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Abstract

We present JoSTLe, an algorithm that performs value
iteration on control problems with continuous actions, al-
lowing this useful reinforcement learning technique to be
applied to problems where a priori action discretization is
inadequate. The algorithm is an extension of a variable
resolution technique that works for problems with continu-
ous states and discrete actions [6]. Results are given that
indicate that JoSTLe is a promising step toward reinforce-
ment learning in a fully continuous domain.

1. Introduction

Reinforcement Learning (RL) can be a useful way of
representing control problems because of its simplicity. RL
solution techniques, such as value iteration, can discover
complex solutions that may be difficult to represent or com-
pute in closed form. In the specific case of value iteration,
a problem is solved by computing an approximation to the
value function. The value function may then be used to
create a control policy. [4]

One of the more attractive properties of value iteration
is that it may be performed iteratively. The value of each
point in space may be updated according to an equation like
the following:

V (s, a)=

∫ τ

0

γtR(s(t), a) dt + γτ sup
a′

V (s(τ), a′) (1)

where V (s, a) denotes the value of the initial state s and
action a, s(t) is the state resulting from the application of
a for t units of time, R(s(t), a) is the current reinforce-
ment, γ ∈ [0, 1) is the discount factor, and τ is the amount
of time for which a is executed. Note that this assumes a
deterministic environment, so transition probabilities have
been omitted.1

1Additionally, even though this definition of the value function looks
like a quality function, we maintain the nomenclature of value iteration so
as to avoid confusion with Q-learning.

Implementing (1) directly is impossible. In a discrete
setting, (1) becomes something like the following:

V (s, a)=φ

T−1∑

t=0

γtφR(s(tφ), a) + γTφ sup
a′

V (s(Tφ), a′)

(2)
where φ is a problem-specific time step.

With discrete actions, the sup operator becomes a max
operator and a simple linear search is sufficient to imple-
ment it. In domains with continuous actions, however, the
presence of the supremum is problematic, as a perfect im-
plementation would require an exhaustive search of an infi-
nite space. Fortunately this issue does not plague all contin-
uous action RL problems; a well-known result from opti-
mal control theory states that many minimum time control
problems may be solved optimally using only bang-bang
control [2]. This fact allows many researchers to optimally
discretize continuous action spaces a priori.

Though many interesting problems may be solved us-
ing a naive discretization, many others may not. Even if a
problem may be solved using bang-bang control in simu-
lation, the policy generated can rarely be run on real hard-
ware. A method for solving these problems without a static
action discretization is needed. This paper presents the
Joint Space Triangulation Learner (JoSTLe), which enables
value iteration to solve problems with continuous actions.
It is based on Variable Resolution Discretization (VRD) as
presented by Muños and Moore [6], and relies on the same
fundamental observation that not all portions of the prob-
lem space are of equal importance.

JoSTLe uses a homogeneous data structure to dynami-
cally allocate resources across both state and action spaces.
In the same way that VRD allows each problem to dictate
regions of interest in the state space, JoSTLe allows each
problem to dictate those regions in the combined state-
action (or “joint”) space. This creates the possibility for
discretizing actions differently at each state.

This is not the first work to address continuous action
problems, but it is to our knowledge the first to work with
general continuous state and action problems. Other ap-



Figure 1. The Kuhn Triangulation of a cube

proaches typically involve using one discretization tech-
nique on the state space and then performing some form
of regression in the action space [1] at each state. This ap-
proach is useful, but can run into problems when the value
function has discontinuous boundaries. It can also be inef-
ficient when one action representation could span multiple
states.

2. Basic Variable Resolution Discretization

VRD discretizes the ds-dimensional state space into
hypercubes, arranged hierarchically in a kd-trie. The root
node covers the entire space. At every branch, a split is per-
formed in one of the state dimensions, creating two smaller
hypercubes. A Kuhn triangulation is implemented at each
leaf, effectively splitting it into ds! simplices (Figure 1).
The overall effect is a complete triangulation of the space.
The value function is interpolated linearly within this trian-
gulation using barycentric coordinates [6].

VRD proceeds in two phases: value iteration and state
space refinement. It begins with a rough initial discretiza-
tion of the state space. The discretization is used to perform
value iteration until it converges. The information gained
from the value iteration process is used to refine the dis-
cretization, ideally splitting in areas that require finer rep-
resentation to generate a good policy. The iteration and
refinement steps are repeated until a satisfactory represen-
tation of the value function is obtained.

The kd-trie allows for efficient point localization while
the Kuhn triangulation allows for efficient interpolation. A
full description of the algorithm with comprehensive cita-
tions on component elements is contained in [6].

3. Extending to the Joint Space

JoSTLe is an extension of VRD but retains many of its
characteristics, including the kd-trie and Kuhn triangula-
tion. The primary difference between the two is that JoS-
TLe works in the joint state-action space rather than just
the state space.
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Figure 2. Final state exits adjacent hyper-
cubes (shaded)

Let ds be the dimensionality of the state space and da be
the dimensionality of the action space. We may then define
the joint space as the Cartesian product of state and action
spaces, yielding a space whose dimensionality is given by
d = ds + da. This joint space is tessellated by hypercubes
in the same manner as VRD’s state space. Each vertex of
each cube is composed of the concatenation of state and
action vectors: v = (s, a). Associated with each vertex is
a value V (s, a), sometimes abbreviated as V (v).

This extension into a higher dimensional space repre-
sents the primary mathematical difference between JoSTLe
and VRD. Equation (2) still applies directly. There is an-
other minor difference in the way that a trajectory’s stop-
ping point is determined. In VRD a trajectory stops when
it exits the initial simplex. JoSTLe stops once the state
no longer intersects any hypercubes adjacent to the initial
state/action point. Figure 2 illustrates this idea. The circled
vertex is the starting point, and the trajectory in the state
space does not end until it is no longer intersecting any of
that vertex’s hypercubes. This paper addresses the issues
of implementing such a system.

The addition of action dimensions to the discretization
poses some unique problems that require attention. The
first issue is that of finding actions at each state that pro-
duce the maximum value. The second issue is related to
the generalization of the search algorithm to arbitrary di-
mensions. The third is that of deciding when and how to
split hypercubes. These issues are addressed in the next
sections.

3.1. Searching for Maxima

The search for actions that produce the maximum value
at a given state is a fundamental part of value iteration.
In traditional value iteration the action space is discrete
and homogeneous. In the discretizations produced by JoS-
TLe the action space is continuous with a heterogeneous
discretization. The piecewise linear interpolation imple-
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Figure 3. A joint space simplex

mented in JoSTLe addresses this problem effectively.
Figure 3 illustrates a joint space with two state dimen-

sions and one action dimension. The tessellation generated
by the kd-trie would actually cover the entire space with
hypercubes, each of which would be triangulated, but for
purposes of explanation only one triangle is shown.

The action search problem may be viewed as a search
along the line in the figure. The line represents a region of
constant state and variable action. Regions of this nature
must be searched at every step of value iteration in order
to calculate a discounted value. While in general this is a
nonlinear programming problem, the representation allows
for significant simplification. Because the interior values of
each simplex follow a linear function, the maximum must
occur at a simplex boundary. It cannot occur uniquely at the
interior. This is easily proven by showing that the gradient
of the interpolation function is constant. The proof that this
holds even when constrained along a region such as that in
Figure 3 is also fairly straightforward [5].

This insight allows us to restrict our search to the points
where the line (as depicted in Figure 3) intersects with the
simplex boundaries, effectively transforming a continuous
problem into a discrete problem. The search is performed
by finding the intersection points and picking the maxi-
mum.

3.2. Generalization to Arbitrary Dimensions

Finding the intersection points can be difficult. Figure 4
illustrates the problem and an insight that serves to gener-
alize the algorithm.

Each possible spatial intersection generates a different
kind of search space. In Figure 4(a) the regions of interest
are points on a line. In Figure 4(b), however, the interest-
ing portions of the space are vertices of a triangle formed
by slicing a tetrahedron with a plane. In general, we are
always seeking the vertices of a simplex formed from such
a slice, and the shape of that simplex will change based on
the dimensionalities of the state and action spaces.

Linear interpolation once again allows us to take a useful
shortcut. Figures 4(a) and 4(b) also show the projections of
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Figure 4. Joint space projections

the simplex into the state space. Note that in both projec-
tions, the region of interest is a single point in overlapping
simplices. Again, because interpolation is linear, the points
of intersection are easily found by projecting the bound-
aries onto the state space and performing interpolation on
these lower dimensional shadows. Though boundaries will
overlap in the lower dimensional space, each will have a
unique set of vertices and produce different answers. One
of these will be the maximum.

The algorithm for searching the action space at a given
state s thus becomes very simple and elegant:

• Find all hypercubes intersected by the hyperplane at s.
This is easily done with a kd-trie using an orthogonal
range query.

• For each hypercube, enumerate all Kuhn simplices.

• For each simplex, enumerate all ds-dimensional
boundaries.

• Project each boundary into the state space and inter-
polate at s.

The proof that this method is equivalent to finding intersec-
tions in the joint space is given in [5].

3.3. Splitting Criteria

In principle, it would be best to refine the joint space
only where it will improve the policy. Unfortunately, this is



not generally computable in advance. An alternative would
be to refine regions of the space that improve the value
function estimate. This is also not generally knowable, but
an approximation may be made.

We refine the model based on maximum interpolation
error. The error function is defined over all points p =
(s, a) within each simplex S as

E(p) =
∣∣∣V (p) − V̂ (p)

∣∣∣ (3)

where V (p) is the multistep discounted value at p, and
V̂ (p) is the interpolated value at p, which is a weighted
sum of the V (p) values of the vertices in the enclosing sim-
plex.

This error function is defined everywhere in the inte-
rior of each hypercube. The purpose of splitting is to re-
duce the maximum error. Splitting is therefore done when
supp E(p) surpasses some suitable threshold ε.

In practice, supp E(p) is approximated with a set
of random sample points PH within a hypercube by
maxp∈PH

E(p). Whenever this value is greater than ε for
a hypercube, the cube is marked for splitting. 2

Once all cubes have been evaluated, the marked cubes
are split. What remains is to determine in which dimension
to split them. We split in the dimension that produces a new
cube with the smallest maximum error. More precisely, let
CL

x (H) and CR
x (H) be the left and right “children” result-

ing from a split of hypercube H in dimension x:

x = arg min
x′∈{0,··· ,d}

[
min

D∈{L,R}

(
max

p∈P
CD

x′

E(p)

)]
. (4)

This may result in two child cubes with very different er-
rors. The split is performed so as to minimize the maxi-
mum error of one of the cubes, leaving the possibility that
the other will have a very high error. This is tolerable be-
cause the high error cube is likely to be split at the next
iteration to improve its error characteristics.

No splitting is done if the hypercube has low error or if
the hypercube is smaller than the smallest feature of inter-
est, a parameter described in the next section.

3.4. JoSTLe Parameters

JoSTLe adds a small number of tunable parameters to
the standard value iteration algorithm, shown in Table 1.

The minimum feature length in dimension i is denoted
ωi. This parameter determines when a cube is too small to
be split regardless of error and it serves to keep the algo-
rithm from splitting forever around discontinuous bound-
aries in the value function. This parameter is typically easy

2Random sampling is a naive and simple way to approach the problem,
but it is not likely to be the best. Other approximations are the subject of
future work.

Table 1. JoSTLe parameters
ωi Minimum feature length in dimension i

Ω Minimum Lebesgue measure of a hypercube
ε Error threshold
σ Number of sample points per hypercube

to obtain given that many reinforcement learning problems
have known reward boundaries. The smallest reward fea-
ture size is often a good starting point for this parameter.

In practice, the performance of the algorithm degrades
smoothly as this parameter is increased (as splits are lim-
ited). Smaller values always yield better accuracy, but often
at the expense of convergence speed.

The ωi parameter may be used in a number of ways. It
can limit a cube’s ability to split in a particular dimension
if its length in that dimension is less than ωi. Alternatively,
it can be used to compute a minimum allowed Lebesgue
measure Ω =

∏d

i=1 ωi. If this latter method is used, then a
cube is not split in any dimension if its Lebesgue measure is
smaller than Ω. The experiments outlined in this paper use
the former, though the latter was tested with similar results.

The error threshold ε is also used during the splitting
process. If a cube’s maximum error is less than ε, the cube
need not be split. Determining an appropriate value for
ε can be challenging, but a practical approximation may
be made based on the maximum range of reward values
Rmax − Rmin, the time step φ, and the discount factor γ.

If the problem has only terminal reinforcements, an up-
per bound on the error is given by φ(Rmax − Rmin) since
the integral over trajectory rewards will be zero until the
end of the trajectory. Although this is a fairly conservative
bound, it works well in practice.

Problems with non-terminal reinforcements may use an
alternate upper bound, determined by accounting for an in-
finite string of discounted rewards: φ(Rmax−Rmin)

1−γ
.

These upper bounds can be used to define a more intu-
itive error threshold. For example, the threshold may be set
to some fraction of the upper bound, making it easy to gen-
erate reasonable values. 1% of the maximum error is often
a reasonable error threshold.

The number of points σ scattered in a given hypercube
may be computed from the minimum Lebesgue measure:

σ =

⌈
ΩH

Ω

⌉
(5)

where ΩH is the Lebesgue measure of hypercube H. The
smallest allowable feature is allocated exactly one point. If
σ becomes 1, then the hypercube can no longer be effec-
tively tested for splitting.

Initially, the number of sample points can be very large,
resulting in a substantial increase in time spent sampling
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Figure 5. 1D Golf reward boundaries

and testing for splits. This number may be limited to a
reasonable maximum, e.g. 1000.

3.5. Convergence

Gordon addressed the issue of convergence at length,
and showed that averaging function approximators will al-
low the value iteration process to converge [3]. Among
these are barycentric interpolators, of which the linear in-
terpolation method described here is one. Because value
iteration is done separately from the refinement process,
and we operate over a finite set of actions, Gordon’s con-
vergence result still applies.

4. Experiments

4.1. 1D Golf

One-dimensional Golf is a test problem with low dimen-
sionality and a continuous state and action space. A golf
ball is sitting on a one-dimensional line and must be hit
into a hole in the center of the space. The state space is
described by s ∈ [−10, 10]. The action space is also con-
tinuous: a ∈ [−10, 10]. The hole is centered at (0, 0) and
is 0.5 units wide. The environment is deterministic and ac-
cessible. The system characteristics are

st+1 = st +
a

|a|

√
10|a| . (6)

If the ball hits a wall, it stops and a reinforcement
of −1 is received. If it lands in the hole (i.e., st+1 ∈
[−0.25,−.25]) a reinforcement of 1 is received. In all other
cases, a reinforcement of 0 is received. A graphical repre-
sentation of the joint space with the positive (in the center)
and negative (in the corners) reward boundaries is shown in
Figure 5.

(a) Discretization (b) Policy

Figure 6. JoSTLe discretization and policy for
1D Golf

This problem is more interesting than it first appears.
The region of high reward is very small and nonlinear.
Additionally, reinforcements are not located strictly at the
boundary of the problem space, making them difficult for
VRD to find.

4.2. Results

Both JoSTLe and VRD were applied to the golf prob-
lem. Though there are many possible splitting criteria for
VRD, in a 1-dimensional problem average corner value
difference works as well as any of them (more complex cri-
teria are only helpful in higher dimensions [6]). In VRD,
splitting occurred if the value difference was above 0.001,
and in the case of JoSTLe, ε was set to 5% of the upper
bound on the error. The timestep φ = 1. Both used a γ

of 0 since it was known a priori that only one step is ever
needed.

JoSTLe began with a single joint space hypercube and
learned the appropriate discretization over time. VRD be-
gan with a single line segment in the state space and was
applied using several different uniform action discretiza-
tions. For each algorithm, policy accuracy was calculated
after every round of splitting and iteration. Since the opti-
mal policy is known for this problem and always consists
of a single step, the accuracy was calculated by scanning
the state space and querying the models for correct policy
values. The accuracy is the ratio of correct actions to total
states queried.

The policy obtained by the joint learner is shown in Fig-
ure 6. In all available states, a correct action is chosen (the
accuracy is 100%). The discretization hypercubes are also
shown in Figure 6; it is clear that the learner concentrated
its resources on areas of sharp reward transition. This be-
havior is expected since γ = 0.
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Figure 7. JoSTLe and VRD accuracy vs. num-
ber of vertices

The accuracy of JoSTLe vs. the number of vertices used
is shown in Figure 7. The behavior of VRD is shown on
the same graph. The numbered labels indicate the num-
ber of discrete actions available to the algorithm throughout
its trials. The graph shows that JoSTLe’s policy accuracy
went up quickly with every refinement, while the accuracy
obtained with VRD rose slowly. It took 256 available ac-
tions to compare to the accuracy of JoSTLe, and far more
state/action pairs. Given fewer actions, VRD peaks at a
particular policy accuracy and then levels off, since finer
action discretization is required but not available.

4.3. Additional Experiments

The first additional experiment was also done using the
1D Golf problem, altered so that the reward boundaries did
not cover the entire state space. This required JoSTLe to do
real value iteration (with a nonzero discount factor). The
results were just as good as with the original problem.

Additionally, JoSTLe found a nearly optimal policy for
the Mountain Car problem [6] without any prior knowledge
either of what actions would be useful or of which parts
of the state space were interesting. It learned that the two
“bang-bang” actions are more useful than the others (full
forward and full reverse). These turn out to be exactly the
same two actions used in [6].

The policy learned by JoSTLe is shown in Figure 8. The
policy is not perfect, but is close to optimal. Some arti-
facts exist and the reason for their existence is still being
explored.

Alternate views of the policy are shown in Figure 9.
Figure 9(a) shows the full policy and highlights the fact
that JoSTLe focused most of its attention on two actions:
full forward and full reverse. These are the bang-bang ac-
tions used by VRD. Figures 9(b) and 9(c) show the pol-
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Figure 8. JoSTLe policy for Mountain Car

icy projected onto the Position/Acceleration and Veloc-
ity/Acceleration planes. The presence of points at the in-
terior of these figures, rather than exclusively at the top and
bottom, indicates that other suboptimal actions crept into
the policy in some areas of the state space, a matter which
needs to be studied further.

5. Liabilities

One unfortunate characteristic of JoSTLe when com-
pared to VRD is its higher complexity. Because the di-
mensionality is increased, all of the worst space and time
characteristics of VRD are exacerbated in JoSTLe (e.g. d

is higher for JoSTLe, and each split still produces 2d new
vertices). Additionally, while VRD never enumerates the
simplices of a hypercube, JoSTLe must. Each hypercube
has exactly d! Kuhn simplices, each of which JoSTLe must
decompose into all

(
d
ds

)
boundaries. This has a negative

impact on dimensional scalability.
Some optimizations can alleviate the complexity, plac-

ing it on a more equal footing with VRD. The culling of
degenerate and redundant simplices, as well as the fact that
JoSTLe often needs fewer nodes overall can help to signif-
icantly reduce the complexity in practice. More work must
be done to determine where else the complexity may be
reduced.

Another problem is exposed by the fact that a perfectly
optimal policy for Mountain Car was never achieved. Re-
search revealed several potential areas of improvement.
First, it is not clear that the splitting criterion presented here
is exactly what is needed to generate a good policy.

Second, though the integrity of the final value update
equation was maintained throughout the development of
the algorithm, it appears that one of the basic assumptions
of value iteration may have been violated: the Markov
property. VRD muscled itself into retaining this property
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Figure 9. JoSTLe policy for Mountain Car

in a continuous space by treating interpolation weights as
transition probabilities. JoSTLe has no similar interpreta-
tion of interpolated points, as it must first choose an action
to determine the most likely current states. In other words,
we don’t know where we are until we go somewhere else, a
clear violation of the requirement that our decision be based
only on the current state. That JoSTLe works as well as it
does indicates that the violation may not be serious, but it
does merit further exploration and should be addressed in a
future work.

6. Conclusions and Future Research

JoSTLe represents a productive step toward the ability
to perform value iteration on problems with continuous ac-
tions. It provides a homogeneous framework for refinement
of both states and actions and has an elegant appeal. Even
so, there is much room for improvement.

The Markov property needs to be studied in greater de-
tail in this context to determine whether there is a useful
interpretation of JoSTLe that does not violate this property.
Research in that area is ongoing.

Additionally, VRD proposed influence and variance to
discretize only those portions of the space that affect the
overall policy; more research could be devoted to an anal-
ysis of joint-space analogues.

Non-uniform splitting is another possible research di-
rection. Both JoSTLe and VRD split regions of space in
half, which is not always optimal in terms of efficiency.
The ability to perform oblique splits may also allow for a
more efficient representation. Some preliminary work in
this area indicates promise, but more research is needed.
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