bottom we could explicitly export
only the stuff we want to, by setting properties on window (the global browser objecxt), which
is what this is set to when not called on a class instance:

:javascript:

// animate.js

(function() {

"use strict"; // do not allow undeclared variables

// functions from earlier animate.js go in here

// Note: global scope variable on purpose.

this.AnimateJS = {

animate: animate,

fillCircle: fillCircle,

Animation: Animation,

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

348 CHAPTER 15. PRACTICAL WEB PROGRAMMING

};

}()); // end immediate function

This takes our existing functions animate and fillCircle and puts them into an
AnimateJS object. It also puts the Animation constructor in there. Now when we load
our script, it will expose just one global variable: AnimateJS. We can then access all of the
needed functionality by calling its fields, e.g., AnimateJS.animate(...). Several
popular libraries do exactly this, like jQuery, which puts much of its functionality into a
global variable named $. Similarly, underscore (or lodash) uses the _ variable to hold
its functionality.

One thing to pay attention to: we use the this variable inside our immediate function
because that variable is always the global scope object when not called on a method (or when
inside an HTML tag event handler string). Our immediate function is definitely not a method:
there’s no dot for something to be to the left of, when it is called.

Why not use window? Well, you can, and it will work fine in the browser. There are other
places that JavaScript can run, however (like Node.js2), and there might not be a window
object. No matter, what else happens, though, if a naked function is called without an object
context, this is assigned the global scope object.

We are starting to overlap a bit with the idea of modules in JavaScript. The current
ecosystem is full of highly opinionated libraries that all work a bit differently, unfortunately.
I will refrain from expressing my own opinions, other than to say that modules are useful
and so are private scopes.

All of this is like strapping in before driving, but we still have a problem that keeps us from
getting anywhere: our “main” code will still run before the document has a body. In order to
solve this while still leaving our code in the head of our HTML document, we need to be
notified when the document has finished loading. We need the DOMContentLoaded event:

:html:

<html>

<head>

<script src="animate.js"></script>

<script>(function() {

"use strict";

function main() {

// After the document loads, we can see the canvas!

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

ctx.fillRect(10, 10, 20, 20);

2nodejs.org

nodejs.org

HEAD SCRIPTS 349

AnimateJS.fillCircle(ctx, 50, 50, 10);

}

// Capitalization matters. This is the event's name.

document.addEventListener('DOMContentLoaded', main);

}());</script>

</head>

<body>

<canvas id="drawing" width="600" height="300"></canvas>

</body>

</html>

Well, gosh. If we’re doing it that way, we can actually move our entire program into another file
like we did with “animate.js”. Then we have this:

:html:

<html>

<head>

<script src="animate.js"></script>

<script src="program.js"></script>

</head>

<body>

<canvas id="drawing" width="600" height="300"></canvas>

</body>

And our “program.js” file would look like this:
:javascript:

// program.js

(function() { // private scope

"use strict";

function main() {

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

ctx.fillRect(10, 10, 20, 20);

}

// Get started right away once the document loads.

document.addEventListener('DOMContentLoaded', main);

}());

This is a common pattern for libraries to use when they need to do some setup. In general, it’s
nice to keep things separated into different files like this. It keeps things easier to manage.
JavaScript code generally goes into “.js” files, HTML code goes into “.html” files, and CSS
(which we are kind of staying away from for this course, but they are loaded with link3 tags)

3https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link

350 CHAPTER 15. PRACTICAL WEB PROGRAMMING

goes into “.css” files. JavaScript is for behavior, HTML is for basic layout and structure, and
CSS is for styling. The lines between these things get blurry sometimes, but having this in
mind can really help as you design your programs.

In real life, of course, we would probably not hard-code the word “drawing” in our function.
We would instead provide a configuration function or constructor that would allow callers to
tell us which element to draw on.

Adding Elements Dynamically

Until now we have been relying on the canvas HTML tag to create a canvas for us, but it can
actually be created in JavaScript and added dynamically (speaking of blurring the lines). This
can be useful if you’re creating an animation widget and you just want the user to tell you
where to put it. Then you have a lot of control over how it is created and used.

To create a new element, you use the document.createElement function, and then
you use the appendChild function of the element you want it to live inside of (there are also
before and after functions for inserting your new element next to another one in the
DOM). For example, to create a canvas like what we have been using, you could use the
following JavaScript:

:javascript:

var canvas = document.createElement('canvas');

canvas.width = 300;

canvas.height = 300;

document.body.appendChild(canvas);

From that point on, the canvas is visible in the page and you can access it like you would have
if you had specified it in HTML and gotten it by (for example) ID.

This is what we did for the “fake console” setup near the beginning of the course: create a
div, append it to the document, and create a console.log function in the global
scope that writes text to that div.

This works with any of the HTML elements. It is a useful thing to know about. You will see it
used by other libraries, but we obviously don’t use it in this course. The key thing to remember
is that the canvas created by document.createElement is not in the document until
you add it with appendChild. You can change settings and draw to it and everything, but it will
not be visible until it is part of the document.

COUNTDOWN 351

Countdown

Let’s put these new ideas into practice by building a countdown timer to whatever your
favorite date is. We will allow it to be specified in a text box using an input tag, and we will
display the result in a span tag that shows the countdown changing every second.

First things first, we will create a basic index.html file in a new folder:
:html:

<html>

<head>

<title>Countdown</title>

<script src="countdown.js"></script>

</head>

<body>

Target day (mm-dd):

<input type="text" id="date" size="5" maxlength="5"> :

</body>

</html>

The HTML shown here adds a text input4 field and a span5 that we will use to display the
number of seconds left until the big day, whatever day that is. Now for the “countdown.js” file
we haven’t written, yet:

:javascript:

(function() { // private scope

"use strict";

function showCounter(elTarget, elCounter) {

// TODO :

// Compute the seconds left until the value in

// element elTarget and display it in elCounter.

}

function main() {

var elTarget = document.getElementById('date'),

elCounter = document.getElementById('counter');

// Set a default value for it (next year):

elTarget.value = "01-01";

// Every second, show the counter.

setInterval(() => {

showCounter(elTarget, elCounter);

}, 1000);

}

4https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
5https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/span

352 CHAPTER 15. PRACTICAL WEB PROGRAMMING

document.addEventListener('DOMContentLoaded', main);

}());

The main function that starts when the "DOMContentLoaded" event fires is found at the
bottom, and we put all of the supporting code above it.

We know we will need something that happens every second, so we use setInterval6 to
call a function once per second. That function is not yet written, but it will be, shortly:

The main function simply sets a default for our target month and day, and then starts the
interval ticking that will figure out what date we care about and display the time remaining.

Dates

To get the number of seconds until a particular date, we first need to convert the text in the
target input into a Date7 object. Then we can use that to make calculations. There are many
ways to create a date in JavaScript, but first let’s talk about how to get the month and day out
of the text field.

We are going to be pretty brittle with this, because parsing dates is hard in general and you
usually just want to use someone’s library for that. Since we are explicitly asking it to be
specified as “mm-dd” format, we will just assume that’s exactly what we have. With a
“mm-dd” string (like “04-05” for April 5), we can get a full date by adding a year in front of it,
like this: “2050-04-05”. The Date constructor knows how to parse that kind of a date, so all
we have to do is provide it with one.

We need a year. Fortunately, that’s easy: if we call new Date() with no arguments, it
returns the current date, from which we can get the 4-digit year like this:

:javascript:

var now = new Date();

var target = new Date(now.getFullYear() +

'-' + elTarget.value);

This gives us the current time in now and the target time this year in target.

There is one more wrinkle that we need to figure out before we can move on, and that is the
fact that the date might be in the past. If today is July 1 (07-01), and our target is January 5
(01-05), then putting the current year on it will give us a day that already happened. We can
hardly use that as a calculation. Fortunately, if we treat our date as a number (say, by
prefixing it with +), then we will get the number of milliseconds since January 1, 1970 UTC.
We can use that to determine if our date is in the past. If it is, we will just add 1 to its year.

6https://developer.mozilla.org/en-US/Add-ons/Code_snippets/Timers
7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

https://developer.mozilla.org/en-US/Add-ons/Code_snippets/Timers
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

DATES 353

When we are finished, we can get the seconds by subtracting now from target, dividing by
1000 to get seconds instead of milliseconds, and taking the floor. Then we display it as the
innerText of our counter span element:

:javascript:

function showCounter(elTarget, elCounter) {

var now = new Date();

var target = new Date(now.getFullYear() +

'-' + elTarget.value);

// Is our target in the past? Add one to the year.

// That will fix it.

if (+now > +target) {

target.setFullYear(target.getFullYear() + 1);

}

var seconds = Math.floor((target - now) / 1000);

elCounter.innerText = seconds;

}

This actually works. If you run the program now, you will see a counter of seconds remaining
until next January 1. You can change the date in the box, and things will kind of get upset
while it is not valid, but once you enter a real date, it will work fine. You might have noticed
that it shows NaN if you have an invalid date. We can actually detect that using the built-in8
isNaN function9 and just not display anything, like this:

:javascript:

var seconds = Math.floor((target - now) / 1000);

if (isNaN(seconds)) {

seconds = '';

}

elCounter.innerText = seconds;

Note, though, that the Date object is forgiving about missing days. It will allow you to specify
only a month, if you want.

With that, we are done, right? Except that the display is pretty hard to read and quite possibly
not what you had in mind when you thought of a countdown timer. Perhaps it would be better
to show something like days, hours, minutes, and seconds, separated by colons. That takes a
little more doing, but it is absolutely possible. Let’s create a new function to calculate it (and
since we are going to be doing a bunch of time calculations anyway, we will just give it two
dates).

To compute minutes and seconds, what we want is the number of minutes in a large number
of seconds, and then we want the remaining seconds. If, for example we have 92 seconds,
that should translate to “1 minute, 32 seconds”. To get 1 minute, we just divide by 60 and

8https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
9https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isNaN

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isNaN

354 CHAPTER 15. PRACTICAL WEB PROGRAMMING

take the floor. That gives us the number of minutes that fit into our total seconds. But then we
want the remainder to get the number of seconds remaining. That means we want the %
modulus operator. Here’s an example using the console:

:console:

> Math.floor(92 / 60)

⋖ 1

> 92 % 60

⋖ 32

What we will do is apply this same logic over and over again to get all of the components we
want:

• Divide seconds by 60 to get minutes, mod by 60 to get remaining seconds.
• Divide minutes by 60 to get hours, mod by 60 to get remaining minutes.
• Divide hours by 24 to get days, mod by 24 to get remaining hours.

And then we are done. Here is what that looks like:
:javascript:

function friendlyDuration(from, to) {

var seconds = Math.floor((to - from) / 1000);

if (isNaN(seconds)) {

return '';

}

// We now have seconds, and need to calculate all

// of the days/hours/minutes/seconds components.

var minutes = Math.floor(seconds / 60);

seconds %= 60;

var hours = Math.floor(minutes / 60);

minutes %= 60;

var days = Math.floor(hours / 24);

hours %= 24;

// And now we have days, hours, minutes, and seconds.

return days + ":" + hours + ":" + minutes + ":" + seconds;

}

There is a bit of a problem, though. If we have 3 days, 2 hours, 20 minutes, and 5 seconds, it
will display like this: “3:2:20:5”. That’s a bit jarring. What we would expect would be
something more like “3:02:20:05”. The leading zeros are missing.

Or what about this: 3 minutes, 25 seconds. That will currently read as “0:0:3:25”. We really
don’t need the days and hours in there for this short a time. They should not display at all! It
looks like we need more logic in our string-formatting code. Let’s fix this by creating a small
function in here that pads numbers with leading zeros if necessary, and only adds them if
needed. The change is at the bottom of the now-familiar value computation:

:javascript:

DATES 355

function friendlyDuration(from, to) {

var seconds = Math.floor((to - from) / 1000);

if (isNaN(seconds)) {

return '';

}

// We now have seconds, and need to calculate all

// of the days/hours/minutes/seconds components.

var minutes = Math.floor(seconds / 60);

seconds %= 60;

var hours = Math.floor(minutes / 60);

minutes %= 60;

var days = Math.floor(hours / 24);

hours %= 24;

function pad(val) {

val += ''; // convert to a string

while (val.length < 2) {

val = "0" + val;

}

return val;

}

// Now create a format string with all values padded.

// This gives us a string like 03:02:04:25.

var output = pad(days) + ":" +

pad(hours) + ":" +

pad(minutes) + ":" +

pad(seconds);

// Check for and remove all leading instances of "00:".

// This removes any leading zero values completely,

// changing something like "00:00:03:13" to "03:13".

while (output.slice(0, 3) === "00:") {

output = output.slice(3);

}

// Finally, remove all leading zeros on the leftmost

// segment. This would change "03:13" to "3:13".

while (output[0] === "0") {

output = output.slice(1);

}

return output;

}

Tricky, right? Making this human-friendly typically is, but it is well worth the effort. If you run
this program, you will see a countdown timer exactly like you might expect. It shows days,
hours, minutes, and seconds, and it never has a leading zero on the left side, but it always
shows leading zeros on the internal segments. That is kind of fun!

356 CHAPTER 15. PRACTICAL WEB PROGRAMMING

We used a string method called slice10 (yes, using a regular expression11 would make
some of this easier. No, I really did not want to include a chapter on those) to accomplish
some of this. It returns a smaller part of the string, starting at the first index and going up to
(but not including) the second index. Thus "01234567".slice(3, 6) will evaluate to
"345". If no second index is specified, it goes all the way to the end of the string, so
"0123456789".slice(5) evaluates to "56789".

Summary and Conclusions

Well, that was quite the adventure! There is a lot of trail ahead, of course. The world of HTML
and JavaScript alone is huge and full of interesting things to do, and there is no way we could
even cover a significant fraction of what is possible in a single introductory course. The goal of
this course has been to go from zero knowledge to writing programs over the course of a
full-credit semester, and I hope that you have found it useful and mildly entertaining at times.
If you have made it this far, have done the exercises and the labs, and can basically
understand all of the listings at the ends of the recent chapters, you have really crossed an
important threshold: you can write your own software.

JavaScript is not a perfect language, but it really is everywhere. It runs in the browser, it runs
on servers, and it is hard to avoid in general. There are other wonderful and even much better
languages out there (depending on what you are doing), and many of them also run in the
browser now (commonly by transpiling either to JavaScript or WebAssembly), so even if all
you have is a machine that accesses the internet, you can try a lot of them out.

The world is yours. Go explore!

Listings

Full listings follow. The HTML is much shorter than usual because now we are loading our
code from a JavaScript file that registers with the “DOMContentLoaded” event. Is this always
the right thing to do? No, it’s merely a tool for your growing toolbox. There are always
tradeoffs, and the best way to learn about them is to tinker and to explore other people’s code.
There is a lot of it out there!

But this is ours:

index.html
:html:

10https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/slice
11https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/slice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

LISTINGS 357

<html>

<head>

<title>Countdown</title>

<script src="countdown.js"></script>

</head>

<body>

<input type="text" size="5" maxlength="5" id="date"> :

</body>

</html>

countdown.js
:javascript:

(function() { // private scope

"use strict";

function friendlyDuration(from, to) {

var seconds = Math.floor((to - from) / 1000);

if (isNaN(seconds)) {

return '';

}

// We now have seconds, and need to calculate all

// of the days/hours/minutes/seconds components.

var minutes = Math.floor(seconds / 60);

seconds %= 60;

var hours = Math.floor(minutes / 60);

minutes %= 60;

var days = Math.floor(hours / 24);

hours %= 24;

function pad(val) {

val += ''; // convert to a string

while (val.length < 2) {

val = "0" + val;

}

return val;

}

// Now create a format string with all values padded.

var output = pad(days) + ":" +

pad(hours) + ":" +

pad(minutes) + ":" +

pad(seconds);

// Check for and remove all leading instances of "00:".

while (output.slice(0, 3) === "00:") {

output = output.slice(3);

358 CHAPTER 15. PRACTICAL WEB PROGRAMMING

}

// Finally, remove all leading zeros.

while (output[0] === "0") {

output = output.slice(1);

}

return output;

}

function showCounter(elTarget, elCounter) {

var now = new Date();

var target = new Date(now.getFullYear() +

'-' + elTarget.value);

// Is our target in the past? Add 1 to the year.

if (+now > +target) {

target.setFullYear(target.getFullYear() + 1);

}

elCounter.innerText = friendlyDuration(now, target);

}

function main() {

var inputTarget = document.getElementById('date'),

elCounter = document.getElementById('counter');

// Set a default value for it (next year):

inputTarget.value = "01-01";

// Every second, show the counter.

setInterval(function() {

showCounter(inputTarget, elCounter);

}, 1000);

}

document.addEventListener('DOMContentLoaded', main);

}());

Exercises

Exercise 15-1: Lab: More Interesting Counters
Solution on page 482

For this final lab, you will add 2 or 3 more counters to the page and allow them to be named
using input fields. All of them should work simultaneously.

For this, a few little details might trip you up.

EXERCISES 359

First of all, if you are in a loop and create a closure based on variables in that loop, you are
going to have a bad time. Check this out:

:javascript:

for (var i = 0; i < 3; i++) {

setInterval(function() {

console.log("I'm the " + i + " value");

}, 1000);

}

What is this attempting to do? It’s trying to set up three intervals, each of which outputs
something different to the console. If you run it, you will notice that every single one of them
says “I’m the 3 value”. Oops, that’s not what we wanted!

The problem is this: our little function closes over the i variable, but that variable just changes
value each time through the loop. It is not a new variable. So, by the time our functions are run
(one second later), that value is 3 for all of them. They all close over the same variable.

Ugh. How do we fix that? Well, you can use let instead of var if you are in a browser (or
other environment) that supports it. That has much saner behavior in these circumstances
and creates new, scoped variables in a more natural way. If you don’t have that option, you
can create a function that does this registration for you, effectively giving your closure new
variables to close over:

:javascript:

function register(i) {

setInterval(function() {

console.log("I'm the " + i + " value");

}, 1000);

}

for (var i = 0; i < 3; i++) {

register(i);

}

That works. The reason is that the register function is called immediately each time
through the loop, and each function call gets its own variables to play with. Thus, our
completely unchanged closure now works properly because it is closing over new variables
each time.

Why do you need this? You might not. There are plenty of ways to do this lab without knowing
this rather subtle detail, but at least one of the ways, the one that I’ll show in the answer key,
needs to handle this case properly.

360 CHAPTER 15. PRACTICAL WEB PROGRAMMING

Final Exam

Write your own game! You have all of the tools. Imagine something simple and fun, and write
it.

Chapter 16

Answer Key

361

362 CHAPTER 16. ANSWER KEY

Solutions

Chapter 1 Solutions

Exercise 1-1: Create a new programming session

Practice starting a new programming session from scratch. Close all of your program tabs,
then

• Start your text editor.
• Write “Testing my sanity” or some other recognizable and pithy comment, and save it
as an HTML file.

• Load that file in the browser.

Answer 1-1

Following the instructions above should lead you to a page that shows your pithy comment. If
you made it unique (you have never used it before in the previous examples), then you can be
sure that you have done the exercise correctly.

For example, if your comment was “this is a brand new file, just for the exercises”, then you
should see exactly that text in the browser window.

If you do not see it, here are a few things to consider:

• Can you find your HTML file in the file manager?

– If you can see your file, what happens when you select it to open it? (Often this is
done by double-clicking on it.) If it opens in the browser and you see the
expected text, you’re all set.

– If you cannot see it HTML file, there are a couple of possibilities.

∗ Perhaps the file was not saved. Try going back to your editor and saving
the file.

363

364 Solutions

∗ The file might not have been saved where you thought it was. Try
searching for it. If you gave it a unique name, it will be easier to find.

• If you cannot find your new folder in the file manager, you might need to start over and
try again. Find a place for the new file that is memorable for you. Create something
where you can find it easily next time and give it another shot.

Exercise 1-2: Practice loading the console

Once you have successfully loaded your new program (with your new statement inside of it),
open the Developer Tools and find the console.

Answer 1-2

Each browser is different in this respect. Take a close look at the instructions for your
particular browser, given earlier in this chapter.

The console has a place where you can type JavaScript expressions and have them
evaluated immediately when you press the return/enter key. If you see a relatively blank area
and a place to type things (either at the bottom of it, as is the case with Firefox, or right inside
of it, like in Chrome), then you have found it. Try typing in a command to be sure, something
like 2 + 2. If it gives you the answer, you have definitely found the console.

Exercise 1-3: Find the source viewer

When you write the text of a program, you are writing what is called “source code”. This
means your code is the “source” of all of the instructions that the computer will execute on
your behalf. Find the developer tool that lets you view the source of the file that the browser
has currently loaded.

Note that this is not the “View Source” menu item that you might be familiar with. Rather, this
is the developer tool that shows you the source and gives you tools to work with it.

Answer 1-3

If you successfully found the console above, then you are probably seeing a window with a
bunch of tabs at the top or along the side. One of these will either say “Sources” (Chrome) or
“Debugger” (Firefox). If you select the appropriate tab, you will see the actual text you entered
into your file, along with some tools to work with it.

We will not be doing anything with those tools just yet, but they will appear in later chapters.
The key is to know how to get to them.

Exercise 1-4: Faster developer tools access

Chapter 1 Solutions 365

Developer tools are incredibly important and useful, particularly for this course, so we are
going to want to be able to get to them quickly. Find the combination of key strokes that opens
(and closes) the console and practice them. Memorize them.

Answer 1-4

To find the magic keystrokes, you can look in the menu that lets you find the developer tools in
the first place. For example, for Chrome on a Mac, the keys that open the console are Option
+ Command + J . This can be found by going to the View Developer menu and looking at
“JavaScript Console”, which in my case has the symbols “ J” next to it, indicating Option
+ Command + J .

On Chrome OS, you can find the key combination by bringing up the keyboard shortcut viewer
(either in Settings Keyboard Shortcut Keys , or by typing the three keys Ctrl + Alt + ?
together) and pressing modifier keys until you see “JavaScript” console appear on the
keyboard. Hint: try pressing Ctrl + Shift and you will see it on the “J” key. Therefore, the
combination there is Ctrl + Shift + J .

On Windows and Linux the combination is usually similar to that on Chrome OS.

On Firefox, you can find the key combination by opening up the developer tools and hovering
over the “Console” tab, where you will see a key combination that works there (on my system
it shows up as + + K , meaning you hold down the option and command keys while
pressing K on a Mac.

Whatever you find, it makes sense to practice it and memorize it. The console will be an old
friend by the time we are through this course.

Exercise 1-5: The console as a calculator

Use the console to find the value of this expression: 1 + 2 - 3 + 4 - 5 + 6 - 7 +

8 - 9 + 10.

Answer 1-5

Once the console is open and you have typed that expression in and hit the enter key, your
session will look something like this:

:console:

> 1 + 2 - 3 + 4 - 5 + 6 - 7 + 8 - 9 + 10

⋖ 7

Exercise 1-6: Definitions

Define the following:

366 Solutions

• syntax highlighting
• JavaScript console
• text editor
• variable
• expression
• evaluate
• assign
• delimit
• escape character
• literal
• concatenate

Answer 1-6

• syntax highlighting: a feature of a code editor, where parts of your code are colored or
styled differently based on what kinds of things they represent in the language. For
example, strings may be colored differently than numbers.

• JavaScript console: a developer tool where you can type short one-line expressions
and see their effects immediately.

• text editor: a program that allows you to write plain text, save it, and edit it later.

• variable: a special place in memory that you can access by name. It can hold any kind
of value.

• expression: something that can be evaluated, that is, something that represents a
computation that can be turned into a value.

• evaluate: to compute an expression, producing a value

• assign: the process of putting a value into the memory referenced by a variable. This
can also create the variable at the same time, if it doesn’t already exist.

• delimit: to “set apart” something, like using quotes to set apart strings, parentheses to
set apart sub expressions, and semicolons to separate statements.

• escape character: the backslash \ character, used to signal special characters in
strings that cannot usually be typed directly.

• literal: loosely speaking, a value that looks like what it is. A string literal is characters
inside of quote marks; it is a string value sitting right there in front of you. A number
literal is just a number. There are others.

• concatenate: to join two things together, as in using + to join two strings into one.

Exercise 1-7: Assignment practice

Chapter 1 Solutions 367

Show code that causes the variable x to contain the value 42.

Answer 1-7

:javascript:

x = 42

Exercise 1-8: Evaluation

Write the result of evaluating (x - 12) * 3 + 9 where x is 42 without using a computer
- use your brain to figure out what the answer will be. Show your work.

Answer 1-8

The answer, as found by just typing it into the console, is this:
:console:

> x = 42

⋖ 42

> (x - 12) * 3 + 9

⋖ 99

That is the answer we are going for. A complete answer will show the steps taken, such as
variable assignment and probably the relevant substitution for x, like this (use your own
discretion about how much work shown is enough - understanding order of operations and
variable evaluation is the key here, not pedantry):

:javascript:

x = 42

(x - 12) * 3 + 9

(42 - 12) * 3 + 9

30 * 3 + 9

90 + 9

99

Exercise 1-9: Using variables

Use a variable to compute the value of the polynomial 𝑥2 − 2𝑥 + 1 where 𝑥 = 3. Hint: you
can use x*x to mean “x squared”.

Answer 1-9

A successful console session might look like this:
:console:

368 Solutions

> x = 3

⋖ 3

> x*x - 2*x + 1

⋖ 4

What happened there? We just created a variable x by assigning x = 3. The console
helpfully told us that we just assigned something to be 3. Then, we typed in the polynomial
expression, which references x. The console computed it using our value for x and output the
final answer for 3*3 - 2*3 + 1, which is 4.

Exercise 1-10: Approximate Euler’s constant

If you are using Chrome or Firefox (as they support exponentiation using the ** operator),
approximate the value of 𝑒 by computing (1 + 1/1000)**1000. What value do you get?

Answer 1-10

A successful console session might look like this:
:console:

> (1 + 1/1000)**1000

⋖ 2.7169239322355203

A more accurate value for 𝑒 is actually 2.718281828459045, but we got it to two decimal
places!

Exercise 1-11: A non-console program

Write a program (in your text editor, not the console) that uses string concatenation to show
“Hello!” using only strings that each contain a single character.

Answer 1-11

The general steps for creating a new program apply. The student should have done the
following:

• Created a new folder,
• Written a file index.html into that new folder, and
• Added a program there, something like the following:

:html:

<script>

var msg = "H" + "e" + "l" + "l" + "o" + "!";

alert(msg);

</script>

Chapter 1 Solutions 369

The basic critical elements for this to work are the use of opening and closing script tags
(signaling to the browser that you are going to write JavaScript) and the use of + to
concatenate tiny strings together to make a full message.

The message doesn’t need to be stored in a variable first. A perfectly acceptable solution will
have zero or more variables in it. For example, this would also be valid code within the tags:

:javascript:

alert("H" + "e" + "l" + "l" + "o" + "!");

Any combination is suitable so long as the following criteria are met:

• Only one-character strings are used, and
• Semicolons are always used at the end of statements.

Exercise 1-12: Escapes in strings

Write a program to create a string that shows this emoticon \o/ (backslash, ‘o’, slash) and
alert it.

Answer 1-12

Because the \ character is an escape character in strings, you cannot insert one into a string
without doing something special. A correct answer will escape the \ character to make it
literal, like this:

:html:

<script>

alert("\\o/");

</script>

The key is the double \\ inside the string. The first one is the escape character, which
indicates that the next character will be treated differently than usual. The usual use of \ is to
escape other characters, so when it is preceded by a \, it is treated literally. Thus, while
"\\" is written with two backslash characters, it actually contains just one, and that is what
shows up in the alert.

Two backslashes \\ are how we communicate to the interpreter that we want a string with a
\ inside of it, and that is what this exercise is meant to reinforce.

370 Solutions

Chapter 2 Solutions

Exercise 2-1: Define terms

Define the terms

• formal parameter
• argument
• substitute
• evaluate
• recurrence relation
• recursive function

Answer 2-1

• formal parameter: the variable names representing things passed into a function.
When defining a function like 𝑓(𝑥) = 𝑥2, the 𝑥 in 𝑓(𝑥) is a formal parameter. It is a
placeholder for a particular value of 𝑥 that will be used later when evaluating the
function.

• argument: the value given when evaluating a function, taking the place of one of its
formal parameters. For example, in 𝑓(𝑥, 𝑦) = 𝑥 + 3𝑦, the formal parameters are 𝑥
and 𝑦, but when evaluating the function, say at 𝑓(2, 3), the arguments are 𝑥 = 2 and
𝑦 = 3. The arguments are the actual values given when evaluating a function.

• substitute: replace a variable with its value, also known as “evaluate”.

• evaluate: produce a value from a computation definition, when all variable values are
known.

• recurrence relation: a definition of a computation that references itself in some way,
with different arguments. For example, a doubling series can be represented as
𝑓(1) = 1 and 𝑓(𝑛) = 2𝑓(𝑛 − 1). The definition of 𝑓 references itself, but with
different arguments. This usually represents a series, but they can be more
complicated than that. Recurrence relations are generally not complete without base
cases, at least one value that is produced without self-reference.

• recursive function: a function that references itself, as in a recurrence relation.

Exercise 2-2: Writing functions

Using pencil and paper, write a function using algebra notation that represents all of the steps
of the following computation:

1. Square 𝑥,
2. Multiply 𝑦 by 6,

Chapter 2 Solutions 371

3. Add them together,
4. Subtract 7 from that, and
5. Divide the whole thing by 2.

Answer 2-2

If we follow all of the steps above, we should end up with a function that looks like this:

𝑥2 + 6𝑦 − 7
2

You can get there by adding things to the computation one at a time, e.g.,

1. 𝑥2: (square 𝑥)
2. 6𝑦: (multiply 𝑦 by 6)
3. 𝑥2 + 6𝑦: (add them together)
4. 𝑥2 + 6𝑦 − 7: (subtract 7 from that)
5. (𝑥2 + 6𝑦 − 7)/2: (divide the whole thing by 2)

Exercise 2-3: Defining functions

Write a function 𝑓 that accepts a non-negative integer 𝑥 (in other words, you do not need to
worry about negative values in your answer) and gives instructions to

1. Produce the value 1 if 𝑥 < 2
2. Otherwise add 𝑓(𝑥 − 1) to 𝑓(𝑥 − 2).

Answer 2-3

There are several acceptable answers. This can be written as two functions, as piecewise
functions, or as code. Here are some possibilities that can at least give an idea of what will
work:

𝑓(0) = 1
𝑓(1) = 1
𝑓(𝑥) = 𝑓(𝑥 − 1) + 𝑓(𝑥 − 2)

In this variation, we have specified how to compute 𝑓(0) and 𝑓(1), then specifies all other
values in terms of the previous two. This is valid because we know we will not get negative
inputs, so converting the idea of “less than 2” to “either 0 or 1” is fine. You might recognize
this as the Fibonacci Sequence.

372 Solutions

Another variation uses piecewise function notation:

𝑓(𝑥) = {1 for 𝑥 < 2
𝑓(𝑥 − 1) + 𝑓(𝑥 − 2) otherwise.

This defines the function in terms of its possible inputs. It is generally more widely accepted
than the previous approach. Other varations include using set notation, e.g. 𝑥 ∈ {0, 1}
instead of inequalities.

Finally, code is also acceptable, though we have not really gotten to that yet:

:javascript:

function f(x) {

if (x < 2) {

return 1;

}

return f(x-2) + f(x-1);

}

Here we define a JavaScript function called f that accepts formal parameter x. If it
determines that x is less than 2, it returns the value 1 immediately, otherwise it computes the
value as shown.

Exercise 2-4: Recursive evaluation, basic

Given the function ℎ(𝑥) = 𝑥 + ℎ(𝑥 − 1) where ℎ(0) = 0, evaluate ℎ(5) showing all steps.
Do not completely evaluate any subexpressions until all of their parts are available. Note that
as a result of this, you will have multiple levels of brackets during parts of the computation.

Answer 2-4

Annotations are optional (horizontal braces), but the process should be clear. The student
should show that they understand how recursive evaluation occurs (substitute, expand,
evaluate). This is an example of how to expand ℎ(5) using annotations to clarify the answer:

Chapter 2 Solutions 373

ℎ(5) = 5 + ℎ(4)⏟
= 5 + ⏞⏞⏞⏞⏞[4 + ℎ(3)⏟]

= 5 + [4 + ⏞⏞⏞⏞⏞[3 + ℎ(2)⏟]]

= 5 + [4 + [3 + ⏞⏞⏞⏞⏞[2 + ℎ(1)⏟]]]

= 5 + [4 + [3 + [2 + ⏞⏞⏞⏞⏞[1 + ℎ(0)⏟]]]]
= 5 + [4 + [3 + [2 + [1 + ⏞0]⏟]]]
= 5 + [4 + [3 + [2 + ⏞1]⏟]]
= 5 + [4 + [3 + ⏞3]⏟]
= 5 + [4 + ⏞6]⏟
= 5 + ⏞10⏟
= ⏞15

Note that order of operations is pretty important, here. It is true that you can collapse some of
the addition steps on the left first if you take advantage of the associativity of addition, so
partial credit can absolutely be given for that, but full credit should show the full set of steps, at
least closely resembling the above.

Again, annotations are optional so long as the steps are clear. This may feel like an
unnecessary amount of detail to the student, and for a problem like this it definitely is, but
learning to think about things in this way will make a big difference when it comes time to
understand what a program is doing, particularly when something goes wrong. This is all
about building a mental model of the process using a simple example.

Exercise 2-5: Recursive evaluation, more advanced

Using pencil and paper, evaluate 𝑓(6) using the definition below (this is the Fibonacci
Sequence). Show all steps, and do not do any work early (do not take advantage of the
associativity of addition, for example, just systematically complete the innermost expressions
first).

𝑓(𝑥) = {1 for 𝑥 < 2
𝑓(𝑥 − 1) + 𝑓(𝑥 − 2) otherwise.

374 Solutions

Answer 2-5

There might be some variation in how many operations are done at once and in which order.
This is the order in which a computer might do it (without optimizations, etc.) if the recursive
definition were written in straightforward code. Note that horizontal brace annotations are
optional; the key is that the student can systematically produce an answer by doing recursive
evaluation. So long as the steps are obvious, the specifics of how they are written are less
important. An answer that follows the pattern outlined in this chapter is shown below:

𝑓(5) = 𝑓(3)⏟ +𝑓(4)

= ⏞⏞⏞⏞⏞[𝑓(1)⏟ +𝑓(2)] +𝑓(4)
= [⏞1 + 𝑓(2)⏟] + 𝑓(4)

= [1 + ⏞⏞⏞⏞⏞[𝑓(0)⏟ +𝑓(1)]] + 𝑓(4)
= [1 + [⏞1 + 𝑓(1)⏟]] + 𝑓(4)
= [1 + [1 + ⏞1]⏟] + 𝑓(4)
= [1 + ⏞2]⏟ +𝑓(4)
= ⏞3 + 𝑓(4)⏟
= 3 + ⏞⏞⏞⏞⏞[𝑓(2)⏟ +𝑓(3)]

= 3 + [⏞⏞⏞⏞⏞[𝑓(0)⏟ +𝑓(1)] +𝑓(3)]
= 3 + [[⏞1 + 𝑓(1)⏟] + 𝑓(3)]

…breathe, and continue…

Chapter 2 Solutions 375

𝑓(5) = 3 + [[1 + ⏞1]⏟ +𝑓(3)]
= 3 + [⏞2 + 𝑓(3)⏟]

= 3 + [2 + ⏞⏞⏞⏞⏞[𝑓(1)⏟ +𝑓(2)]]
= 3 + [2 + [⏞1 + 𝑓(2)⏟]]

= 3 + [2 + [1 + ⏞⏞⏞⏞⏞[𝑓(0)⏟ +𝑓(1)]]]
= 3 + [2 + [1 + [⏞1 + 𝑓(1)⏟]]]
= 3 + [2 + [1 + [1 + ⏞1]⏟]]
= 3 + [2 + [1 + ⏞2]⏟]
= 3 + [2 + ⏞3]⏟
= 3 + ⏞5⏟
= ⏞8

That is basically how the computer would do it. A person who knows to take advantage of the
associativity of addition might do it a different way, collapsing some of the addition problems
on the left before expanding functions on the right. Partial credit can be given for answers that
involve that kind of early simplification, but it should be clarified to the student that this
involves some mathematical manipulation that is usually beyond the capabilities of a
computer to do, and the above expansion would be closer to reality in that environment.

Exercise 2-6: Match terms

Match the following terms

• substitution
• evaluation
• function
• call
• recursion
• break point
• watch
• step

with their definitions:

• A definition of a process of computation.
• The process of replacing a variable with its value.

376 Solutions

• The process of performing a computation to produce a value.
• Supplying a function with an argument and getting a result.
• A computation that is defined in terms of itself.
• In a debugger, execute one statement of code and then stop.
• In a debugger, show the current value of a variable.
• In a debugger, where a program should pause for inspection.

Answer 2-6

substitution The process of replacing a variable with its value
evaluation The process of performing a computation to produce a value
function A definition of a process of computation
call Supplying a function with arguments and getting a result
recursion A computation that is defined in terms of itself
break point In a debugger, where a program should pause for inspection.
watch In a debugger, show the current value of a variable.
step In a debugger, execute one statement of code and then stop.

Exercise 2-7: Pencil and Paper Debugging

Given the program below, pretend that you have entered it into the computer, set a debug
watch on x and y, and are stepping through it one line at a time, starting at the top. What are
the values of x and y at each step? Show them in a table like this:

x y

__ __

__ __

__ __

__ __

__ __

Hint: y will be undefined until it has been assigned something.
x = 10;

x = x + 1;

x = x * 3;

y = 10 + 3 * x;

x = x - 3 + y;

Answer 2-7

Chapter 2 Solutions 377

x y

10 undefined

11 undefined

33 undefined

33 109
139 109

• First we set x = 10, so that is the first value of x in the table. As y has not been
assigned yet, it is undefined.

• Next, we compute x + 1 and assign it back to x, so x is now 11, and y has not
changed.

• Then we compute x * 3 and assign it back to x, so x is now 33, and again, y has
not changed.

• Now we leave x alone and set y to be 10 + 3 * x. Because multiplication has
precedence over addition, this computes 3 * 33 first, then adds 10, giving us 109,
which is assigned to y.

• Finally, we compute 33 - 3 + 109 to get 139, and assign that to x.

If you were to type this program in and load it into the debugger using the instructions in this
chapter, you would be able to set watches on x and y, set a breakpoint on the first line, reload
the page, and step through to see each row of this table in turn. Doing this in your head is an
important skill to develop, as most bugs can be caught before a program is run this way.
Many bugs that people experience in their software come from an incomplete mental model of
what is going on, and a pencil can be a useful tool for exposing those gaps.

378 Solutions

Chapter 3 Solutions

Exercise 3-1: Parameters and Arguments

What is the difference between a “parameter” and an “argument” when talking about
functions?

Answer 3-1

parameter Also known as a “formal parameter”, this is a variable in the function’s definition
that can be used during evaluation.

argument An argument is a value passed into a function call.

Note that sometimes these are used interchangeably in informal settings, but we are very
careful to keep them separate in this course. It helps immensely when learning about the
different contexts in which functions appear: definition and evaluation.

Exercise 3-2: Function Anatomy

In a function definition like this one,
function A(B) {

// C

}

which parts of the function (A, B, and C) correspond to

• the name
• the parameter(s)
• the body

Answer 3-2

A is the function’s name, B is its one parameter, and C is in a comment located in the body of
the function.

Exercise 3-3: Return

What does the return keyword do in a function?

Answer 3-3

The return keyword produces the final value of a function call. Bonus points for mentioning
that it also causes the function to exit immediately, even if there is code below it. The main

Chapter 3 Solutions 379

thing for students to get comfortable with here, though, is that the value of a function call is
determined by what is returned.

Exercise 3-4: Function Definition

Define (and write down below) a function called mid with two formal parameters low and
high that returns the number right in the middle of the two. Hint: this number will be the
average of low and high.

When finished, test your function in a real program by passing it the following values and
alerting the results. Then fill in the answers:

low high mid(low, high)

4 6
2 10
-5 2
17 37

Answer 3-4

One possible implementation for the function is this:
:javascript:

function mid(low, high) {

return (low + high) / 2;

}

This uses the averaging technique hinted at above. Some students will miss the meaning of
that hint, and that is fine so long as they have something that works. For example, a student
might want to subtract low from high first, find the middle, then add low back in, like this:

:javascript:

function mid(low, high) {

return low + (high - low) / 2;

}

There are actually sometimes reasons to do things in this slightly more complicated way that
have to do with numerical stability, but that is sort of beside the point. The point is that
anything that correctly computes the number directly between low and high will do fine.

To compute the table, the student might have written a full program like this:
:html:

380 Solutions

<script>

function mid(low, high) {

return (low + high) / 2;

}

alert(mid(4, 6));

alert(mid(2, 10));

alert(mid(-5, 2));

alert(mid(17, 37));

</script>

It is not required that the student do it precisely this way, but it is a useful way to go about it,
and that might be an opportunity to instruct or inspire with the idea that tests are just programs.

The resulting table should look reasonably close to this:

low high mid(low, high)

4 6 5
2 10 6
-5 2 -1.5
17 37 27

Exercise 3-5: Scopes

In the following program snippet, fill in the table with the scope of all variables. These will be
either “global” or “local”. Recall that global variables can be seen both outside and inside of
functions, and local variables are only visible inside and during a call.

Also, remember what var does. It’s kind of important.
x = 10;

function f(a, b, c) {

z = 3 * c;

var d = a + b - z;

return d * d;

}

y = 15;

alert(f(x, y, 5));

variable scope

x

y

Chapter 3 Solutions 381

variable scope

z

a

b

c

d

Answer 3-5

Variables declared using var in a function, or declared as the function’s formal parameters,
are local to that function. If the var keyword is left off, or the variable appears outside of any
function, it is global. Thus, the table should be filled out like this:

variable scope

x global
y global
z global
a local
b local
c local
d local

Exercise 3-6: Anonymous Functions and Timers

Write code to set a timer to alert("Ding!") after 5.5 seconds using setTimeout.
Use two different methods, one with a named function, and one with an anonymous function.
Recall that setTimeout is called like this: setTimeout(functionToCall,
delayMilliseconds).

Answer 3-6

For this, the student can write a single program or two different programs. Example solution
code is here:

:javascript:

// Call setTimeout with a named function.

function ding() {

alert("Ding!");

}

setTimeout(ding, 5500);

382 Solutions

// Call setTimeout with an anonymous function.

setTimeout(function() {

alert("Ding!");

}, 5500);

The first calls setTimeout after defining a function called ding. That function alerts the
required message as expected, and setTimeout is called with it and a value of 5500
milliseconds, which corresponds to 5.5 seconds.

The second call to setTimeout packages the alert function up in an anonymous function
and also passes the value 5500 as the number of milliseconds to delay.

Exercise 3-7: A Tiny Game

Write a program that, each time you reload the page, prompts for a number and alerts its
signed distance from the number 5. See if you can get someone else to play it and figure out
what it is doing without telling them.

Hint: the signed distance of the number x from 5 is x - 5.

Answer 3-7

This program uses both prompt and alert. Each time the browser page is loaded, the
program will run, so the steps the program takes are

• Get a number
• Subtract 5 from it
• Alert the value.

This can be done with or without functions. The point of this exercise is to get a little more
experience with prompt. Here is some example code:

:html:

<script>

num = prompt("Enter a number");

dist = num - 5;

alert("The distance is " + dist);

</script>

Many variations on that theme are fine, including those with no explanatory text. The smallest
such program might well be this one, since it is valid to not give any message to prompt:

:html:

<script>

alert(prompt() - 5);

</script>

In fact, given that it is so short, the student could easily just use the console to enter and run it.

Chapter 4 Solutions 383

Chapter 4 Solutions

Exercise 4-1: Object Creation

Show how to create objects with the following characteristics:

1. Empty
2. One property with key "name" and the value being your own name (or you can make

the value just be the string "me").
3. One property with a key that is a number, like 5, and a value of anything you like.
4. The following properties, with string values that correspond to your favorite book:

• “Title”
• “Author”
• “Year Published”

Answer 4-1

The three things requested look like this (variable assignments are optional, and are here to
clarify which part of the problem is being answered):

:javascript:

empty = {};

myName = {name: "me"};

numeric = {5: "arbitrary value"};

book = {

Title: "Where the Red Fern Grows",

Author: "Wilson Rawls",

"Year Published": 1961,

};

A few things are of note here. First, to make an empty object you just use empty curlies, like
this {}. There can be space between them, since space is ignored except where needed to
separate things (or inside of strings, of course).

Second, for the “name” answer, the student’s own name can be in the value instead of "me",
and it is also fine to put quote marks around the word "name". The quotes are optional
because name is a valid JavaScript identifier (the biggest tip-off is usually that it does not
start with a number, and contains no spaces, dots, or dashes).

Third, for the numeric key, you just use a number. The student might have interpreted the
number to be a string, so you might also see something like {"5": "some value"}, and
that is also fine.

Finally, for the book entry, any book title, author, and year are fine. The keys can be in quotes
or not, except for "Year Published", which contains a space and thereforemust be

384 Solutions

quoted. The year can either be a number as given or a string with quote marks around it.
Either is fine.

Exercise 4-2: Object Property Retrieval (and Setting)

Show how to get (or set) values in an object stored in the variable obj for properties with the
following names:

1. "title"
2. 10
3. "something amazing"

Do any of these allow you to use dot notation? Why can you not use dot notation on the
others?

Answer 4-2

Here is a set of possible answers for each of these:
:javascript:

// title

obj["title"]

obj.title

// 10

obj[10]

// something amazing

obj["something amazing"]

The answer to the “why” question is this:

• The number 10 (and the string "10" if that is the way the student understood it) is not
a valid identifier because it is (or starts with) a number.

• The text “something amazing” is not a valid identifier because it contains a space.

Thus, for both 10 and "something amazing", the only way to access those properties
is with bracket notation.

Exercise 4-3: Non-existent Object Keys

What happens if you try to get a property out of an object that does not exist? What value do
you get instead?

Answer 4-3

Chapter 4 Solutions 385

You get the special value undefined, but otherwise things keep plodding along. No errors
occur, and the code does not stop running just because you tried to get a value that was not
there.

Exercise 4-4: Deleting Object Properties

How do you delete a property from an object? Hint: you cannot just assign undefined to it.

Answer 4-4

The answer here is to use the delete statement, like this:
:javascript:

delete obj.someProperty;

// Or alternatively:

delete obj["someProperty"];

That deletes the property called "someProperty" from the object.

Exercise 4-5: Logging

How do you log something to the console from code in a file (as opposed to just entering it
directly in the console)? How do you log multiple things at once?

Answer 4-5

Use the console object and one of its logging methods. The most common of these is used
like this:

:javascript:

console.log("whatever you want to log",

"and maybe something else");

If the student has any variation on console.log or console.debug or similar, then it is
fine. The two critical pieces are the use of a console logging function, and the
understanding that multiple things can be logged at the same time by specifying them all as
arguments to the logging function. The example above has two things logged at once, so they
will show up in the log together.

That can be very useful when trying to figure out what your program is doing, because you can
add information about what you are looking at, like this:

:javascript:

console.log("myVar:", myVar);

This logs the literal string "myVar:", followed by the value (or contents) of the variable
myVar.

386 Solutions

A rather odd (and discouraged) but still technically valid approach is to use bracket notation to
get the log function:

:javascript:

console["log"]("myVar:", myVar);

Again, that is uncommon and therefore discouraged. It does work, though, even with methods
(which is sort of surprising: "hi there"["toUpperCase"]() does, in fact, produce
the value "HI THERE", but goodness does it look odd).

Exercise 4-6: Standard Library

What is a language’s “standard library”?

Answer 4-6

The standard library is a set of functions that are always available to be used by programmers.

That is a fine answer. A longer answer might include something along these lines.

The standard library functions are always there, ready to go. In JavaScript, the standard
library is mostly contained in a bunch of global objects like Math and Date, etc., and when
working within the browser, it includes objects like document and window, which contain a
lot of built-in functionality.

Exercise 4-7: Math Practice

Without the aid of the computer, write down how you would compute a few things using the
Math library:

1. 212

2.
√

3
3. | − 56|
4. ⌊6.8⌋
5. ⌈2.3⌉

Note that |𝑥| indicates the “absolute value” (positive value of 𝑥), ⌊𝑥⌋ indicates the “floor”
(nearest integer at or below 𝑥), and ⌈𝑥⌉ indicates the “ceiling” (nearest integer at or above 𝑥).

Answer 4-7

1. 212: 2**12 or Math.pow(2, 12) are both fine, but the latter is preferred because
it follows instructions more closely (“using the Math library”).

2.
√

3: Math.sqrt(3) or Math.pow(3, 0.5) both work fine.
3. | − 56|: Math.abs(-56)
4. ⌊6.8⌋: Math.floor(6.8)

Chapter 4 Solutions 387

5. ⌈2.3⌉: Math.ceil(2.3)

Exercise 4-8: String Practice

Strings have a bunch of standard methods built in, as well as the standard length property.
Solve this without the aid of a computer: given the string s = " This string is

mine. ", what will the following methods produce? Hint: the spaces at the ends of it are
part of the string because they are within the quote delimiters.

1. s.length
2. s.toUpperCase()
3. s.toLowerCase()
4. s.trim()
5. Bonus: s.toLowerCase().trim()

Answer 4-8

The results of these expressions can be seen in the console to check the student’s answers:
:console:

> s = " This string is mine. "

⋖ " This string is mine. "

> s.length

⋖ 22

> s.toUpperCase()

⋖ " THIS STRING IS MINE. "

> s.toLowerCase()

⋖ " this string is mine. "

> s.trim()

⋖ "This string is mine."

> s.toLowerCase().trim()

⋖ "this string is mine."

The last one might feel a little bit like a trick, which is why it is a bonus problem (and a chance
to learn something):

• We first get s, which is the string " This string is mine. ".
• We then call toLowerCase() on s. , which evaluates to " this string is

mine. " (all lower case).
• On that new lower-case string we then call trim(), which evaluates to “‘this string is
mine.” (leading and trailing spaces removed).

Basically, the interpreter reads left to right just like we do. It evaluates s, then calls
toLowerCase() on it to produce a new value, then calls trim() on that to produce a
final value. This sort of “method chaining” is pretty common in JavaScript and
similarly-structured languages.

388 Solutions

Exercise 4-9: Canvas Practice

Write a program that draws three squares (using fillRect) on a 300-by-300-pixel canvas.
The squares will have the following properties:

• Each square is 100 pixels on a side,
• Each is a different color, one of red, yellow, and green.
• The first square is in the upper left corner, the second is in the middle, and the third is
in the lower right corner.

Answer 4-9

There is not a lot of room to wiggle in this assignment, but the colors can be in any order. This
answer provides a fairly literal interpration of the color requirements, putting them in the order
given from left to right.

A correct answer will be a full working program. The student should be able to show the
HTML source and the output in a browser window. The ID of the canvas can be anything; the
important thing is that the student can create the appropriate canvas tag and find it in code.

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing');

var ctx = canvas.getContext('2d');

ctx.fillStyle = 'red';

ctx.fillRect(0, 0, 100, 100);

ctx.fillStyle = 'yellow';

ctx.fillRect(100, 100, 100, 100);

ctx.fillStyle = 'blue';

ctx.fillRect(200, 200, 100, 100);

</script>

Chapter 5 Solutions 389

Chapter 5 Solutions

Exercise 5-1: Comparators and Boolean Values

Every expression in mathematics that involves a comparator has a boolean type. A
comparator is something like =, <, >, ≤, ≥, etc.

1. What is the value of 7 > 10?
2. What is the value of 3 = 3?
3. What about the value of 3 = 3 ∨ 7 > 10?
4. What is the value of 3 = 3 ∧ 7 > 10?
5. If 𝑥 = 2, find two values of 𝑦 that make this false, and two values of 𝑦 that make it

true: 𝑥 < 2𝑦 ∧ 𝑦 < 𝑥 + 4.

Answer 5-1

These are relatively straightforward if the student remembers that numeric comparators have
precedence over boolean operators.

The student can use any notation to answer these. Any of true, 𝑇 , or ⊤ are valid for true
values, and any of false, 𝐹 , or ⊥ are valid for false values. For the answers here we will use
𝑇 and 𝐹 :

1. (7 > 10) = 𝑇
2. (3 = 3) = 𝑇
3. (3 = 3 ∨ 7 > 10) = 𝑇
4. (3 = 3 ∧ 7 > 10) = 𝐹
5. Since 𝑥 = 2, we basically have 2 < 2𝑦 ∧ 𝑦 < 6, which can be manipulated to be

1 < 𝑦 ∧ 𝑦 < 6. But since both of those must be true in an expression that evaluates
true (because of the ∧), you can also write it more familiarly as 1 < 𝑦 < 6. That
should make it easy to find answers that make it true and answers that make it false.
For example, 𝑦 = 4 or 𝑦 = 5 both make the expression true, while 𝑦 = 6 and 𝑦 = 1
both make it false.

Exercise 5-2: Boolean Connectives

• What is the symbol for OR?
• What is the symbol for AND?
• What is the symbol for NOT?
• What is their precedence order (highest to lowest)?

Answer 5-2

• OR: ∨

390 Solutions

• AND: ∧
• NOT: ¬
• Precedence order: ¬, ∧, ∨

A little more explanation might be in order here. The operators OR (∨), AND (∧), and NOT
(¬) are very similar in spirit to the mathematical operators ADD, MULTIPLY, and NEGATE,
particularly if anything above 1 is clipped to 1. You can kind of see it if you treat 𝑇 and 𝐹 as 1
and 0 instead, and start applying the math operators to them. Check out the similarities in
these tables. First for ∨:

𝐴 𝐵 𝐴 + 𝐵 Clipped to [0, 1] 𝐴 ∨ 𝐵
0 0 0 0 0
0 1 1 1 1
1 0 1 1 1
1 1 2 1 1

This works similarly for ∧:

𝐴 𝐵 𝐴𝐵 Clipped to [0, 1] 𝐴 ∧ 𝐵
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 1 1 1 1

For ¬ things are a bit weird, since negating zero doesn’t do anything. There is an analogue to
it, but it is a bit beyond this course to discuss all of the interesting ways that − and ¬ are
related. The multiplication and addition analogies are useful, though, because the
corresponding boolean operators AND and OR have the same precedence relationship:
multiplication before addition, and AND before OR.

Exercise 5-3: Truth Tables

Compute a truth table for the expression ¬𝐴 ∨ 𝐵. It will have 4 rows. You may use 0/1 or T/F:

𝐴 𝐵 ¬𝐴 ∨ 𝐵
0 0
0 1
1 0
1 1

Chapter 5 Solutions 391

Answer 5-3

¬𝐴 ∨ 𝐵 is true when either 𝐴 is false or 𝐵 is true (or both), so that leaves us with this:

𝐴 𝐵 ¬𝐴 ∨ 𝐵
0 0 1
0 1 1
1 0 0
1 1 1

Exercise 5-4: More Truth Tables

Fill out the truth table for the expression 𝐴 ∧ 𝐵 ∨ ¬𝐶 . Remember the order of operations!

𝐴 𝐵 𝐶 𝐴 ∧ 𝐵 ∨ ¬𝐶
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Answer 5-4

This question tests the student’s understanding of operator precedence. The ∧ expression
has to be computed before the ∨ expression. Similarly, negation has the highest precedence
in this expression, so it would be parenthesized as shown below:

𝐴 𝐵 𝐶 (𝐴 ∧ 𝐵) ∨ (¬𝐶)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

392 Solutions

Since you have something ORed with ¬𝐶 , that means that any time 𝐶 is false, the
expression is true. Why is that?

Because if either side of an OR (∨) expression is true, the whole expression is true. That
means you can immediately fill out all of the rows where 𝐶 = 𝐹 with true values, like this.

𝐴 𝐵 𝐶 (𝐴 ∧ 𝐵) ∨ (¬𝐶)
0 0 0 1
0 0 1
0 1 0 1
0 1 1
1 0 0 1
1 0 1
1 1 0 1
1 1 1

That’s a big help, and now we don’t have to think about ¬𝐶 anymore - we have used all it has
to offer. That leaves us with 𝐴 ∧ 𝐵, which is only ever true if both 𝐴 and 𝐵 are true. That
only happens in one place that hasn’t already been marked, so we now have this:

𝐴 𝐵 𝐶 (𝐴 ∧ 𝐵) ∨ (¬𝐶)
0 0 0 1
0 0 1
0 1 0 1
0 1 1
1 0 0 1
1 0 1
1 1 0 1
1 1 1 1

The rest of them have to be false, because 𝐶 is true and one of 𝐴 and 𝐵 is false in all of
those cases.

Exercise 5-5: Most Truth Tables

Create the truth table for 𝐴 ∧ 𝐵 ∨ 𝐶 ∧ ¬𝐷. Hint: it will have 16 rows of values. You can use
any representation of true and false you like, including ones and zeros.

Answer 5-5

The first thing to do when tackling this sort of problem is to figure out where the parentheses

Chapter 5 Solutions 393

should go (which operations to do first). NOT (¬) comes before AND (∧), and AND comes
before OR ∨. That leaves us with this expression:

(𝐴 ∧ 𝐵) ∨ (𝐶 ∧ (¬𝐷))

The next step is to figure out how to fill out the 16 rows of values in a systematic way. That is
done by counting in binary, and the resulting table looks like this:

𝐴 𝐵 𝐶 𝐷 (𝐴 ∧ 𝐵) ∨ (𝐶 ∧ (¬𝐷))
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

You can see the pattern here in the ones and zeros. The right column alternates every time,
the next column to the left alternates every other time, the column to the left of that alternates
twice as slowly still, etc.

With that set up, you can now fill in the answers. Let’s look at that expression again, but let’s
just focus on the first part, since it’s ORed with the second; any time the first part is true, the
whole expression has to be true because of that ∨ operator joining the two halves. We can
look at it like this:

(𝐴 ∧ 𝐵) ∨ doesn’t matter what else

With that, we can look at every place where both 𝐴 and 𝐵 are true, and our expression will be
true there. That covers the last four rows in our table:

394 Solutions

𝐴 𝐵 𝐶 𝐷 (𝐴 ∧ 𝐵) ∨ (𝐶 ∧ (¬𝐷))
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Now we can ignore the first part of the expression and focus our attention on the second part
in the same way:

whatever ∨ (𝐶 ∧ ¬𝐷)

In this case, 𝐶 has to be true while 𝐷 is false for this part of the expression to be true, since
we first negate 𝐷, then AND it with 𝐶 . Filling in all of the places where 𝐶 is true and 𝐷 is
false gives us this:

𝐴 𝐵 𝐶 𝐷 (𝐴 ∧ 𝐵) ∨ (𝐶 ∧ (¬𝐷))
0 0 0 0
0 0 0 1
0 0 1 0 1
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0 1
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0 1

Chapter 5 Solutions 395

𝐴 𝐵 𝐶 𝐷 (𝐴 ∧ 𝐵) ∨ (𝐶 ∧ (¬𝐷))
1 0 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Note that there is some overlap: the last 1 in the table was already set. This is fine.

The rest of the values will be zeros, since there are no other parts of the expression to make
this true:

𝐴 𝐵 𝐶 𝐷 (𝐴 ∧ 𝐵) ∨ (𝐶 ∧ (¬𝐷))
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Exercise 5-6: De Morgan

Use De Morgan’s Law to transform the following expressions (move the outer negation into
the expression). Hint: when there is no outer negation, you can first pretend that there are two
outer negations instead, like this: 𝐴 ∧ 𝐵 = ¬¬(𝐴 ∧ 𝐵) (since one undoes the other), and
you can move one of them into the expression.

1. ¬(𝐴 ∧ 𝐵)
2. ¬(𝐴 ∨ 𝐵)
3. ¬(𝐴 ∧ 𝐵 ∨ ¬𝐶)
4. ¬(¬𝐴 ∨ 𝐵 ∧ ¬𝐶)

396 Solutions

Answer 5-6

De Morgan’s Law is a pair of relations:

¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦
¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦

If you are careful with what you take 𝑥 and 𝑦 to be, you can convert lots of expressions into
this form. A common way to remember it is to distribute the ¬ inside the parentheses, and flip
whatever operators you find there.

With that, we can tackle these four problems. Note that if you are not careful with parentheses,
they will reach out and bite you, so we do everything one step at a time. The first two are
straightforward:

1:

¬(𝐴 ∧ 𝐵) = ¬𝐴 ∨ ¬𝐵

2:

¬(𝐴 ∨ 𝐵) = ¬𝐴 ∧ ¬𝐵

The next two are a little more involved, requiring multiple steps:

3:

¬(𝐴 ∧ 𝐵 ∨ ¬𝐶) = ¬((𝐴 ∧ 𝐵) ∨ ¬𝐶)
= ¬(𝐴 ∧ 𝐵) ∧ 𝐶
= (¬𝐴 ∨ ¬𝐵) ∧ 𝐶

4:

¬(¬𝐴 ∨ 𝐵 ∧ ¬𝐶) = ¬(¬𝐴 ∨ (𝐵 ∧ ¬𝐶))
= 𝐴 ∧ ¬(𝐵 ∧ ¬𝐶)
= 𝐴 ∧ (¬𝐵 ∨ 𝐶)

Chapter 5 Solutions 397

Exercise 5-7: JavaScript and Equality

Give the true or false value for each of the following expressions:

1. 3 === "3"

2. 1.6 !== 1.6

3. "hi" === 'hi'

4. "hi" !== "hello"

5. 3 > 6

6. 2 <= 2

7. 7 >= 6

8. !(9 >= 9)

9. 10 < 8 || 8 < 9

10. 9 === 9 && 2 !== 3

Answer 5-7

As a reminder, these operations have the following meanings:

Operator Meaning

=== Equal
!== Not equal
< Less than

<= Less or equal
> Greater than

>= Greater or equal
&& AND
|| OR
! NOT

An additional reminder can help with this answer:

• Strings are tested for equality based on contents, not delimiters, so "abc" ===

'abc' is true (delimiters are not part of the string; they just tell us where it is in the
code).

The answers:

1. 3 === "3": true
2. 1.6 !== 1.6: false
3. "hi" === 'hi': true
4. "hi" !== "hello": true
5. 3 > 6: false

398 Solutions

6. 2 <= 2: true
7. 7 >= 6: true
8. !(9 >= 9): false
9. 10 < 8 || 8 < 9: true
10. 9 === 9 && 2 !== 3: true

Exercise 5-8: Converting Strings to Numbers

When prompting for an answer using prompt, the value returned is a string representing the
characters the user typed. For example, if you run this:
var val = prompt("Please enter a number:");

The user is shown a window with a text box into which they can type. There is nothing in that
box that forces them to type a number, other than your message, which is really just advice.

Suppose, however, that the user does indeed type a string representing a number, like 11.
What should you do to val to ensure that you can do numeric things (like addition,
subtraction, multiplication, etc.) to it?

Answer 5-8

This is just a memorization question to ensure that a common and useful idiom is practiced.
Taking a string that contains a number, something like "11", and applying the unary plus
operator turns it into a number, like this:

:javascript:

var val = prompt("Please enter a number:");

var num = +val;

// You can also do it all at once, like this:

var num = +prompt("Please enter a number:");

In general, JavaScript will try really hard to do the conversion for you, so you can actually do
lots of number things to strings to force the conversion, like 5 < "49" - that will convert
"49" to a number first and then do the comparison.

That also happens with ==, but that sort of makes it dangerous because equality testing is
used for much more than numbers. Therefore, we typically avoid using == and its sibling !=
because they are just a bit too generous with their true values to be safe. Many errors can
be caught early by using the === and !== operators instead, but it’s at least good to know
what the shorter versions (that are also very commonly, and one might even argue
inappropriately, used) do.

Exercise 5-9: Conditional Expressions

Chapter 5 Solutions 399

It’s possible to create an expression in JavaScript that is one thing for one situation, and
something else for another. This is doing using the ternary conditional operator: ?:. What are
the values of the following expressions?

Note that we threw a little surprise in here, but it’s not too hard to make use of it: the number 0
is falsy, and any other number is truthy. Similarly, the empty string '' is falsy, but every other
string is truthy. (Note that the concepts of “truthy” and “falsy” come up in the discussion of
if/else).

1. true ? "hello" : "good-bye"

2. 5 < 6 ? "smaller" : "not smaller"

3. 'hi' === 'hello' ? "yes" : "no"

4. 5 ? "truthy" : "falsy"

5. 0 ? "truthy" : "falsy"

6. '' ? 1 : 0

Answer 5-9

1. true ? "hello" : "good-bye": “hello”
2. 5 < 6 ? "smaller" : "not smaller": “smaller”
3. 'hi' === 'hello' ? "yes" : "no": “no”
4. 5 ? "truthy" : "falsy": “truthy”
5. 0 ? "truthy" : "falsy": “falsy”
6. '' ? 1 : 0: 0

Exercise 5-10: If and Else

Write a program that does the following using if and else (don’t forget your braces!):

• Ask the user for a number,
• If less than zero, output “negative”,
• Otherwise, output “non-negative”.

Answer 5-10

There are several ways to do this, but this assignment asks specifically for if and else, so
the code will be required to look something like this:

:javascript:

var num = +prompt("Enter a number");

if (num < 0) {

alert("negative");

} else {

alert("non-negative");

}

400 Solutions

Also, braces are explicitly required here, too, so don’t accept code that is missing curly braces.

Exercise 5-11: More If and Else

For this program, use two techniques: the first will use nested if/else blocks, and the
second will use an else if chain.

Write a program that outputs “negative” for a number less than zero, “zero” for a number
equal to zero, and “positive” for a number greater than zero. Get the number using prompt
and output either to the console or via alert.

Answer 5-11

As a reminder, always look out for curly braces in conditional statements.

The first program is to use nested if/else blocks. There are several ways of going about it.
Here is one of the most straightforward:

:javascript:

var num = +prompt("Enter a number");

if (num < 0) {

console.log("negative");

} else {

if (num === 0) {

console.log("zero");

} else {

console.log("positive");

}

}

Of course, the order of tests can be changed and the program will still be perfectly valid (they
are all mutually exclusive). For example, this works just as well:

:javascript:

var num = +prompt("Enter a number");

if (num === 0) {

console.log("zero");

} else {

if (num < 0) {

console.log("negative");

} else {

console.log("positive");

}

}

Finally, the second program should just collapse these into an else if chain, like this
(using the most recent example above as the starting point):

:javascript:

Chapter 5 Solutions 401

var num = +prompt("Enter a number");

if (num === 0) {

console.log("zero");

} else if (num < 0) {

console.log("negative");

} else {

console.log("positive");

}

Exercise 5-12: Output Tables

Make an output table for the “negative/zero/positive” program in the previous problem.

Answer 5-12

The output table is constructed following the pattern in the text. Because this is transformable
into an else if chain, it will likely have that kind of structure. Drawing the table with all
false at the top as is customary (and using true and false instead of 1 and 0 - anything
similar is acceptable), we get this:

num === 0 num < 0 Output

false false “positive”
false true “negative”
true ? “zero”

The last row has the “don’t care” symbol. The actual table for your student may vary, but at
least one row will have a “don’t care” in it, since a true value for the first condition causes the
others to not matter. Note that the table can be rearranged (turn it upside-down) to have
true in the diagonal (not including the row of all false values), with false in the lower left
and don't care in the upper right. That is helpful for conditions that can be expressed as
else if chains, and is a good sanity check for the student’s answer.

Exercise 5-13: More Output Tables

Consider the guessing game problem from this chapter, where different outcomes are
displayed for guesses that are too small, too large, much too large, and correct. Now we are
going to change it slightly. For the following altered code, build the output table and see if you
can use it to spot the problem in our new implementation:
var answer = 6;

var guess = +prompt("Guess a number");

if (guess === answer) {

alert("You win!");

} else {

402 Solutions

if (guess > answer) {

alert("Too high");

} else {

if (guess > answer + 10) {

alert("Way too high");

} else {

alert("Too low");

}

}

}

Answer 5-13

The test for guess > answer was swapped with the test for guess > answer + 10

in this exercise. To build the output table, we do as before, creating a column for each of
guess === answer and the other two already mentioned. The table will look like this:

=== answer > answer > answer + 10 Output

0 0 0 “Too low”
0 0 1 impossible
0 1 ? “Too high”
0 1 ? “Too high”
1 ? ? “You win”
1 0 1 impossible
1 1 0 impossible
1 1 1 impossible

Collapsing the like rows in the table and removing the impossible, we get this:

=== answer > answer > answer + 10 Output

0 0 0 “Too low”
0 1 ? “Too high”
1 ? ? “You win”

Aha. We are missing an outcome! There is no row for “Way too high”, which indicates a flaw
in our logic. We can see that as we study the “Too high” row: if guess > answer, we
shouldn’t have a “don’t care” in the guess > answer + 10 spot, because we do care
about that, and therefore we need to test for it. Looking at things in this way can help to avoid
bugs in conditional logic, and they do tend to creep in quite often, even for seasoned
programmers. This is particularly true when chains of conditions get long and have
overlapping truth values.

Chapter 5 Solutions 403

Exercise 5-14: Basic types and outputs

In the following code, fill in the missing values (look for ‘?’). Also say what type the result has.
What kind of a thing is it?

:console:

> 10 + 5

⋖ ?

> 3 * 12

⋖ ?

> "hello" + " " + "world"

⋖ ?

Answer 5-14

In the answer, the values are shown where the console would put them, and the types of those
values are indicated in comments. Any sort of indication is fine.

:console:

> 10 + 5

⋖ 15 // type = number

> 3 * 12

⋖ 36 // type = number

> "hello" + " " + "world"

⋖ "hello world" // type = string

Exercise 5-15: Variables and evaluation

Fill in the output of the console below where they are missing (‘?’). Remember to be careful
about assignment - a variable only changes value when assigned.

:console:

> x = 10

⋖ ?

> x + 15

⋖ ?

> x / 5

⋖ ?

> y = 'hello'

⋖ ?

> y + ' there'

⋖ ?

Answer 5-15

:console:

404 Solutions

> x = 10

⋖ 10

> x + 15

⋖ 25

> x / 5

⋖ 2

> y = 'hello'

⋖ "hello"

> y + ' there'

⋖ "hello there"

Note that it’s easy to forget that x + 15 doesn’t change x, it just outputs a value based on it.
That’s why the output of x / 5 is just 2 and not 5: x never changed to be 25. It was 10 the
whole time.

Exercise 5-16: Show the steps for evaluating a numeric expression

Using the expansion technique demonstrated earlier, show the steps of evaluation for the
following expression:

3(2 + 4) − (3/(12 + 2))

Answer 5-16

Evaluating things inside-out, left to right means that we basically move to the right when we
get stuck, and move inside whenever we can. Then we start over again on the left with the
new expression, moving to the right when stuck, and inside whenever we can, repeating until
we have a single value:

3 (2 + 4)⏟ −(9/(1 + 2))

3 ⏞(6)⏟ −(9/(1 + 2))
⏞18 −(9/ (1 + 2)⏟)
18 − (9/ ⏞3)⏟
18 − ⏞3⏟
⏞15

Exercise 5-17: Show the steps for evaluating a different numeric
expression

Chapter 5 Solutions 405

Do the same as before, recalling that the ⋅ symbol stands for multiplication and the / symbol
stands for division:

3 + 5 ⋅ 2 + 6/3 − 4

Answer 5-17

This one requires careful attention to be paid to operator precedence rules. Multiplication and
division always need to be done before addition and subtraction when there is a choice to be
made. Moving from left to right, you immediately notice that you cannot perform the first
addition because the next number is part of a multiplication. So you have to do that first, and
then do the addition. This theme repeats throughout the evaluation process.

3 + 5 ⋅ 2⏟ +6/3 − 4
3 + ⏞10⏟ +6/3 − 4
13 + 6/3⏟ −4
13 + ⏞2⏟ −4
⏞15 −4⏟
⏞11

Exercise 5-18: Show the steps for evaluating a function with variables

The function 𝑓(𝑥, 𝑦) is given below. Using the expansion technique demonstrated earlier,
show all of the steps of how you would evaluate 𝑓(25, 3):

𝑓(𝑥, 𝑦) = 𝑥
5 + 3 + 𝑦3

Answer 5-18

406 Solutions

𝑓(𝑥, 𝑦) = 𝑥
5 + 3 + 𝑦3

𝑓(25, 3) = 𝑥
5⏟ +3 + 𝑦3

=
⏞25
5⏟ +3 + 𝑦3

= ⏞5 +3⏟ +𝑦3

= ⏞8 + 𝑦3⏟
= 8 + ⏞33⏟
= 8 + ⏞27⏟
= ⏞35

Exercise 5-19: Recursion in algebraic evaluation

Evaluate 𝑓(4):

𝑓(𝑥) = {0 for 𝑥 ≤ 0
𝑥 − 𝑓(𝑥 − 1) otherwise.

Answer 5-19

Just like with regular evaluation, when you get stuck you go deeper, or move to the right. This
leads to an expansion like the following:

Chapter 5 Solutions 407

𝑓(𝑥) = {0 for 𝑥 ≤ 0
𝑥 − 𝑓(𝑥 − 1)⏟⏟⏟⏟⏟ otherwise.

𝑓(4) = ⏞4 − 𝑓(3)⏟
= 4 − ⏞⏞⏞⏞⏞(3 − 𝑓(2)⏟)

= 4 − (3 − ⏞⏞⏞⏞⏞(2 − 𝑓(1)⏟))

= 4 − (3 − (2 − ⏞⏞⏞⏞⏞(1 − 𝑓(0)⏟)))
= 4 − (3 − (2 − (1 − ⏞0)⏟))
= 4 − (3 − (2 − ⏞1)⏟)
= 4 − (3 − ⏞1)⏟
= 4 − ⏞2⏟
= ⏞2

Exercise 5-20: Calling JavaScript Functions

Write a one-line program that shows a pop-up window with the text “Hello!” in it. Use the
alert function.

There is no need to show the surrounding HTML—just show the relevant JavaScript code.

Answer 5-20

Calling functions in JavaScript involves naming the function and then adding parentheses that
contain the function’s arguments. To show a pop-up window as described in the problem, you
would write a program like this:

:javascript:

alert("Hello!");

If HTML is given (it is not required), it might look something like this:
:html:

<script>

alert("Hello!");

</script>

Exercise 5-21: Prompting For Values

408 Solutions

Using the prompt function, ask the user for their name, and display “Hello <name>!”,
where <name> is replaced by whatever the user types. For example, if I were to type “Chris”
in your prompt box, you would display “Hello, Chris!”.

The correct answer need not contain surrounding HTML tags, though it can. The JavaScript
that displays the prompt and the final message is the important part of the answer.

Hint: you will call two functions in a correct program, and only one of them will be prompt.

Answer 5-21

The task is to

• Get input from the user, and
• Display something to the user that contains that input.

There are a couple of ways to go about it. One of the more straightforward ways to think about
it is to store the result of prompt in a variable, then compose a message from that input, then
display the message, like this:

:javascript:

var name = prompt("Please type your name:");

var message = "Hello, " + name + "!";

alert(message);

Note that we are using string concatenation (with the + operator) to make the message from
known text and unknown text.

Of course, this can also be done without any variables at all, if you just use the result of
functions calls in place of the variables above:

:javascript:

alert("Hello, " + prompt("Please type your name:") + "!");

That’s not terribly readable, but it is acceptable as an answer. Sometimes it is useful to use
variables even when not strictly necessary because they clarify intent for humans.

Exercise 5-22: Writing Functions

You will write two function definitions for this exercise:

• A niladic function (a function that accepts no parameters) called getName that
prompts the user for a name and returns the value, and

• A function called showGreeting that accepts a name and displays “Hello
<name>!”, as in the previous exercise.

A correct set of function definitions will allow you to write the previous answer as

Chapter 5 Solutions 409

var name = getName();

showGreeting(name);

or even
showGreeting(getName());

Answer 5-22

There are two function definitions needed for a complete answer. First, a function that
prompts the user for a name and returns the value. Recall that functions can be defined using
the function keyword:

:javascript:

function getName() {

return prompt("Please type your name:");

}

The second function shows a greeting based on the name passed into it. Note that the
variable name can be called anything. All that matters is that the same parameter is used
throughout:

:javascript:

function showGreeting(name) {

alert("Hello, " + name + "!");

}

With these two functions, the program can be written as described in the problem. It’s often
useful to define functions like these even when they’re small because they remove clutter.
Removing clutter using well-named functions can clarify intent, since it’s very obvious what
this does. It shows a greeting using the obtained name:

:javascript:

showGreeting(getName());

Exercise 5-23: Events

Write a short program that causes “Hello!” to be displayed in a pop-up window after 5
seconds have passed. Use setTimeout to accomplish this.

Answer 5-23

To make something happen after a certain amount of time has passed, you can use
setTimeout to call a function that you specify after the number of desired milliseconds. So,
we first define a function that does what we want, i.e., displays “Hello!”:

:javascript:

410 Solutions

function hello() {

alert("Hello!");

}

The function can be called anything, and since it needs no input, it is niladic (no formal
parameters).

Once that is defined, we can call setTimeout with it, with a delay of 5000 milliseconds:
:javascript:

setTimeout(hello, 5000);

The full program is this:
:javascript:

function hello() {

alert("Hello!");

}

setTimeout(hello, 5000);

It is also possible (and common!) to use an anonymous function, like this:
:javascript:

setTimeout(function() {

alert("Hello!");

}, 5000);

Here the function is defined and passed into setTimeout all at once.

Chapter 6 Solutions 411

Chapter 6 Solutions

Exercise 6-1: Grid Recursion

Use recursion to implement the hLines function. It works like vertLines, but it draws
horizontal lines instead by marching along the y coordinate instead of the x coordinate. Run
our program with both horizontal and vertical lines and verify that it works properly.

Answer 6-1

The complete program will look something like this:

:html:

<canvas id="grid" width="300" height="300"></canvas>

<script>

function vertLines(ctx, upTo) {

if (upTo < 0) {

return;

}

ctx.moveTo(upTo, 0);

ctx.lineTo(upTo, ctx.canvas.height);

vertLines(ctx, upTo - 10);

}

// NEW:

function hLines(ctx, upTo) {

if (upTo < 0) {

return;

}

ctx.moveTo(0, upTo);

ctx.lineTo(ctx.canvas.width, upTo);

hLines(ctx, upTo - 10);

}

var canvas = document.getElementById('grid');

var context = canvas.getContext('2d');

// NEW:

vertLines(context, canvas.width);

context.stroke();

</script>

412 Solutions

Exercise 6-2: Partial Rays

Change the arguments passed initially to rays (the first time it is called by the interpreter) to
end on something other than 360 degrees, and make the lines closer together (the original
used 10 degrees, pick something smaller, like 5). Use this to make a sort of “sun on the
horizon”, where only the top half of the circle is drawn.

Answer 6-2

To do this, we note that zero degrees is directly to the right, so we just change the final angle
to 180 instead of 360: we will just go halfway around.

The previous call to rays looked like this:
:javascript:

rays(ctx, 10, 360);

The right answer just changes it to this (the first number can be anything less than 10):
:javascript:

rays(ctx, 5, 180);

Chapter 6 Solutions 413

Exercise 6-3: Circle-like Things

The rays function basically draws a bunch of straight lines emanating out from a central
point, and it does it in order, starting at zero degrees (pointing to the right), then going around
counterclockwise until it reaches the final angle. It does this by repeatedly calling moveTo to
get to the central point, then calling lineTo to get away from that point.

Note that, without a moveTo function, the first lineTo behaves as though it were a
moveTo. This is in the documentation for the context object, but in case you don’t have
access to that, you’re welcome.

In this exercise, copy the rays function somewhere and rename it to be polygon. Then
see what happens if you don’t call moveTo at all. Before running your program, answer this
question:

• What will happen if you don’t call moveTo between line drawings? Hint: what was it
doing before?

Once done, increase the byDegrees value in the first call to polygon to be 120. Before
running the program again, answer these question:

• What shape will that draw?
• Why?

414 Solutions

Answer 6-3

Without moving to the central point over and over again, the lines will all be connected
end-to-end, because the lineTo function just draws a line from wherever it left off. That
means it will go around in a circle that surrounds the central point, drawing lines connected to
one another. In short, it draws a circle.

The correct code for the rest of this exercise will look a great deal like the original rays
function, but everywhere you see the word rays will need to be replaced with the new
function name, including inside of it and the call to it. This will be most obvious if the student
creates a fresh program for this as suggested. If not, they might end up calling the old rays
function and not seeing any difference, and wondering why.

When troubleshooting this with the student, the names of things should be the first thing
checked.

The code is annotated below with “NEW” to indicate where the rays function is changed to
make it into the polygon function. As you can see, the name of the function changed in both
its definition and in the two places where it is called, and the call to moveTo was deleted. In
addition, the initial call is now polygon(ctx, 120, 360), which the student should
indicate will draw a triangle (equilateral, for bonus points) because it hits three different
coordinates at 0 degrees to 120 degrees, 120 degrees to 240 degrees, and finally 240
degrees to 360 degrees, which is back at 0.

:html:

<canvas id="polygon" width="300" height="300"></canvas>

<script>

Chapter 6 Solutions 415

// NEW: function name changed

function polygon(ctx, byDegrees, toDegrees) {

if (toDegrees < 0) {

return;

}

// Find the center, convert degrees to radians, etc.

var angle = toDegrees * Math.PI / 180,

size = ctx.canvas.width / 3,

ox = ctx.canvas.width / 2,

oy = ctx.canvas.height / 2;

// NEW: removed moveTo

ctx.lineTo(ox + size * Math.cos(angle),

oy - size * Math.sin(angle));

// NEW: function name changed

polygon(ctx, byDegrees, toDegrees - byDegrees);

}

var canvas = document.getElementById('polygon');

var context = canvas.getContext('2d');

// NEW: function name changed

polygon(context, 120, 360);

context.stroke();

</script>

416 Solutions

Exercise 6-4: Time to Fly

Write a program that draws n rectangles of decreasing height, starting at the left edge and
finishing at the right edge. The first rectangle’s height will be the height of the canvas, and the
last rectangle’s height will be canvas.height / n. Use a recursive function name bars
to to draw these.

Once complete, demonstrate that it works for any n by plugging in different values and
showing how the shape changes.

Answer 6-4

There are several ways to go about this. The student may start at the left and go right, or may
start at the right and go left. This example shows the left-to-right approach.

Note that there is nothing wrong with displaying the rectangles upside-down. It is easier to do
that, in fact, so I have shown that answer here. If the student displays the right-side up (all of
them flush against the bottom of the canvas), that is worth bonus points, because it takes
more work to figure out that the rectangle needs to be drawn with a different formula:

:javascript:

ctx.fillRect(left, ctx.canvas.height - height,

width, height)

:html:

<canvas id="bars" width="300" height="300"></canvas>

<script>

function bars(ctx, curr, n) {

if (curr === n) {

return;

}

var width = ctx.canvas.width / n,

left = curr * width,

height = curr * ctx.canvas.height / n;

ctx.fillRect(left, 0, width, height);

bars(ctx, curr+1, n);

}

var canvas = document.getElementById('bars');

var ctx = canvas.getContext('2d');

ctx.fillStyle = 'blue'; // optional, just for fun

bars(ctx, 0, 20);

</script>

Chapter 6 Solutions 417

This example draws 20 rectangles, but it could easily be any number. Also, the example
above demonstrates a method that assigns each rectangle a number from 0 to n-1, then
calculates the position and height from that number. The student might instead approach it by
keeping track of the position and height separately without any counting, and that is also valid.
To do it that way, the code might end up looking something like this:

:html:

<canvas id="bars" width="300" height="300"></canvas>

<script>

function bars(ctx, width, heightChange, x, height) {

if (x >= ctx.canvas.width) {

return;

}

ctx.fillRect(x, 0, width, height);

bars(ctx, width,

heightChange, x + width,

height - heightChange);

}

var canvas = document.getElementById('bars');

var ctx = canvas.getContext('2d');

ctx.fillStyle = 'blue'; // optional, just for fun

// Calculate width and height change:

var n = 15;

bars(ctx, canvas.width / n, canvas.height / n, 0, canvas.height);

</script>

The things of note here are that the function only knows the width and how much to change
the height each time, as well as the current x coordinate and the current rectangle height.
Then it

418 Solutions

• Checks that it hasn’t gone off the end,
• Draws the rectangle, and
• Calls itself with the settings for the new rectangle (only the last two parameters
change).

Chapter 7 Solutions 419

Chapter 7 Solutions

Exercise 7-1: Array Basics

Write a small program that performs the following steps in order. Before running the program,
answer the questions in the steps below and put your answers in the comments:

1. Create an empty array,
2. Push the numbers 1, 2, 3, and 5 onto the array,
3. Add a comment indicating the length you think the array has at this point,
4. Alert the value of pop,
5. Add another comment indicating the length you think the array has at this point,
6. Push the values 4 and 5,
7. Add final comment indicating the length you think the array has at this point, and
8. Alert the array.

Answer 7-1

There is very little wiggle room in this assignment, since it is fairly explicit. The student can
choose any name for the variable used to hold the array, but that is about it. Here is a working
program (just the JavaScript parts - there will be some surrounding HTML as is always the
case so far):

:javascript:

var ar = [];

ar.push(1);

ar.push(2);

ar.push(3);

ar.push(5);

// length: 4

alert(ar.pop());

// length: 3

ar.push(4);

ar.push(5);

// length: 5

alert(ar);

One allowable variant might have the value of pop assigned to a variable first, like this
snippet shows:

:javascript:

420 Solutions

var val = ar.pop();

alert(val);

Of course, the format of the comments can be pretty much anything so long as the lengths are
listed and are correct.

Exercise 7-2: Slicing Arrays

A slice of an array is a copy of a contiguous part of it. For the array ar below, write down the
value of the following expressions:
var ar = [0, 1, 1, 2, 3, 5, 8, 13, 21];

1. ar.slice(0)
2. ar.slice(1)
3. ar.slice(1, 3)

4. ar.slice(4, 5)

5. ar.slice(3, ar.length-1)

Answer 7-2

1. ar.slice(0) === [0, 1, 1, 2, 3, 5, 8, 13, 21]: the entire array is
sliced, because the starting element is 0 (the first element) and the ending element is
omitted, implying “go to the end”.

2. ar.slice(1) === [1, 1, 2, 3, 5, 8, 13, 21]: this is the familiar
“rest of the array” call, where everything except element 0 is returned.

3. ar.slice(1, 3) === [1, 1]: here the slice consists of elements starting a 1
inclusive, and ending at 3 exclusive. Therefore it contains values at indices 1 and 2 in
the original array, which gives us the answer here.

4. ar.slice(4, 5) === [3]: just one element, since it has to include index 4 but
exclude index 5. Note that you can always tell how many items will be in the new array
by subtracting the first argument from the second. That can be handy.

5. ar.slice(3, ar.length-1) === [2, 3, 5, 8, 13]: here we start at
3 and go to one before the end, as shown.

Exercise 7-3: Finding elements in arrays

After running the “find an element in the array” function below, what is i when the value is
found? What would it be if we were looking for 'e' instead of 'c'?
var values = ['a', 'b', 'c', 'd'];

var i = 0;

while (i < values.length) {

if (values[i] === 'c') {

break;

Chapter 7 Solutions 421

}

i++;

}

Answer 7-3

After running the code as is, the value of i is going to be what it was when break was called,
which will be the index of the value c. Since array indices start with 0, that means i === 2.

If you change the if statement to search for the value 'e', the loop will never call break at
all. That means it will eventually increment i to be equal to values.length, which will
cause the loop to exit without finding anything. Thus, when the value is not found, i ===

values.length, which is 4 in this case.

Exercise 7-4: Addition and Subtraction Assignment Operators

There are various ways to add and subtract values from things. After each line of the following
program, show the value for i.
var i = 1;

i = i + 13;

i = i - 1;

i += 5;

i -= 2;

i++;

i--;

Answer 7-4

Line Value of i

var i = 1; 1
i = i + 13 14
i = i - 1 13
i += 5 18
i -= 2 16
i++ 17
i-- 16

Exercise 7-5: Horizontal Lines Using While Loops

Write a program that draws a grid using while loops. To do so, take the vertLines
function that uses a while loop and use that as a template to create a hLines function that
looks similar. Put these together to make a grid on a canvas.

422 Solutions

Answer 7-5

The program will have three major components: a vertLines function that is basically
copied from the text, a hLines function that looks a lot like it, and the code to call both of
them to compute and stroke the full grid. Those three elements are shown in the following
code:

:html:

<canvas id="drawing" width="300" height="300"></canvas>

<script>

function vertLines(ctx) {

var x = ctx.canvas.width;

while (x >= 0) {

ctx.moveTo(x, 0);

ctx.lineTo(x, ctx.canvas.height);

x = x - 10;

}

}

function hLines(ctx) {

var y = ctx.canvas.height;

while (y >= 0) {

ctx.moveTo(0, y);

ctx.lineTo(ctx.canvas.width, y);

y = y - 10;

}

}

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

vertLines(ctx);

hLines(ctx);

ctx.stroke();

</script>

Note how the hLines function now keeps track of the current y coordinate, it appears in the
second argument of moveTo and lineTo instead of the first.

Chapter 7 Solutions 423

It is also valid for the student to use x -= 10 instead of x = x - 10, and similarly for y, if
desired. Basically, if it works and is not overly convoluted, it is a good answer. Loops are an
essential component of the right answer, though, and the student should be able to change
the size of the canvas without breaking the program.

Do ensure that making the canvas bigger in either direction still produces a functioning
program.

Exercise 7-6: While Loops and Arrays

Write a function that, using a while loop, computes the sum of all elements in a given array.
The function can be called whatever you want, but it should accept exactly one argument: the
array.

Answer 7-6

There are various good answers and each has its own variations. An efficient implementation
that does not change the underlying array, but uses two variables to track progress, is this:

:javascript:

function sumArray(ar) {

var i = 0,

sum = 0;

while (i < ar.length) {

sum += ar[i];

i++;

}

424 Solutions

return sum;

}

You can see that we start out at index i = 0 and add one to it each time through the loop.
The loop terminates when it is no longer true that i < ar.length. Each iteration simply
adds the current value to sum, and the final value of sum is returned.

Another approach would be to use pop, but this changes the array that the caller passes in,
so the student should be made aware of that fact. The solution is valid, but it might be an
important teaching moment.

:javascript:

function sumArray(ar) {

var sum = 0;

while (ar.length > 0) {

sum += ar.pop();

}

return sum;

}

This works because calling pop reduces the length of the array by 1 each time - it returns and
removes the last element.

Yet another approach that leaves the original intact, and uses the parameter ar as a mutable
variable, is this:

:javascript:

function sumArray(ar) {

var sum = 0;

while (ar.length > 0) {

sum += ar[0];

ar = ar.slice(1);

}

return sum;

}

This does not change the array for the caller because it does nothing that mutates the actual
array, but it does reassign the local variable ar to smaller and smaller slices over time. Since
ar is local to the function sumArray, that is safe and does not mess with values passed in.
This is not a very efficient function (and neither is the one that uses pop) compared to the first,
but it suffices as an answer.

Exercise 7-7: While Loop and Graphing Functions

A really interesting thing to do with loops is function graphing. When you go to graph a
function like 𝑓(𝑥) = 𝑥2 − 3, what do you usually do? You probably make something like
table of 𝑥 and 𝑓(𝑥) values, draw dots at all of those locations, and then connect them with
lines. It turns out that computers are really good at that.

Chapter 7 Solutions 425

To start, here is some skeleton code. Your task will be to implement the function that plots
𝑓(𝑥) = 𝑥2 − 3. We have appropriately transformed the canvas coordinates to make this
sensible (positive y values go up, and the origin is in the middle now), but without explanation.
If you want to learn more about canvas transforms, we will get to that near the end of the
course.

Notes and requirements:

• The function is 𝑓(𝑥) = 𝑥2 − 3.
• The function should be plotted for integer values −30 ≤ 𝑥 < 30.
• Use lineTo to draw line segments (remember that the first lineTo acts like a
moveTo, which is helpful here).

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById("graph"),

ctx = canvas.getContext("2d");

function graph(ctx) {

// YOUR LOOP GOES HERE

}

// Move origin to center, flip y.

ctx.translate(canvas.width / 2, canvas.height / 2);

ctx.scale(1, -1);

graph(ctx);

ctx.stroke();

</script>

Answer 7-7

The program should look something like what follows. Students are of course encouraged to
explore and experiment, but the requested program is below, with its output displayed:

:html:

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById("graph"),

ctx = canvas.getContext("2d");

function graph(ctx) {

var x = -30;

while (x <= 30) {

var y = x*x - 3;

ctx.lineTo(x, y);

x++;

}

}

426 Solutions

ctx.translate(canvas.width / 2, canvas.height / 2);

ctx.scale(1, -1);

graph(ctx);

ctx.stroke();

</script>

Note that the student’s code is entirely inside of the graph function. The code is small, but
might take some thinking on the student’s part. The flow is this:

• Start x at -30, then increment it by 1 each time through the loop (a different increment
might also be used, and makes for a nice experiment).

• Each time through the loop, compute y, then draw a line from wherever we last were to
that new point.

If the student got this basic structure down and the program works, that passes.

Exercise 7-8: While With Break

Without using the computer, what does the following code display? Remember that alerting
an array converts it to a comma-separated list of its contents.
var i = 0,

vals = [];

while (true) {

if (i > 10) {

break;

}

Chapter 7 Solutions 427

vals.push(i);

i++;

}

alert(vals);

Answer 7-8

The loop condition is always true, so we have to figure out what makes it stop. There is a
break in there that triggers if i > 10, so we should see values in our output for everything
up to but not including 11:

0,1,2,3,4,5,6,7,8,9,10

Exercise 7-9: While With Continue

Without using the computer, what does the following code display? Remember that % is the
“modulus” or “remainder” operator, so for example, 5 % 3 is 2: the remainder of dividing 5
by 3.

As a second part to this question, what happens if the i++ immediately before continue is
removed?
var i = 0,

vals = [];

while (i < 10) {

if (i % 2 === 0) {

i++;

continue;

}

vals.push(i);

i++;

}

alert(vals);

Answer 7-9

The loop stops when i is at 10, so we know we will not have any values at 10 or higher. But,
before we push anything onto our vals array, we check to see whether i % 2 === 0.
When does that happen? It happens whenever i is even, because that is when it divides
evenly by 2 (no remainder). Thus, we should only get odd numbers: every even number
causes a continue to happen. The alert therefore shows

1,3,5,7,9

The second part to this question is pretty interesting. If the i++ before the continue is
removed, then i does not change, but the condition is checked again. Therefore, once we hit
our first even number (0), the loop never terminates. It just keeps continuing to check the

428 Solutions

same old condition over and over again. This is an important concept: whenever checking the
condition on a while loop, you want to make sure something about it is changing in such a
way as to ensure eventual completion. Without that i++ before continue, i is always 0
and is therefore always less than 10.

Exercise 7-10: Basic For Loops

Show the for loop that is equivalent to the following code that uses while:
var i = 0;

while (i < 50) {

console.log(i);

i += 10;

}

Answer 7-10

This is a pretty straightforward transformation and is covered in the text:
:javascript:

for (var i = 0; i < 50; i += 10) {

console.log(i);

}

Exercise 7-11: For Loops and Arrays

Write a loop that outputs (to the console, one at a time) the value of every item in an array
named ar.

Answer 7-11

:javascript:

for (var i = 0; i < ar.length; i++) {

console.log(ar[i]);

}

Working through this one step at a time, the loop says that we start with i = 0, we keep
going so long as we have not hit ar.length yet, and every time through the loop we
increment i by 1.

Inside the loop, we just get the value of ar at i and output that to the console.

Exercise 7-12: For and Continue

Without using the computer, show the value that will be alerted by the following code.
Remember that when dealing with numbers, 0 is considered “falsy” and everything else is

Chapter 7 Solutions 429

considered “truthy”. Coupled with your understanding of the % operator, you can see when
continue will be triggered.

After determining what this function does, give an alternative approach that just changes the
increment and does not use continue.
for (var i = 0; i < 10; i++) {

if (i % 2) {

continue;

}

console.log(i);

}

Answer 7-12

The output of this code is

0,2,4,6,8

The reason is this: whenever i is odd, then dividing by 2 produces a remainder of 1. That
value is truthy, so it triggers the continue statement.

Because this is a for loop and not a while loop, the continue statement causes i++ to
be run before the condition is checked again, so it would be incorrect to have a separate i++
before the continue like we did in the while loop above.

If the code doesn’t continue, then it goes on to log the value, which must be even. Thus,
we get even numbers from 0 through 8. The loop exits without doing anything once i reaches
10.

With that understanding, the second part is easy: simply add 2 each time through the loop
and remove the continue part altogether:

:javascript:

for (var i = 0; i < 10; i += 2) {

console.log(i);

}

Exercise 7-13: Nested Loops

Output all of the rows of a truth table with three variables a, b, and c. Use 0 for false and 1
for true. Use console.log(a, b, c) to output each row.

Your output should look like this:
:console:

0 0 0

0 0 1

0 1 0

430 Solutions

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Hint: Approach this by decomposing the problem into smaller ones. How would you output the
table for a single variable using a loop?

:console:

0

1

Now, for each time through that loop, how would you output a 0 and a 1 for the next variable
to produce this?

:console:

0 0

0 1

1 0

1 1

From there it should be a similar step to get the complete 3-variable answer.

For bonus points:

There is a way to output a table for any number of variables using only two loops, so if you
want to try for bonus points, you can write a function that accepts a number of variables and
outputs the entire table for that many variables. The foundation of this idea is the fact that
every time a variable on the right “rolls over” (from 1 to 0), the variable next to it on the left
should change.

Answer 7-13

The key, as noted in the question, is to think about decomposing this problem a bit. Counting
in binary is a matter of finding all possible combinations of 0 and 1 in an orderly and
predictable fashion. If we only had a single variable, we would just loop through 0 and 1. But
with two variables we need to do that twice, once for each of 0 and 1 in the leftmost variable.
You can see that pattern in the tables above.

Here is code that produces the table:
:javascript:

for (var a = 0; a < 2; a++) {

for (var b = 0; b < 2; b++) {

for (var c = 0; c < 2; c++) {

console.log(a, b, c);

}

Chapter 7 Solutions 431

}

}

As an interesting aside, when you start at 0 and increment by 1 as is common in these loops,
then the number checked in the condition is the number of times the loop will execute. Thus,
each variable is checked to be less than 2. We could as easily have said a <= 1 and been
correct, as well. It is just less common, and therefore less idiomatic.

That seems like rather a lot of code to generate an 8-line table, and it kind of is. But consider
what it would take to change it to generate a 32-line table for 5 boolean variables:

:javascript:

for (var a = 0; a < 2; a++) {

for (var b = 0; b < 2; b++) {

for (var c = 0; c < 2; c++) {

for (var d = 0; d < 2; d++) {

for (var e = 0; e < 2; e++) {

console.log(a, b, c, d, e);

}

}

}

}

}

The length of the code increases much more slowly than the length of the table. That’s kind of
neat.

There is an even neater trick for generating a table with any number of variables using only
two loops. The idea is to set up an array of values, with as many entries as there are variables
(so an array that is as large as one row of the table). Every entry starts out as zero, and then
you start counting by flipping the rightmost value, checking whether it rolled over, and if it did,
flipping the next one to the left, continuing all the way down. When leftmost variable rolls over,
the process is finished, since it has already taken on both of its possible values. Here is a
functioning program:

:javascript:

function truthTable(numVars) {

var values = []; // Make an array of zeros.

for (var i = 0; i < numVars; i++) {

values.push(0);

}

// Now we output our row, then calculate a new one,

// until the leftmost item wants to roll over again.

while (true) {

console.log(values.join(' ')); // output with spaces

for (var i = values.length-1; i >= 0; i--) {

values[i]++;

432 Solutions

if (values[i] === 1) {

// All done creating new row, because we were

// able to increment without rolling over.

// Stopping the inner loop lets the outer loop

// body execute, which prints this new one.

break;

}

// We went too high, roll over.

// Inner loop will try again, one to the left.

values[i] = 0;

// If we rolled over the leftmost, finish.

if (i === 0) {

return;

}

}

}

}

truthTable(4); // Try calling with different values.

Exercise 7-14: Switches

Write a function that uses switch to return “yes” if given a string "a", "b", or "c", and
“no” otherwise. Use default as one of your cases.

Note that you can use a “fall-through” pattern to make your code smaller, and empty cases
can go on the same line.

Can you do this without using break at all? Why?

Answer 7-14

There are a few ways to go about this, but the hints point us to this particular solution (the
function and parameters can be named anything):

:javascript:

function(s) {

switch(s) {

case "a":

case "b":

case "c":

return "yes";

default:

return "no";

}

}

Note that break doesn’t appear above at all, even though it is usually needed in a correct
switch statement. That is because of two things:

Chapter 7 Solutions 433

1. We are using fall-through for cases that are all alike in outcome, and
2. Every terminal outcome ends with return, which accomplishes the same thing and

more.

That last point is the main reason we don’t need break: we are executing return, which
terminates the entire function, switch statement included.

Exercise 7-15: Random Numbers

To produce pseudo-random numbers, JavaScript gives us the Math.random() library
function, which gives us a different number between 0 (inclusive) and 1 (exclusive) every time
we call it. Using that function and basic arithmetic, write a function dieRoll that represents
a single roll of a 6-sided die: it should produce a number in the set {1, 2, 3, 4, 5, 6}.
Hint: remember that Math.floor can be used to discard everything to the right of the
decimal place (for non-negative numbers).

Answer 7-15

To do this, we first need to scale (stretch) our random result so that it produces values from 0
to (almost but not quite) 6, like this:

:javascript:

Math.random() * 6;

Then we add 1 and take the floor (or vice versa - order is not important here), giving us this:
:javascript:

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

// Test it by rolling ten times:

for (var i = 0; i < 10; i++) {

console.log(dieRoll());

}

Exercise 7-16: Lab: Objects, Randomness, and the Canvas

We are far enough into the course that it is time to start introducing some lab work. This
assignment brings together many of the things that we have already learned, including
randomness, canvas drawing, and storing data in arrays.

Basic Setup:

For this assignment we are going to plot a distribution over dice rolls. We will use our
dieRoll function created in the recent homework assignment to roll two 6-sided dice over

434 Solutions

and over again, keeping track of how many times we get each sum. For example, to get a
single value, we can do this:
var val = dieRoll() + dieRoll();

And we might get the number 5 as an answer. That is a valid number for two dice, and we can
get it as 1+4 or 2+3, with two ways to get each (because it doesn’t matter which die has
which value). As you might expect if you have ever played games with dice, other numbers
are more or less likely. For example, there is only one way to get the number 2, and similarly
there is only one way to get the number 12. This should show up in our lab results.

In this example, where we just rolled a 5, we need to keep track of the fact that we just got
that one more time. So, we will keep a counter for each possible number, and we will
increment it every time we get that number. There are many ways to do this, but for this
assignment we will use an array with everything initialized to zero.

Once you have rolled the dice a number of times (say, 1000 or so), the next task is to display
the results in a meaningful way, using a histogram. This is basically just a bar graph. You will
need to figure out how long to make each bar based on the counts obtained from rolling dice.
That might mean scaling your results, since it is possible to have more counts than you have
space on the canvas. How you do that will be up to you. If you roll the dice 1000 times, then
one pixel per roll is probably going to work out fine on our (heretofore) typical 300 x 300
canvas size. You might want to get more accuracy as you go, though, rolling 10,000 or even
100,000 times, and in that case the counts will increase far beyond the bounds of the canvas.
Figure out some sort of scaling that keeps them within bounds for this lab so that you can
easily change the number of rolls and have the picture automatically adapt.

Some advice: start small. First get your dieRoll function working and test it in the console
(you should have had a homework assignment for this already, but if you didn’t end up doing
that, you will need to do it now). Then log what happens when you roll two dice over and over
again. After you are satisfied that those small things work, then create an array that has space
for numbers up to 12 and store zeros in it everywhere (use push in a loop). Output that to the
console.

Do you see a pattern? The advice is to do things one step at a time. There are usually ways to
tell if little pieces of your program are working before moving on to the bigger parts, and that is
how you should proceed. We are stopping short of talking about unit tests, which are a great
idea but are a bit beyond where we are right now, but this is part of the way you get testable
code that you can be confident in: you get confidence in all of the little pieces before sticking
them together into a larger program.

After getting counts, storing them in an array, and outputting to the console, only then should
you start thinking about displaying things on the canvas. That will be its own chunk of work,
and you want to be sure you have a good feel for what the data will look like before you tackle
it.

Chapter 7 Solutions 435

Requirements:

• Keep track of how many times each value is obtained after rolling two dice multiple
times.

• Use an array to store your counts. The index into the array will be the value obtained
from rolling two dice. (HINT: this means that there will be a couple of entries that never
get any value at all.)

• Use a variable to set how many times to roll, and make it easy to change it.
• Draw a bar graph on a canvas to show the final outcome of the dice rolls.
• Scale the bar graph so that no matter how many times you roll, the graph always fits on
the canvas.

Bonus:

• Change your dieRoll function to accept a number of sides for the die instead of
always assuming 6. Try using larger dice, like 10-sided dice. Assume that they are
made to be perfectly fair (sometimes physical geometry doesn’t allow this, by the way,
but we will pretend that it does in this lab).

• Change your program to roll three dice and display the results.
• With that change, it should be relatively easy to see how you could roll any number of
dice. Change your code to roll N dice. What happens if you roll 50 or 100 dice on each
turn?

Answer 7-16

The first thing to do is to make sure we have a function that can roll a single die:
:javascript:

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

With that, we can test it in the console quite easily. Running it multiple times will always
produce a valid 6-sided die outcome, a number between 1 and 6 with even odds of getting
any of them.

The next step is to make it possible to roll a number of times and output all of the answers,
something perhaps like this:

:javascript:

var ROLLS = 100;

for (var i = 0; i < ROLLS; i++) {

console.log(dieRoll() + dieRoll());

}

That should output 100 different results to the console, each of them a number between 2 and

436 Solutions

12 (inclusive). They should look like what you would expect from rolling two independent
6-sided dice.

After that, getting counts is pretty easy. We first create our counts array and initialize it to
contain all zeros:

:javascript:

var counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

Question: when doing bonus work, what would we do instead? If we change the number of
sides on each die, we won’t have 13 entries anymore like we do above. Similarly, if we use 3
or more dice, we will have a different number of entries. 13 is a pretty magical number, so
where did it come from?

Any time you see magic numbers like this, you need to ask that question. Let’s try to answer it
for the number 13: since we have two 6-sided dice, the maximum value we can get is 6+6,
which is obviously 12. The slot in an array with index 12 is actually the 13th slot, so our array
has 13 zeros in it. The first two slots will always be zero, since the smallest value you can get
from rolling two 6-sided dice is 2. We could shift things back and forth to save space, but that
seems like overkill here, so we just allocate 13 slots.

So, now we know where our magic array length comes from. That is going to be very
important when working on lab requirements like “add more dice” or “change the number of
sides”. The size of our counts array is always going to be one more than the sum of all
possible maximum die values, and the first usable index in that array will always be 1 *

DICE, since that is the smallest number you can get (they all come up 1). If we have three
8-sided dice, then the length will be 25, and the first usable index will be 3. If we have 2 dice
of different sizes, say one has 6 sides and the other has 10, then the length will be 6 + 10 +

1 = 17.

Do you see how knowing where our magic number came from just gave us something really
useful? If we know where it comes from, we can generalize our solution.

With an empty counts array, we can easily keep track of all of our rolls now, and we will crank
it up to 1000:

:javascript:

var ROLLS = 1000;

var counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

for (var i=0; i<ROLLS; i++) {

var val = dieRoll() + dieRoll();

counts[val]++;

}

Chapter 7 Solutions 437

console.log(counts);

That’s not too bad! Now we can easily get a histogram of rolls, and we can easily change the
number of rolls with a single variable. The next step is to figure out how to plot this in a
meaningful way. Before worrying at all about scaling and making things pretty, just do the
simplest possible thing: we will use the index into the array as the x coordinate and the
number in the array as the maximum y coordinate, and we will draw a slender rectangle to
show what we have done:

:html:

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('graph'),

ctx = canvas.getContext('2d');

var ROLLS = 1000;

var counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

for (var i=0; i<ROLLS; i++) {

var val = dieRoll() + dieRoll();

counts[val]++;

}

for (var x=0; x<counts.length; x++) {

var count = counts[x];

ctx.fillRect(x, 0, 1, count);

}

</script>

438 Solutions

That should basically work. You will see an upside-down triangle sort of thing, which is the
histogram we wanted. It’s pretty darn ugly, but it’s there. It will look different every time you
reload the page, because we are dealing with random events.

This next part is where we make things prettier and a bit more robust. There is nothing in our
code that spreads things out horizontally, so everything is super squished together along the x
axis. Let’s tackle that issue first, by making wider rectangles that fill the whole canvas. We
can do that by dividing our canvas length by the number of entries in our counts array and
using that value (rWidth below) as the width. Note that we no longer iterate over x, but
instead we calculate it from the width as well. We will also flip this right-side up by starting the
rectangle at canvas.height-count instead of 0:

:html:

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('graph'),

ctx = canvas.getContext('2d');

var ROLLS = 1000;

counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

for (var i=0; i<ROLLS; i++) {

var val = dieRoll() + dieRoll();

counts[val]++;

Chapter 7 Solutions 439

}

var rWidth = canvas.width / counts.length;

for (var i=0; i<counts.length; i++) {

var x = i*rWidth;

var count = counts[i];

ctx.fillRect(x, canvas.height-count, rWidth, count);

}

</script>

That is really a lot better, but we are shifted to the right because we are showing values for
impossible counts (0 and 1). Let’s fix that, as well:

:html:

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('graph'),

ctx = canvas.getContext('2d');

var ROLLS = 1000;

counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

for (var i=0; i<ROLLS; i++) {

var val = dieRoll() + dieRoll();

counts[val]++;

440 Solutions

}

// Get rid of useless count entries.

counts = counts.slice(2);

var rWidth = canvas.width / counts.length;

for (var i=0; i<counts.length; i++) {

var x = i*rWidth;

var count = counts[i];

ctx.fillRect(x, canvas.height-count, rWidth, count);

}

</script>

We would be done, except that we need to handle more than 1000 rolls of the dice. If we
increase it to, say, 5000, then the graph will go off the top edge of the canvas, and that doesn’t
really help us. We need to scale our results. We just did that in the x direction, and now we
need to do it in the y direction. There are a couple of ways to do this. We could find the
maximum value and make that always take up all of the vertical space, or we can scale based
on number of rolls.

To keep it simple, let’s compute the maximum value and scale based on that. We have to
search our counts array to get the biggest value, then associate that with the largest
rectangle size. That means it becomes a standard, and every other value is represented as a
fraction of that standard.

As an example, suppose we have 1000 for our count value at position 7, and that is our
biggest one (it usually will be—can you see why?). Let’s say that has a height of 1. If we have
a count of 720 for position 6, then that rectangle will have a height of 720 / 1000 which is

Chapter 7 Solutions 441

.72. If we take canvas.height to be the tallest value, which only makes sense, then we
multiply those fractions by canvas.height to get the actual top of the rectangle. Here is a
snippet of how that would be calculated:

:javascript:

var maxVal = 0;

for (var i=0; i<counts.length; i++) {

if (maxVal < counts[i]) {

maxVal = counts[i];

}

}

Then, every time we get a count in our fillRect loop, we compute the height like this:
:javascript:

var height = canvas.height * count / maxVal;

Now we just use height instead of count in fillRect. That’s not too bad! A complete
program is below.

:html:

<canvas id="graph" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('graph'),

ctx = canvas.getContext('2d'),

ROLLS = 10000,

counts = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

function dieRoll() {

return Math.floor(Math.random() * 6 + 1);

}

for (var i=0; i<ROLLS; i++) {

var val = dieRoll() + dieRoll();

counts[val]++;

}

counts = counts.slice(2); // delete useless entries

var maxVal = 0;

for (var i = 0; i < counts.length; i++) {

if (maxVal < counts[i]) {

maxVal = counts[i];

}

}

var rWidth = canvas.width / counts.length;

for (var i = 0; i < counts.length; i++) {

var x = i*rWidth,

count = counts[i],

height = canvas.height * count / maxVal;

ctx.fillRect(x, canvas.height-height, rWidth, height);

442 Solutions

}

</script>

We have satisfied all of the minimum requirements. Let’s dive into some of the bonus
questions, too.

To change the number of dice we roll, we will want to trade our basic sum to get val for a
loop, and we will need to be careful about how many useless small values we throw away.
Then we can get graphs with lots more entries. Note that we will need to greatly increase the
size of counts, as well, like we discussed earlier:

:javascript:

var DICE = 50;

var counts = [];

// Initialize counts:

for (var i=0; i<=6*DICE; i++) {

counts.push(0);

}

// Get actual values.

for (var i=0; i<ROLLS; i++) {

var val = 0;

for (var j=0; j<DICE; j++) {

val += dieRoll();

}

counts[val]++;

}

Chapter 7 Solutions 443

// Get rid of useless count entries.

counts = counts.slice(DICE);

That handles the case of multiple dice. Now we need to be able to change the number of
sides. To do that, we note that we have the number 6 baked into our code in a few places.
What if, instead of using the number everywhere, we made a constant for it, like SIDES = 6

and used that instead? Would the code work if we changed it to something else? Let’s take a
look at a complete solution (note that some vertical space has been removed and some lines
condensed to help it fit on a page, and we have omitted the canvas and script tags):

:javascript:

var canvas = document.getElementById('graph'),

ctx = canvas.getContext('2d'),

ROLLS = 10000, DICE = 50, SIDES = 15, counts = [];

function dieRoll() {

return Math.floor(Math.random() * SIDES + 1);

}

for (var i=0; i<=SIDES*DICE; i++) {

counts.push(0);

}

for (var i=0; i<ROLLS; i++) {

var val = 0;

for (var j=0; j<DICE; j++) {

val += dieRoll();

}

counts[val]++;

}

counts = counts.slice(DICE); // delete useless entries

444 Solutions

var maxVal = 0;

for (var i=0; i<counts.length; i++) {

if (maxVal < counts[i]) {

maxVal = counts[i];

}

}

var rWidth = canvas.width / counts.length;

for (var i=0; i<counts.length; i++) {

var x = i*rWidth,

count = counts[i],

height = canvas.height * count / maxVal;

ctx.fillRect(x, canvas.height-height, rWidth, height);

}

Chapter 8 Solutions 445

Chapter 8 Solutions

Exercise 8-1: Practice with setTimeout

Write a function that draws a rectangle at a random location on a canvas every quarter
second (250 milliseconds). The rectangle can be any color and the size of your choosing, so
long as it is easy to tell that the program is working.

For bonus points, make the color random as well, so a different color can appear each time.

Answer 8-1

There is a lot of wiggle room here. A minimal solution might look like this:
:html:

<canvas id="randrect", width="300", height="300"></canvas>

<script>

var canvas = document.getElementById("randrect"),

ctx = canvas.getContext("2d");

function randRect() {

var x = Math.random() * canvas.width,

y = Math.random() * canvas.height;

ctx.fillRect(x, y, 10, 10);

setTimeout(randRect, 250);

}

randRect();

</script>

You might choose to make the rectangle sizes random, as well, which can be fun. Colors can
be made random by using a trick we have already seen, something like this program:

:javascript:

var colors = ["red", "blue", "yellow", "orange"];

function randRect() {

var x = Math.random() * canvas.width,

y = Math.random() * canvas.height,

c = colors[Math.floor(Math.random() * colors.length)];

ctx.fillStyle = c;

ctx.fillRect(x, y, 10, 10);

setTimeout(randRect, 250);

}

There are many interesting options.

Exercise 8-2: Scope and Closure

446 Solutions

Use the following code to answer the questions below:
<script>

var a = 10;

function F() {

// code here

}

var b = 15;

function G() {

c = "hi";

function H() {

var d = [];

// code here

}

var e = "there";

function I() {

var f = {};

// code here

}

}

</script>

• List every variable and function name below that is in the global scope. Assume that all
functions have run at least once (and remember what happens when you leave off
var).

• Can code inside of H access f? Why or why not?
• Can code inside of I call H? Why or why not?
• Can code inside of H call F? Why or why not?
• Can code inside of H access e? Why or why not?
• Can code inside of F call H? Why or why not?

Answer 8-2

Global scope Opening a script block puts you right into the global scope. Thus, all of
these are in that scope: - a - F - b - G - c - no var keyword, so in the global scope

H -> f No, because f is not in the surrounding scope of H. It is hidden inside of I.
I -> H Yes, because H is in the surrounding scope of I.
H -> F Yes, because F is in the global scope.
H -> e Yes, because e is in its surrounding scope, even though it comes later.
F -> H No, because the only things in the global scope are a, F, b, and G. Nothing else is

visible to F except its own local scope.

Chapter 8 Solutions 447

Exercise 8-3: Animation

Write a program that draws a rectangle on the left side of the canvas and moves it to the right
until it reaches the edge. The rectangle should be of size 10 by 10, and should move 5 pixels
every 1/20th of a second (50 milliseconds). It can be anywhere along the y axis (centered top
to bottom, on the bottom, on the top, or anywhere in between).

Answer 8-3

There is some wiggle room in how the rectangle looks, etc., but there are some rigid
requirements. The following code meets the minimum standard:

:html:

<canvas id="slider" width="300", height="300"></canvas>

<script>

var canvas = document.getElementById('slider'),

ctx = canvas.getContext('2d');

var x = 0,

SIZE = 10,

y = (canvas.height - SIZE) / 2;

function tick() {

if (x > canvas.width) {

return;

}

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.fillRect(x, y, SIZE, SIZE);

x += 5;

setTimeout(tick, 50);

}

tick();

</script>

The above function centers the rectangle from top to bottom, but that is not required. The
essential elements are

• It starts at the left (x = 0),
• The rectangle side lengths are 10 (SIZE = 10),
• It stops when it reaches the edge (if (x > canvas.width)),
• It advances by 5 pixels every frame (x += 5), and
• It advances once every 50 milliseconds (setTimeout(tick, 50)).

Exercise 8-4: Shadowing

What is displayed by the following program? Why?

448 Solutions

var a = "hello";

function message(a) {

console.log("message is:", a);

}

message("hi");

Answer 8-4

The program outputs this:
:console:

message is: hi

The reason is that the a defined in the parameters for message shadows the a defined
outside. Because there is a name conflict, the nearest scope wins, and message can no
longer see the outer a from the code in its body.

Exercise 8-5: Lab: Animate a Die Roll

For this lab you will animate the roll of a die. It won’t be a physically accurate simulation; it will
just display random dots a few times until it settles on a value. The dots will be rectangles,
and the code to draw a single dot based on where it is on a 3x3 grid is given below to make it
a bit easier on you.
// drawDot draws a 'dot' at the given row and column,

// assuming that size is set to the square side length

// of the die. Both row and col are zero-based, so

// 0, 0 is the top left corner and 2, 2 is the bottom right.

function drawDot(ctx, size, row, col) {

var margin = size / 6,

x = margin + (2*margin*col),

y = margin + (2*margin*row);

ctx.fillRect(x-margin/4, y-margin/4, margin/2, margin/2);

}

// dieDots defines where the dots are located for every

// possible value on a 6-sided die, by row and column.

var dieDots = {

1: [{r: 1, c: 1}],

2: [{r: 0, c: 0}, {r: 2, c: 2}],

3: [{r: 0, c: 0}, {r: 1, c: 1}, {r: 2, c: 2}],

4: [{r: 0, c: 0}, {r: 0, c: 2}, {r: 2, c: 0},

{r: 2, c: 2}],

5: [{r: 0, c: 0}, {r: 0, c: 2}, {r: 2, c: 0},

{r: 2, c: 2}, {r: 1, c: 1}],

6: [{r: 0, c: 0}, {r: 1, c: 0}, {r: 2, c: 0},

Chapter 8 Solutions 449

{r: 0, c: 2}, {r: 1, c: 2}, {r: 2, c: 2}],

};

With these functions, you should be able to easily define a drawDie function that accepts a
context, a size, and a value (the number of dots you want to show), like this:
function drawDie(ctx, size, value) {

// Your code goes here, using drawDot and dieDots above.

}

And finally, with that, you can animate a die so that it picks a new random value every 200
milliseconds to display, and stops on the tenth one.

If you get this working quickly and just use random draws to create your values (that’s a good
idea—start with that!), you might notice that sometimes you get the same number twice in a
row, and it makes the animation look like it paused. Add code to ensure that you never repeat
the same number twice in a row.

Bonus: make sure you never go directly to a number on the opposite side of the die, either.
You can easily check this because numbers on opposite sides always sum to 7.

Answer 8-5

The tricky drawing stuff is pretty much done for you, but there is that drawDie function that
has to be written. This is how it works:

:javascript:

function drawDie(ctx, size, value) {

var locations = dieDots[value];

for (var i=0; i<locations.length; i++) {

var loc = locations[i];

drawDot(ctx, size, loc.r, loc.c);

}

}

Basically, it gets the list of locations for the appropriate value from dieDots. If, for example,
value is 3, then it gets the list of three dot locations, each of which is an object containing r
for “row” and c for “column”. It calls drawDot for each of those locations, ultimately creating
three dots in the expected places.

To animate this, something like the following can be done:
:javascript:

var SIZE = canvas.height,

valuesLeft = 10,

lastVal = 0;

function animate() {

// Are we done? No more animating.

450 Solutions

if (valuesLeft === 0) {

return;

}

valuesLeft--;

// Get the value.

var value = Math.floor(Math.random() * 6) + 1;

// If we just saw it, get another one until it's new.

while (value === lastVal) {

value = Math.floor(Math.random() * 6) + 1;

}

// Remember this value.

lastVal = value;

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawDie(ctx, SIZE, value);

setTimeout(animate, 200);

}

animate();

This function is a little bit tricky because it has to try to find a new value if it collides with the
most recent one. Other than that, it’s pretty straightforward. Let’s walk through it a step at a
time.

First, we set the size to be the same as the canvas height. It can be anything, but this makes a
nice large die animation.

We also note how many times we want to run this animation, and we set lastVal to 0,
which is an impossible value for a die. That way the first one we try will never collide. That
simplifies the logic a bit below.

In the animate function, we check to see if we are finished (no more valuesLeft to
show). If we are, we simply return and leave up whatever is up. That is the final value of the
roll. If we still have stuff left to do, we continue on and subtract one from valuesLeft. That
way we will eventually get to zero.

The next little block is responsible for finding out what value to show. We get a random
number in the range [1, 6]. If it’s the same as the previous one (in lastVal), we loop,
getting as many random numbers as it takes to stop colliding with the previous one. Because
lastVal starts out at 0, it can never collide on the first roll.

As soon as we have a value, we remember it in lastVal for next time.

Finally, we clear the canvas and draw the die using our drawDie function. Then we call
setTimeout to make sure that it happens again after 200 milliseconds.

For bonus points, we not only ensure that we don’t get the same number twice in a row, but
that we don’t get a number on the opposite side, either. The updated random number code to

Chapter 8 Solutions 451

do this would simply add another check to the while loop; instead of merely checking that
the number is the same as what we saw before, we also check whether the current and last
number sum to 7:

:javascript:

var value = Math.floor(Math.random() * 6) + 1;

while (value === lastVal || value + lastVal === 7) {

value = Math.floor(Math.random() * 6) + 1;

}

Pretty neat!

Finally, there is a way to do this a bit more concisely using a do loop:
:javascript:

var value;

do {

value = Math.floor(Math.random() * 6) + 1;

} while (value === lastVal || value + lastVal === 7);

That is a perfectly acceptable solution, as well, and it only mentions the random value code
once, which is why do loops exist in the first place.

452 Solutions

Chapter 9 Solutions

Exercise 9-1: Trivia for requestAnimationFrame

• How often is the function given to requestAnimationFrame called if it sets up a
new call every time?

• When is the function not called at all?
• What parameters are available when the function is called?
• Where in that function should the call to requestAnimationFrame reside (for
animation), and why?

Answer 9-1

For the sake of clarity, we will call our function tick, and we will pass it thus:
requestAnimationFrame(tick). Thus, the function we register with the browser’s
drawing routines will be referred to as “the tick function”.

• The tick function is called roughly 60 times per second, or roughly once every 16.7
milliseconds.

• The tick function is not called at all if the browser tab is not visible.
• The tick function can have a single formal parameter that receives the time in
milliseconds since the page was loaded. We called this t in the text.

• The call to requestAnimationFrame should happen near the top of tick,
before a lot of work has been done. This ensures that the work we do doesn’t make us
miss the deadline for asking to be called again, making us possibly miss a frame. It is
not a guarantee, but it can help.

Exercise 9-2: Lab: Constant Acceleration

For this lab, change the ship’s trajectory to act more like it was thrown upward in the presence
of gravity. This means that it is always experiencing an acceleration downward, and it only
has an initial velocity, not a constant velocity.

Requirements:

• Use an acceleration of 150.
• Use an initial velocity of -300.
• Stop the animation when the ship gets back to the bottom of the canvas.

Hints:

Acceleration is a change in velocity. Thus, if you have an acceleration of 5 pixels per second
per second, that means that your velocity will change by 5 each second. If you have less than
a second to work with (as is the case with our frame rate), then you can approximate reality by
multiplying it by the amount of time that has passed.

Chapter 9 Solutions 453

Thus, we might calculate the current velocity like this: yVel += ACCEL * dt. With that,
we can compute the new position just like we did before.

Answer 9-2

There are two parts to this: making the velocity change based on acceleration, and ensuring
that the bottom of the ship doesn’t go out of bounds. The changes are fairly simple. The
change in position is calculated differently thus (assuming we have a new constant ACCEL
and yVel becomes a variable):

:javascript:

// Somewhere above:

var ACCEL = 150,

yVel = -300;

// Down in the tick function:

yVel += ACCEL * dt;

y += yVel * dt;

The pattern is pretty simple: we are approximating a constant acceleration by just adding it,
scaled by time, to the current velocity. Then we do the same for position: add the velocity,
scaled by time, to the current position.

To ensure that the ship doesn’t go out of bounds when it falls back to earth, we simply add a
check before calling requestAnimationFrame (or doing anything else, really):

:javascript:

if (y < 0 || y > canvas.height) {

return;

}

requestAnimationFrame(tick);

We are basically making sure the bottom of the ship doesn’t go out of bounds. If its position is
at least 0 and (remember || means “OR” and && means “AND”) no more than
canvas.height, we can keep animating.

If you recall De Morgan from earlier, you can see that these two expressions are equivalent:

• (y < 0 || y > canvas.height)

• !(y >= 0 && y <= canvas.height)

Intuitively, if you talk through it, it should make sense: “Testing whether y is out of bounds is
the same as testing whether it is not in bounds.”

The full listing follows:
:html:

454 Solutions

<canvas id="drawing" width="300" height="300"></canvas>

<script>

var canvas = document.getElementById('drawing'),

ctx = canvas.getContext('2d');

function drawShip(x, y) {

ctx.fillStyle = 'blue';

ctx.beginPath();

ctx.moveTo(x, y-30);

ctx.lineTo(x-5, y);

ctx.lineTo(x+5, y);

ctx.lineTo(x, y-30);

ctx.fill();

}

var y = canvas.height, yVel = -300, lastTime = 0,

ACCEL = 150;

function tick(t) {

if (y < 0 || y > canvas.height) {

return;

}

requestAnimationFrame(tick);

var dt = (t - lastTime) / 1000;

lastTime = t;

ctx.clearRect(0, 0, canvas.width, canvas.height);

drawShip(canvas.width/2, y);

yVel += ACCEL * dt;

y += yVel * dt;

}

requestAnimationFrame(tick);

</script>

Chapter 10 Solutions 455

Chapter 10 Solutions

Exercise 10-1: Key Events

Write a program that registers an event listener on the document object for the “keydown”
event, and have it print the event’s key and shiftKey information to the console.
Remember that every event listener receives an event object as its first parameter, and in this
case we are interested in the key and shiftKey members of that object (capitalization
matters, so be careful of that):

• What happens when you press ‘a’? What happens when you press ‘A’ instead?
• What happens when you press the shift key, with nothing else?
• How do arrow keys appear when pressed?
• Log the entire event instead of just two members of it. What happens when you press
other modifiers like the control, alt, or command keys?

Answer 10-1

This is a pretty short program. You can even type it into the console because it’s easy to
make it fit on one line if you want to get clever about it. The program looks like this:

:html:

<script>

document.addEventListener('keydown', function(e) {

console.log(e.key, e.shiftKey);

});

</script>

If the student enters the JavaScript part into the console, after pressing Enter , the main
document has to be focused before the program will do anything. Click in the main document,
start typing keys, and the log will show what’s happening.

For logging the entire event, you would simply do console.log(e) (or whatever the event
variable is called).

Exercise 10-2: Click Events

Write a program that has a canvas. Each time you click the canvas, draw a line from the
previous click location (start at 0, 0 by default) to the current click location. Note that you can
use the event object’s x and y members to get the coordinates of the click within the canvas.

Answer 10-2

This program has a few parts:

456 Solutions

• Create a canvas
• Register a click listener
• Draw lines

This is not an animation, so we don’t need to request an animation frame or anything like that.
We can just draw on the context directly every time a click happens.

An example program is given below. Note that the previous click position is kept track of in the
variables prevX and prevY. Drawing moves to the previous location then draws a line to
the current location, strokes the line, and finally remembers the current location for next time.

:html:

<canvas id="lines" width="300" height="300"

style="border: 1px solid black"></canvas>

<script>

var canvas = document.getElementById("lines"),

ctx = canvas.getContext("2d"),

prevX = 0, prevY = 0;

canvas.addEventListener('click', function(e) {

ctx.moveTo(prevX, prevY);

ctx.lineTo(e.x, e.y);

ctx.stroke();

prevX = e.x;

prevY = e.y;

});

</script>

Hopefully most of these concepts are becoming natural at this point. The above code
exercises canvas drawing routines and creates an anonymous closure (with access to
prevX, prevY, and ctx) to pass directly into addEventListener.

Exercise 10-3: More Mouse Events

Taking inspiration from the previous program, alter it so that it draws lines as before, but every
time the mouse moves while the button is down. The events you will need to make this work
are called “mousedown”, “mouseup”, and “mousemove”.

Hint: set a boolean to true when “mousedown” happens, and only draw in “mousemove” if it is
true. Set it to false when “mouseup” happens.

Bonus: fix the program so that pressing the mouse button resets the line’s starting point.

Answer 10-3

The drawing routine is largely the same as in the previous program, but the event in which it
happens is “mousemove” instead of “click”. It also needs to check whether the mouse button
is currently pressed before drawing, and should bail out early if not. A working listing is below:

:html:

Chapter 10 Solutions 457

<canvas id="lines" width="300" height="300"

style="border: 1px solid black"></canvas>

<script>

var canvas = document.getElementById("lines"),

ctx = canvas.getContext("2d"),

prevX = 0, prevY = 0, buttonDown = false;

canvas.addEventListener('mousedown', function(e) {

buttonDown = true;

});

canvas.addEventListener('mouseup', function(e) {

buttonDown = false;

});

canvas.addEventListener('mousemove', function(e) {

if (!buttonDown) {

return;

}

ctx.moveTo(prevX, prevY);

ctx.lineTo(e.x, e.y);

ctx.stroke();

prevX = e.x;

prevY = e.y;

});

</script>

Note that there are now three events, but two of them are trivial and the third is familiar. The
trivial events are “mousedown” and “mouseup”, which manage the current button state in
buttonDown. Then we simply change “click” to “mousemove” and only proceed if the
button state is what we want it to be. And with that, we have a simple drawing program!

To get the bonus points, you just set prevX and prevY inside of the “mousedown” handler,
like this:

:javascript:

canvas.addEventListener("mousedown", function(e) {

buttonDown = true;

prevX = e.x;

prevY = e.y;

});

This allows gaps to happen in line drawing, because whenever the button is pressed, it resets
the previous point to wherever that button press happened instead of where drawing left off
last time.

Exercise 10-4: Output a Simple List of Numbers

Use recursion to output the numbers 1 to 100 in the console, in order. You may use any
recursive strategy you like (for example, it is fine to either output then recur, or recur then
output, it just depends on how you’re thinking of it).

458 Solutions

Note: if you get an error about “maximum stack length” or something similar, just output fewer
numbers, like 1 to 50. My browser let me do well over 10,000, however, so it is unlikely that
you will run into this.

Answer 10-4

There are two common approaches to recursion like this: output on “descent” into recursion,
and output on “ascent” out of recursion. Each is shown here.

On descent:
:javascript:

function count(curr) {

// Terminal case.

if (curr > 100) {

return;

}

console.log(curr);

count(curr + 1);

}

count(1);

On ascent:
:javascript:

function count(max) {

// Terminal case.

if (max < 1) {

return;

}

count(max - 1);

console.log(max);

}

count(100);

The “descent” version outputs the current number, then makes the call again with the next
number in the series.

The “ascent” version remembers the current number, but waits to output it until all of the rest
of the numbers have been output. Thus, it starts at the maximum instead of the minimum.

Exercise 10-5: Create an Array of Numbers

Use recursion to create an array consisting of all numbers from 1 to 100. Remember that if a
is an array, you can create a new array consisting of a together with b by calling
a.concat(b). That doesn’t change a, but creates a new array with the contents of a,
followed by the contents of b. Use concat in your recursive code to create the array of
numbers.

Chapter 10 Solutions 459

Any working recursive strategy is allowed, but no loops, and do not edit any array in place:
always just return a new one.

Output the final array to the console when complete.

Note: it is fine to not make this efficient. Tail-call-optimizable is not a necessary condition for a
correct answer, in case you were worried about that.

Answer 10-5

To build an array using recursion is similar to the console output functions demonstrated
above, but now something is returned instead of output to the console. One possible solution
is found below.

:javascript:

function buildArray(max) {

if (max < 1) {

return [];

}

return buildArray(max - 1).concat([max])

}

console.log(buildArray(100));

That’s one approach. There are others. This one is nice and straightforward, though.

As is always the case for recursion, a correct solution will have a base case (in this case the
if statement that immediately returns) and a recursive case that chips away at the problem
one step at a time (here passing max - 1 into buildArray).

It is possible to do this while changing the contents of an array, e.g., using push, but that is
explicitly disallowed for this problem. If the given solution does this, then half credit is
appropriate.

Here is an example of a half-credit solution that changes things in place:
:javascript:

function buildArray(max) {

if (max < 1) {

return [];

}

var arr = buildArray(max - 1);

arr.push(max);

return arr;

}

Again, this works, but is only good for half credit, since mutating things in place is explicitly not
part of this problem.

Exercise 10-6: Output Integers

460 Solutions

Use a while loop to output the integers from 0 through 99 to console.log.

Answer 10-6

Here is one solution:
:javascript:

var n = 0;

while (n < 100) {

console.log(n);

n++;

}

This sets up a variable to hold the current number to be logged, n. It starts out holding the
value 0, since that is the first value we will be logging.

Then it enters a loop. While the number is less than 100, it executes the body, which logs the
current number, then increments it by 1. The following alternative solution shows a couple of
things that might be different in your answer, but that are still just fine:

:javascript:

var n = 0;

while (n <= 99) {

console.log(n);

n = n + 1;

}

There are several variations on the theme of “test and increment”, and that’s basically what
this while loop does: it tests the value to see if it is in range, then outputs and increments it.
The loop runs again, testing the newly incremented value to see if it should quit.

There is another variant that can work, that uses break. Note also the alternate increment
variation:

:javascript:

var n = 0;

while (true) {

console.log(n);

if (n > 99) {

break;

}

n += 1;

}

Any of these, or any combination of these, is fine as an answer.

Exercise 10-7: Do It Again

This time, use a for loop to output the numbers from 1 through 99.

Chapter 10 Solutions 461

Answer 10-7

The for loop moves the test, initialization, and increment into one place. It’s a lot shorter, but
is basically equivalent to the while loop above. Here is a canonical approach to this
problem using a for loop:

:javascript:

for (var i=0; i<100; i++) {

console.log(i);

}

The increment variable is usually called i in these loops, though that is not required. It is
extremely common, however, and generally considered to be standard practice. The use of
the postincrement operator ++ is also standard in these cases, though i = i + 1 and i
+= 1 are also valid increments in that position. Still, the postincrement is standard. Finally,
testing for < 100 is more common than the equivalent <= 99 in this case, because the
value 100 tells you how many times the loop body runs. That’s why it’s standard practice.

Any of the variations mentioned are fine as answers, however.

Exercise 10-8: Randomness, Key and Click Events, and Anonymous
Functions

This exercise is more like a lab. Here we are going to ask you to write a program that creates
two event listeners, one for key presses, and one for page clicks. Each of these is going to log
a random number to the console, with text indicating which kind of event it was.

The requirements:

• Use document.body as the target for your events.
• In the click event, output “click:” and a random number (between 0 and 1).
• When a key is pressed down, output

– the word “key”
– the key that was pressed
– if the key pressed is “Enter”, output your name, otherwise
– output a random number (between 0 and 1).

• Use the switch statement to determine whether the key was "Enter".
• Use anonymous functions as the event listeners.

Answer 10-8

There are obviously a few moving parts in this exercise, but it isn’t too bad when you take
things one at a time. A full solution is below.

:javascript:

462 Solutions

document.body.addEventListener('click', function(event) {

console.log('click ' + Math.random());

});

document.body.addEventListener('keydown', function(event) {

switch (event.key) {

case 'Enter':

console.log('my name');

break;

default:

console.log('key ' + Math.random());

break;

}

});

That’s it. There are two event listeners that are registered here, one for "keydown" events,
and another for "click" events. Both of them log something to the console. In the case of a
click event, it simply logs the word “click” and a random number. In the case of a key event, it
logs “my name” if the enter key was pressed, otherwise it logs the word “key” and a random
number.

Important parts of this answer include - The use of a switch statement in the “keydown”
event, - The use of the break keyword in each case, including the default case. - The
use of anonymous functions as event listeners.

Partial credit can be given where some of these elements might be missing (for example, if
named functions are defined and then passed in, that’s worth partial credit).

Exercise 10-9: Animate With Frames

Using a canvas and requestAnimationFrame, make an animation. You can use any
shape you like. Requirements: - Move at roughly 300 pixels per second, - Start in the upper
left corner, - Move in a straight line, and - Stop when it hits an edge.

Note that “a straight line” can be diagonal. Since your shape is starting in the upper left
corner, make sure that your straight line motion is to the right, down, or a little bit of both.
Though potentially clever, drawing a shape in the upper left and saying “it is traveling left, and
it stopped already” in order to avoid writing an animation loop is not really an acceptable
answer. Your shape should be seen to be moving.

Note also that you should be writing HTML with JavaScript within it, this time, since you need
a canvas element to operate on.

Bonus points: wrap all of your code in an immediate function.

Answer 10-9

Chapter 10 Solutions 463

Here is one solution. There are places that can be changed (e.g., the shape might be a
different color, size, or kind), but the general structure should look something like this
(including the bonus immediate function):

:html:

<canvas id="drawing" width="400" height="300"></canvas>

<script>(function(){

var canvas = document.getElementById('drawing');

var x = 0,

y = 0,

W = 10,

H = 10;

function draw() {

var ctx = canvas.getContext('2d');

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.fillRect(x, y, W, H);

}

var lastTime = 0;

function tick(t) {

// Quit if out of bounds.

if (y + H > canvas.height) {

return;

}

if (x + W > canvas.width) {

return;

}

// Set up for the next one

requestAnimationFrame(tick);

// Figure out how much time has passed in seconds.

// Note that there are lots of ways to go about this,

// and if the student assumes that they're getting roughly

// 60 frames per second, that's probably fine.

var dt = (t - lastTime) / 1000;

if (dt > 2/60) {

dt = 1/60; // each frame in 1/60th of a second.

}

lastTime = t;

draw();

x += 300 * dt;

}

// Kick things off.

requestAnimationFrame(tick);

}());</script>

464 Solutions

The above code will draw a black rectangle in the upper left corner, 10 pixels square. It then
moves that rectangle to the right at a rate of about 300 pixels per second, stopping when it
hits the right boundary of the canvas.

This is less complex than what we have done in the chapter just before this midterm, so it
should hopefully not be too surprising if there was some study before the test.

The basic elements are - Using a tick function, - Clearing the canvas before drawing the
scene, - Calculating the number of pixels to move based on the desired speed, -
Remembering the previous time given in the call to tick to compute dt.

Chapter 11 Solutions 465

Chapter 11 Solutions

Exercise 11-1: Library Functions

Add a clearContext(ctx) function to “animate.js” that clears the canvas. Note that you
can get the underlying canvas object from the context thus: ctx.canvas.

Answer 11-1

The function will probably look something like this:
:javascript:

function clearContext(ctx) {

ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);

}

It’s a simple thing, but it makes clearing a canvas nice because it hides the stuff that doesn’t
change. That’s a theme of abstraction: hide the things that don’t change and make the rest
into parameters.

Exercise 11-2: Toggle Pause Behavior

Our animate library function returns several useful behaviors as functions, stored in an
object. Since toggling paused state is something we’ll want to do with many animations, move
the togglePaused function into animate and return it with the rest.

Answer 11-2

To do this, we start with the original main program togglePaused:
:javascript:

function togglePaused() {

if (animation.running()) {

animation.pause();

} else {

animation.start();

}

}

That should be relatively easy to move into animate, but we have a problem: if we just put
the function into the returned object, it can’t see the other functions inside that object. That’s
not a big deal, and there are two ways to solve it: move the other function definitions outside
of the object, and reimplement the functionality with more primitive operations.

Here’s what it looks like if you move the other functions out:
:javascript:

466 Solutions

function isRunning() {

return !!frame;

}

function pause() {

if (isRunning()) {

cancelAnimationFrame(frame);

frame = null;

}

}

function start() {

if (!isRunning()) {

frame = requestAnimationFrame(tick);

}

}

function togglePaused() {

if (isRunning()) {

pause();

} else {

start();

}

}

return {

'running': isRunning,

'pause': pause,

'start': start,

'togglePaused': togglePaused,

};

That works fine; the togglePaused function can see the other functions now, because
they’re in scope. We can actually inline togglePaused when returning, if we want, as well.
That would eliminate a function and replace it with an anonymous one, thus:

:javascript:

return {

'running': isRunning,

'pause': pause,

'start': start,

'togglePaused': function() {

if (isRunning()) {

pause();

} else {

start();

}

},

Chapter 12 Solutions 467

Chapter 12 Solutions

Exercise 12-1: Short Circuit Logic Operators

For all expressions below, indicate whether anything is written to the console.

• var a = false || console.log("hi")

• var b = true || console.log("hi")

• var c = false && console.log("hi")

• var d = true && console.log("hi")

Note that we are only interested in whether "hi" gets written, not in the actual value of the
expressions.

Answer 12-1

• var a = false || console.log("hi"): yes - false on the left is not
enough to get the value, so the right side is evaluated.

• var b = true || console.log("hi"): no - true on the left makes the
outcome inevitable, so the right side is skipped.

• var c = false && console.log("hi"): no - false on the left side
makes the outcome inevitable.

• var d = true && console.log("hi"): yes - true on the left side is not
enough to get the value, so the right side is evaluated.

Exercise 12-2: Logic Operator Evaluation

For each expression below, predict what it evaluates to:

• 1 || undefined

• 1 && undefined

• 0 || 1

• undefined || false

• true && 6

Answer 12-2

The rules are these:

• ||: evaluate to the leftmost truthy value, or the rightmost value if none are found
• &&: evaluate to the leftmost falsy value, or the rightmost value if none are found

That’s the super general definition that works for Lisp-like languages that can accept any
number of operands for OR and AND, but since these JavaScript operators only take two
operands, this is a valid, simpler explanation:

468 Solutions

• ||: left if truthy, else right
• &&: left if falsy, else right

For the above, then, we have these answers:

• 1 || undefined === 1

• 1 && undefined === undefined

• 0 || 1 === 1

• undefined || false === false

• true && 6 === 6

Exercise 12-3: Lab Part I: Adding a Score and Increasing Difficulty

For this lab you will add some improvements to the paddle game that we hinted at while
creating the first version. These are

• Add a score (at upper right) that increments for each successful hit,
• Make the paddle slightly smaller (multiply its width by 0.99) with each successful hit,

In other words, we will make this more like an actual game, one that keeps score and gets a
little harder and more interesting to play as time goes on.

Note that every context has a textAlign property that you can set to “left”, “right”, or
“center” and it affects how the fillText method decides where to draw your text. For
displaying time, we used the default value (because we didn’t specify it at all), which is “left”.
Now that we will be changing it, we will need to specify it for time (“left”, since it’s on the left
side), and then specify a different one for the score (“right”, since it will be on the right side).

Answer 12-3

Adding The Score

To add a score to our game, we need to do three things:

1. Keep track of the score in a variable,
2. Update the score when we get a hit, and
3. Display the score on the screen.

Let’s tackle those one at a time. First, we need to add some state to our program:
:javascript:

var score = 0;

That was easy. Next, we need to update it when we get a hit. Remember the code that tests
for a paddle hit? We will just increment the score there:

:javascript:

Chapter 12 Solutions 469

if (ballX >= paddleX && ballX <= paddleX + paddleWidth) {

score++; // NEW

ballVelY = -ballVelY;

}

Finally, we need to actually display the score. Since we want it on the upper right, we will alter
our draw function to also display the score, with a slightly different setup than what we used
for displaying time:

:javascript:

draw: function() {

ctx.clearRect(0, 0, canvas.width, canvas.height);

ctx.font = '20px sans-serif';

ctx.textAlign = 'left'; // NEW

ctx.textBaseline = 'hanging';

ctx.fillStyle = 'black';

ctx.fillText(Math.floor(animation.elapsed()), 2, 2);

ctx.textAlign = 'right'; // NEW

ctx.fillText(score, canvas.width - 2, 2); // NEW

ctx.fillStyle = "blue";

ctx.fillRect(paddleX, PADDLE_Y,

paddleWidth, PADDLE_HEIGHT);

fillCircle(ctx, ballX, ballY, BALL_RADIUS);

},

The changes have “NEW” comments on them. Basically, two textAlign settings are
added, and a new fillText call is added for the score for an overall change of three lines.

Adding Paddle Changes

This change is simpler than the text change because it only affects the move function. The
width of the paddle is stored in a variable called paddleWidth, so all we have to do is
make it smaller every time a hit is scored. We just finished changing that code to add
score++ to it; now we need to add paddleWidth *= 0.99:

:javascript:

if (ballX >= paddleX && ballX <= paddleX + paddleWidth) {

paddleWidth *= 0.99; // NEW

ballVelY = -ballVelY;

}

This reduces the paddle size by 1% every time a hit is scored. That guarantees that it will get
smaller over time, but that it won’t completely vanish.

Exercise 12-4: Lab Part II: Adding Randomness and Speed Changes

To continue the lab, we will make the game more difficult by adding some randomness to how

470 Solutions

the ball bounces off of the paddle, and by making it go slightly faster every time it does. This
requires a bit more vector math, so let’s start with some hints about how that should work.

• Make the ball a bit faster with each successful hit, and
• Add randomness to the movement of the ball so it isn’t so predictable,

Previously, we just reversed x and y velocity every time a bounce occurred. Among other
things, this guaranteed that the overall speed of the ball never changes. Simply reversing one
of the components of the velocity doesn’t change its speed, only its direction. That is nice, but
we’re about to fiddle with things on a deeper level now, so we have to be extra careful about
maintaining speed.

How do we know that reversing direction doesn’t change speed (aside from intuition, I mean)?
We know that because speed is the magnitude of the velocity vector, and that’s calculated like
this:

𝑠 = √𝑣2𝑥 + 𝑣2𝑦

Or, in code, like this:
speed = Math.sqrt(ballVelX*ballVelX + ballVelY*ballVelY);

Do you see why the speed doesn’t change when we change the sign of ballVelX or
ballVelY? It’s because they’re squared, and that always produces a positive value.

Our goal is to change the direction of the ball in more ways than just “bouncing” it, and we
want to slowly increase speed with every bounce. That formula we just used is going to come
in handy. Here are some hints for how to go about making this change:

Use Math.random to slightly alter the ballVelX value when bouncing off of the
paddle:

We already change ballVelY to be its negative when that happens, but now we will also
change ballVelX, just a bit, just to keep things interesting. It should increase or decrease
the value by a small amount, say up to 10%. How would you accomplish this using
Math.random?

The first thing to do is to break this idea down into small pieces. How much will we add to (or
subtract from) ballVelX? It it’s up to 10% of its current value, let’s start with getting a
random percentage from 0 to 10: Math.random() * 0.1. That will do it.

Now that we can compute a random percentage up to 10%, how do we apply that to
ballVelX to get a velocity delta (change)? We multiply. The amount we will want to change
ballVelX by is thus ballVelX * 0.1 * Math.random().

Finally, we want to either add or subtract that value. There are a couple of ways to approach
this. You can flip a coin (use Math.random() > 0.5 for this) to decide whether to add or

Chapter 12 Solutions 471

subtract, or you can generate a number that is randomly positive or negative and always add.
Your choice (there are others, but let’s keep it simple).

There are some problems with the idea presented here, and you may notice them as you play
for a while. Because the randomness is multiplicative, it’s possible (likely, even) to get into a
state where the x velocity just keeps getting smaller over time: it’s harder to increase its
magnitude (because we do so by a percentage) than it is to decrease it: 10% added to a small
number doesn’t make up for the 10% previously subtracted from a larger one. There are
better ways, but this was simple to explain and implement. You may want to try other things.

Keep track of speed, and make sure it only changes exactly how you want it to:

Speed can be a tricky thing. If you don’t keep a careful eye on it, you could easily end up in a
situation where random changes to direction result in a very large increase in overall speed,
and that’s not intended: we want to control speed in this game, not let it go haywire. That
means we will need to make absolutely sure that it doesn’t get messed up by our introduction
of random motion.

Here’s the basic idea. Right when a paddle hit is detected, do this:

• Calculate the speed of the ball and remember it (we will call this originalSpeed),
• Change direction and add randomness as above,
• Calculate the new speed (we will call this newSpeed),
• Scale ballVelX and ballVelY to make the new speed the same as the original
speed.

Most of this is pretty straightforward using the speed formula. If you can calculate speed
using the formula given above, then you can do most of the steps in this process. The one that
might be a little new is figuring out how to scale things once you have originalSpeed and
newSpeed.

The answer can be found with a little algebra, which you are encouraged to do. This, however,
is not an algebra course, so here’s the answer: scale the velocity components by
originalSpeed / newSpeed after changing them. Intuitively, if the new speed is
smaller than the original, this makes it bigger by the right amount, and if it is bigger, it makes it
smaller. What you end up with is the same speed you started with, but a different direction.
You are “renormalizing” the speed.

You don’t want it to just stay the same, though. You want it to get slightly faster in a controlled
way. Well, that should be pretty simple since we have the original speed. Instead of scaling
everything by originalSpeed / newSpeed, we will scale it by that times some factor
that makes it a bit quicker. For example, you could imagine multiplying that whole thing by
1.01 to add 1% to the speed every time, making the new scale factor 1.01 *

originalSpeed / newSpeed.

Answer 12-4

472 Solutions

To make all of this happen, the explanation is a great deal longer than the actual code. First,
let’s get the random direction handled. We do that by adding or subtracting up to 10% of the
current x velocity. That’s the same as calculating a random value up to 20% and shifting it so
it’s plus or minus 10%, like this:

:javascript:

var p = 0.2 * (Math.random() - 0.5);

See how we compute a random value, then shift it by 0.5? That produces a value between
-0.5 and +0.5. Then we multiply that by 0.2, which gives us a number between -0.1 and
+0.1, which is exactly what we want: something between -10% and +10%. You can
probably see how a little algebra would give us this equivalent expression:

:javascript:

var p = 0.2 * Math.random() - 0.1;

With this percentage change, it’s pretty easy to calculate what to do next. The actual change
will just be this multiplied by the current value:

:javascript:

var dvx = ballVelX * p;

Finally, we add that to the current x velocity to get the new velocity:
:javascript:

ballVelX = ballVelX + dvx;

Putting it all together and removing temporary variables, this gives us the following collapsed
expression:

:javascript:

ballVelX = ballVelX + ballVelX * 0.2*(Math.random() - 0.5);

There is one more simplification that can be made here, and it only really becomes obvious
when not using += (which is why I didn’t, though it’s an obvious thing to do): we can factor out
ballVelX on the right side:

:javascript:

ballVelX = ballVelX * (1 + 0.2 * (Math.random() - 0.5));

And now instead of using +=, we can use *=:
:javascript:

ballVelX *= 1 + 0.2 * (Math.random() - 0.5);

That’s kind of fun and clever, but that’s not the reason for all of this exposition. The real
reason is that any of the above will work: pulling things into multiple variables, various

Chapter 12 Solutions 473

algebraic representations of percentages, using +=, *= or neither, etc. The only thing that
matters is the right basic calculation.

Now to update the speed: we both want to keep it normalized and control how it gets faster.
There was a pretty big hint given in the lab description, and we will make use of that here. The
success-detection code for a paddle hit will look like this:

:javascript:

if (ballX >= paddleX && ballX <= paddleX + paddleWidth) {

score++;

paddleWidth *= 0.99;

var originalSpeed = Math.sqrt(ballVelX*ballVelX +

ballVelY*ballVelY); // NEW

ballVelY = -ballVelY;

ballVelX *= 1 + 0.2 * (Math.random() - 0.5); // NEW

var newSpeed = Math.sqrt(ballVelX*ballVelX +

ballVelY*ballVelY); // NEW

var scale = 1.01 * originalSpeed / newSpeed; // NEW

ballVelX *= scale; // NEW

ballVelY *= scale; // NEW

}

We added a few more lines here, but they should all be pretty easy to grasp at this point. Let’s
walk through the changes:

• Calculate originalSpeed using the appropriate euclidean distance formula (or the
Pythagorean Theorem, if you prefer),

• Add a random x velocity change as described previously,
• Calculate newSpeed using the same formula again (this could be pulled into a
function),

• Calculate a scale factor for our velocity components that restores the original speed,
then increases it by 1%, and finally

• Scale each of the x and y velocities by that factor.

This does what we want. It randomly changes ball direction while maintaining speed as a
constant, and it slightly increases that speed in a controlled way.

The game should be a lot more interesting to play, now, with only a handful of lines changed.

We can adjust how quickly things get difficult by changing one of the three parameters:

• The paddleWidth multiplier (currently 0.99),
• The randomness in ballVelX (currently at 0.2), and
• The speed increase in the scale calculation (currently 1.01).

474 Solutions

Chapter 13 Solutions

Exercise 13-1: Lab: Improving the Snake Game

For this lab, several improvements will be made. Some of them will come from things we did
in the ball and paddle game, and some of them will be new. Here they are:

• Add a score to the game (the length of the snake minus 1).
• Increase the speed of the snake every time it eats.
• Fix it so the snake can never go backward, not even if you go sideways and backward
really fast.

The first two should be pretty easy to make work, given that we’ve done things like them in the
previous chapter. The third one might require some more thought. Some possibilities for fixing
it might include

• Keep track of all direction changes and process them in order, or
• Keep track of the current direction separate from the requested direction, and only
change the current direction when moving, if it’s allowed.

• Simply don’t let the snake head hit the very next segment. It would not be possible in
normal play anyway.

The last of these is easiest. Feel free to toy around with the others, but a valid solution can
also be an easy solution.

Answer 13-1

Adding a Score

To add a score, you can put it anywhere that makes sense. You will just draw
segments.length - 1 on the board wherever you choose, maybe something like this
(in the draw function):

:javascript:

ctx.font = '1px sans-serif';

ctx.textAlign = 'left';

ctx.textBaseline = 'hanging';

ctx.fillStyle = 'black';

ctx.fillText(segments.length - 1, 0, 0);

That is pretty standard stuff, and we have seen it all before in the previous game. You might
find it odd that we are using a 1-pixel font size and shoving things all the way into the
upper-left corner instead of having a slight margin around the text. It turns out that after a
scaling transform, the canvas treats “1 pixel” as “1 scaled unit”. Thus, in our new regime, 1
pixel is interpreted as “1 grid cell”, and that is a reasonable size for the text. You can use
non-integer numbers, too, like "1.5px", which might be a bit easier to read.

Chapter 13 Solutions 475

Increasing Speed

To increase speed, you need to decrease MOVE_EVERY. That means you should probably
rename it to be less like a constant, perhaps something like moveEvery. Then, when the
snake eats, you can change it to make it smaller. A fairly fun and challenging way to do that is
to take 10% away every time, like this:

:javascript:

moveEvery *= 0.9;

That works pretty well. One of the reasons it works well is that speed has an inverse
relationship to delay, so multiplication on the delay gives a nice linear feel to the speed.

Fixing the Bug

The bug we refer to is this: if the snake is moving right, and you quickly tap up then left, the
snake will crash backwards into itself. But backwards should simply be disallowed, not
game-ending, so we need to somehow ignore that move.

There are lots of interesting ways to fix this in general, but the easiest solution is absolutely
fine. It involves changing the key handler to ignore any requests to change direction toward
the segment right behind the head.

This is actually more accurate anyway, because if all we have is the head, we should be able
to move it any which way, including backwards. This takes care of that as well! It’s amazing
what we can accomplish when we express what we actually want and not merely an
approximation of it. Let’s look at the keyboard handler again and see what we can do with it.

The existing version is this:
:javascript:

document.addEventListener('keydown', function(event) {

var keyDirs = {

'ArrowLeft': direction === 'R' ? 'R' : 'L',

'ArrowRight': direction === 'L' ? 'L' : 'R',

'ArrowUp': direction === 'D' ? 'D' : 'U',

'ArrowDown': direction === 'U' ? 'U': 'D',

};

var dir = keyDirs[event.key];

if (dir) {

direction = dir;

}

});

Our existing code is actually kind of tortured. There is a lot of repetition in there and it feels
like it is just a little too cute. That is a sign that we might want to rethink things. Let’s make this
more straightforward by assuming we have a nextPosition function that accepts a
direction and gives us the next position (we will talk about how to write that function next):

476 Solutions

:javascript:

document.addEventListener('keydown', function(event) {

var keyDirs = {

'ArrowLeft': 'L',

'ArrowRight': 'R',

'ArrowUp': 'U',

'ArrowDown': 'D',

};

var dir = keyDirs[event.key];

// If we got an unexpected key, don't do anything.

if (!dir) {

return;

}

// Get the next position, ignore if

// it is segment 1's position:

var pos = nextPosition(segments[0], dir);

if (segments.length > 1 && sameCell(pos, segments[1])) {

return;

}

// Finally, we have a good direction,

// so set the main value:

direction = dir;

});

There’s that sameCell function again—it just keeps on giving!

Now, what did we just do? We first assumed that there is such a thing as a nextPosition
function, which there currently is not. But let’s assume we can make one (we definitely can).

We made our key object simpler: it just maps keyboard keys to game directions, which is
much nicer to think about and work with. As before, we get the direction from the key map,
and if we don’t recognize the key pressed, we bail out immediately without doing anything.

Then we get the new position that would result from moving in this direction, and if that lands
us on segment 1 (the one right behind head), then we’re done. We have to test that segment 1
even exists first, which we do by making sure that the segments length is greater than 1.

Finally, if none of those exceptional things happens, we allow the direction to change. Yay!

How do we create nextPosition, though? It turns out that we already wrote the main
code for it, we just need to move it into its own function and call it from the right places.
Remember this code inside of the move function?

:javascript:

// Create a new head, same as the old head.

var newHead = {

x: segments[0].x,

y: segments[0].y,

Chapter 13 Solutions 477

};

// Then change it based on current direction.

switch (direction) {

case 'U': --newHead.y; break;

case 'D': ++newHead.y; break;

case 'L': --newHead.x; break;

case 'R': ++newHead.x; break;

}

We can just lift that all out and put it into a function called nextPosition that accepts a
direction parameter, and then we can replace it with this:

:javascript:

var newHead = nextPosition(segments[0], direction);

Here is the new nextPosition function:
:javascript:

function nextPosition(pos, dir) {

// Create a new head, same as the old head.

var next = {

x: pos.x,

y: pos.y,

};

// Then change it based on current direction.

switch (dir) {

case 'U': --next.y; break;

case 'D': ++next.y; break;

case 'L': --next.x; break;

case 'R': ++next.x; break;

}

return next;

}

Note that we changed some variable names to make it extra clear that these are local
variables only valid inside of this new function.

And that’s it. It might look like a lot, but really we just did the following:

• Moved the position calculation code into a function, leaving it almost exactly as it was,
then

• Using that new function in the key handler to make sure we don’t step on segment 1,
and removing the ugly parts of that function.

If you repeated logic for this, that is also fine. Extracting things into a function is not strictly
necessary, it’s just nice to not have to write the same code (and different bugs, usually) twice.

478 Solutions

Chapter 14 Solutions

Exercise 14-1: Lab: Create a Segment Class For the Snake Game

We just finished making our snake game work really well, and now it’s time to change the
implementation without hurting game play. For this lab, you will create a new Segment class
that accepts x and y coordinates and keeps track of them. Each instance of this class will
have three methods:

• move(dir): moves the segment in the direction specified,
• copy(): returns a copy of the segment, and
• collides(other): returns true if this instance is at the same position as
other.

Once done, make all segments into instances of this class and change your code to use these
new methods where possible.

Answer 14-1

To do this, the first step is to try to create the class. That means we write a function called
Segment, and then we set prototype functions on it.

Constructor

The Segment function is the constructor, and it is supposed to accept x and y coordinates,
so it should probably look something like this:

:javascript:

function Segment(x, y) {

this.x = x;

this.y = y;

}

That’s pretty simple. All segments have coordinates and don’t really need to keep track of
much else.

Move

To implement the move function, we can pull the move code out of the move function (or
nextPosition if you did the previous chapter’s exercises). Remembering that methods
are assigned to keys on the constructor’s prototype, we get something like this:

:javascript:

Segment.prototype.move = function(dir) {

switch (dir) {

case 'U': this.y--; break;

case 'D': this.y++; break;

Chapter 14 Solutions 479

case 'L': this.x--; break;

case 'R': this.x++; break;

}

};

Since we are not creating a copy in this function, we can just change things directly instead,
so that part of the code is somewhat simplified.

Copy

To copy the instance, we just create a new one at the same coordinates:
:javascript:

Segment.prototype.copy = function() {

return new Segment(this.x, this.y);

};

Collides

Testing for collision is also relatively straightforward:
:javascript:

Segments.prototype.collides = function(other) {

return other.x === this.x && other.y === this.y;

};

Using The Methods

There is at least one place where these methods will be used. First, instead of creating the
segment objects directly using {}, we will use new Segment(x, y) instead. That
transforms this code

:javascript:

var segments = [

{x: Math.floor(CELLS_PER_DIM / 2),

y: Math.floor(CELLS_PER_DIM / 2)},

];

into this code
:javascript:

var segments = [

new Segment(Math.floor(CELLS_PER_DIM / 2),

Math.floor(CELLS_PER_DIM / 2)),

];

It is not really any clearer, but we will see benefits as we use it elsewhere. For example, in
move, we can get the new head like this:

:javascript:

480 Solutions

var newHead = segments[0].copy().move(direction);

That is nice - we create a copy and then move it, and that is the new head.

Finally, to test for collision with body segments, we did this before:
:javascript:

var head = segments[0];

for (var i = 1; i < segments.length; i++) {

var pos = segments[i];

if (head.x === pos.x && head.y === pos.y) {

alert("Game over: self crash");

return true;

}

}

Now we do this:
:javascript:

for (var i = 1; i < segments.length; i++) {

if (segments[0].collides(segments[i])) {

alert("Game Over: self crash");

return true;

}

}

That is a little nicer.

Finally, if you did the exercises earlier, you will have changed the way that backward motion is
calculated to use a nextPosition function. That has been replaced with the
copy-plus-move code shown above, and nextPosition is no longer needed.

Chapter 15 Solutions 481

Chapter 15 Solutions

Exercise 15-1: Lab: More Interesting Counters

For this final lab, you will add 2 or 3 more counters to the page and allow them to be named
using input fields. All of them should work simultaneously.

For this, a few little details might trip you up.

First of all, if you are in a loop and create a closure based on variables in that loop, you are
going to have a bad time. Check this out:
for (var i = 0; i < 3; i++) {

setInterval(function() {

console.log("I'm the " + i + " value");

}, 1000);

}

What is this attempting to do? It’s trying to set up three intervals, each of which outputs
something different to the console. If you run it, you will notice that every single one of them
says “I’m the 3 value”. Oops, that’s not what we wanted!

The problem is this: our little function closes over the i variable, but that variable just changes
value each time through the loop. It is not a new variable. So, by the time our functions are run
(one second later), that value is 3 for all of them. They all close over the same variable.

Ugh. How do we fix that? Well, you can use let instead of var if you are in a browser (or
other environment) that supports it. That has much saner behavior in these circumstances
and creates new, scoped variables in a more natural way. If you don’t have that option, you
can create a function that does this registration for you, effectively giving your closure new
variables to close over:
function register(i) {

setInterval(function() {

console.log("I'm the " + i + " value");

}, 1000);

}

for (var i = 0; i < 3; i++) {

register(i);

}

That works. The reason is that the register function is called immediately each time
through the loop, and each function call gets its own variables to play with. Thus, our
completely unchanged closure now works properly because it is closing over new variables
each time.

Why do you need this? You might not. There are plenty of ways to do this lab without knowing

482 Solutions

this rather subtle detail, but at least one of the ways, the one that I’ll show in the answer key,
needs to handle this case properly.

Answer 15-1

To make this change, let’s just add 2 new counters, and some names. We started out with
these tags in the body:

:html:

<input type="text" size="5" maxlength="5" id="date"> :

 :

Now we will add more, give them each editable names, number them, and add line breaks
between them:

:html:

<input type="text" id="name0">:

<input type="text" id="date0" size="5", maxlength="5"> :

<input type="text" id="name1">:

<input type="text" id="date1" size="5", maxlength="5"> :

<input type="text" id="name2">:

<input type="text" id="date2" size="5", maxlength="5"> :

The spacing is not terribly important; most spaces are collapsed into a single space in HTML
anyway (even newlines, which is why the
 tag is needed). The important thing is that
now there are three of these, and they are all given different but predictable names. Now we
can start changing the way we work with them. Previously we had this:

:javascript:

function main() {

var inputTarget = document.getElementById('date'),

elCounter = document.getElementById('counter');

// Set a default value for it (next year):

inputTarget.value = "01-01";

// Every second, show the counter.

setInterval(function() {

showCounter(inputTarget, elCounter);

}, 1000);

}

But now we will want to do these things for all of them (and give each of them a default name).
Since we will be looping over them and using a closure in that loop, we will need to employ the

Chapter 15 Solutions 483

function trick shown in the requirements as a hint. Or we can use let. Let’s use the function
closure trick to create a new closure with the desired variables on the fly:

:javascript:

function makeCounter(elTarget, elCounter) {

return function() {

showCounter(elTarget, elCounter);

};

}

function main() {

// Every second, show the counters.

for (var i = 0; i < 3; i++) {

var elTarget = document.getElementById('date' + i),

elCounter = document.getElementById('counter' + i),

elName = document.getElementById('name' + i);

// Set a default value for it (next year):

elTarget.value = "01-01";

elName.value = "event " + i;

setInterval(makeCounter(elTarget, elCounter), 1000);

}

}

We basically put the entirety of main into a loop, taking care to ensure that closures that
depend on loop variables (or any variable inside the loop, for that matter) are wrapped inside
of a function that creates them. We could also have registered them with setInterval
directly in that function if we wanted. There are many approaches. The key is to isolate the
closure in a place where it has its own unique variables.

With these changes, you can have three different fun dates that you are counting down to, and
you can give them names. They will keep counting until you reload the page.

	Introduction and Installation
	Why JavaScript?
	What You Need
	The Browser, the Web, and Programming
	You Fetch and Interpret Stuff

	Programming and Developer Tools
	Your First JavaScript Expressions
	Programs in Files
	Your First JavaScript Program
	More JavaScript Syntax
	Putting It All Together
	Exercises

	Function Calls and the Debugger
	Functions in Algebra
	Calling Functions in JavaScript
	Functions That Produce Values
	A Debugging Interlude
	Exercises

	Writing Functions and Handling Events
	Writing Functions
	Variable Scopes
	Functions Are Values
	Summary
	Exercises

	Objects
	Objects Are Containers
	The Console
	The Standard Library
	Drawing Pictures
	Listing
	Exercises

	Reacting Logically
	Boolean Logic
	Conditional Expressions
	If and Else
	Else If
	Exercises
	Midterm 1

	Iteration Through Recursion
	Gauss and the Sum of Integers
	Recursive Dumb Sums
	Drawing Lines
	A Recursive Grid
	Onward
	Exercises

	Arrays, Loops, Switches, and Randomness
	Arrays
	While Loops
	Do-While Loops
	For Loops
	Tiling a Canvas
	Nested Loops
	Color Cycling Using Else-If
	Switch It Up
	Arrayed in Color
	Random Numbers
	Exercises

	Timers, Closures, and Animation
	One Thing At A Time
	Timeouts Revisited
	Closures
	Simple Timeout-Based Animation
	Summary
	Exercises

	Smoother Animation Using Time and Animation Frames
	Animation Frames
	Smoothness and Time
	Another Wrinkle In Time
	Exercises

	Click and Key Events
	Are We There Yet?
	Adding a Button
	Actually Pausing Stuff
	Changing Button Text
	Canvas Clicks
	Key Events
	Summary and Full Listing
	Exercises
	Midterm 2

	Behavioral Abstractions and Multi-File Programs
	More Files
	Hiding the Plumbing
	An Animation Function
	Animating With Abstraction
	Abstractions That Provide Behavior
	Summary and Listings
	Exercises

	Our First Game: State, Configuration, Clocks, and Winning
	A Matter of State
	Where To Store State
	Animation Augmentation
	Writing the Game
	Listings
	Exercises

	Snakes On a Page
	Game Scaffolding
	Designing the Game
	Positions Are Picky
	Representations
	Drawing the Snake and Food
	Moving the Snake
	Changing Directions
	Limiting Motion
	Eating
	Crash
	Listings
	Exercises

	Abstractions With Classes and Objects
	Objects as Data Containers
	Animation Class
	Using Instances With Events
	Keep it Classy
	Exercises

	Practical Web Programming
	A More Complete Document
	Head Scripts
	Adding Elements Dynamically
	Countdown
	Dates
	Summary and Conclusions
	Listings
	Exercises
	Final Exam

	Answer Key
	Solutions
	Chapter 1 Solutions
	Chapter 2 Solutions
	Chapter 3 Solutions
	Chapter 4 Solutions
	Chapter 5 Solutions
	Chapter 6 Solutions
	Chapter 7 Solutions
	Chapter 8 Solutions
	Chapter 9 Solutions
	Chapter 10 Solutions
	Chapter 11 Solutions
	Chapter 12 Solutions
	Chapter 13 Solutions
	Chapter 14 Solutions
	Chapter 15 Solutions

