
Parallel PSO Using MapReduce

Andrew W. McNabb, Christopher K. Monson, and Kevin D. Seppi

Abstract— In optimization problems involving large amounts
of data, such as web content, commercial transaction information,
or bioinformatics data, individual function evaluations may take
minutes or even hours. Particle Swarm Optimization (PSO) must
be parallelized for such functions. However, large-scale parallel
programs must communicate efficiently, balance work across all
processors, and address problems such as failed nodes.

We present MapReduce Particle Swarm Optimization
(MRPSO), a PSO implementation based on the MapReduce
parallel programming model. We describe MapReduce and show
how PSO can be naturally expressed in this model, without
explicitly addressing any of the details of parallelization. We
present a benchmark function for evaluating MRPSO and note
that MRPSO is not appropriate for optimizing easily evaluated
functions. We demonstrate that MRPSO scales to 256 processors
on moderately difficult problems and tolerates node failures.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is an optimization
algorithm that was inspired by experiments with simulated
bird flocking [8]. This evolutionary algorithm has become
popular because it is simple, requires little tuning, and has
been found to be effective for a wide range of problems.
Often a function that needs to be optimized takes a long
time to evaluate. A problem using web content, commercial
transaction information, or bioinformatics data, for example,
may involve large amounts of data and require minutes or
hours for each function evaluation. To optimize such functions,
PSO must be parallelized.

Unfortunately, large-scale PSO, like all large-scale parallel
programs, faces a wide range of problems. Inefficient com-
munication or poor load balancing can keep a program from
scaling to a large number of processors. Once a program
successfully scales, it must still address the issue of failing
nodes. For example, assuming that a node fails, on average,
once a year, then the probability of at least one node failing
during a 24-hour job on a 256-node cluster is 1 − (1 −
1/365)256 = 50.5%. On a 1000-node cluster, the probability
of failure rises to 93.6%.

Google faced these same problems in large-scale paral-
lelization, with hundreds of specialized parallel programs that
performed web indexing, log analysis, and other operations
on large datasets. A common system was created to simplify
these programs. Google’s MapReduce is a programming model
and computation platform for parallel computing [4]. It allows

Andrew W. McNabb is with the Department of Computer Science, Brigham
Young University, 3361 TMCB, Provo, UT 84602 (phone: 801-422-8717;
email: a@cs.byu.edu).

Christopher K. Monson is with Google, Inc., 4720 Forbes Ave., Lower
Level, Pittsburgh, PA 15213 (email: c@cs.byu.edu).

Kevin D. Seppi is with the Department of Computer Science, Brigham
Young University, 3361 TMCB, Provo, UT 84602 (phone: 801-422-4619;
email: k@cs.byu.edu).

simple programs to benefit from advanced mechanisms for
communication, load balancing, and fault tolerance.

MapReduce Particle Swarm Optimization (MRPSO) is a
parallel implementation of Particle Swarm Optimization for
computationally intensive functions. MRPSO is simple, flexi-
ble, scalable, and robust because it is designed in the MapRe-
duce parallel programming model.

Since MRPSO is intended for computationally intensive
functions, we use the problem of training a radial basis
function (RBF) network as representative of optimization
problems which use large amounts of data. An RBF network
is a simple function approximator that can be trained by PSO,
with difficulty proportional to the amount of training data.

Section II reviews standard PSO and prior work in par-
allel PSO. Section III discusses the MapReduce model in
detail, including a simple example. Section IV describes how
Particle Swarm Optimization can be cast in the MapReduce
model, without any explicit reference to load balancing, fault
tolerance, or any other problems associated with large-scale
parallelization. Section V shows that MRPSO scales well
through 256 processors on moderately difficult problems but
should not be used to optimize trivially evaluated functions.

II. PARTICLE SWARM OPTIMIZATION

In Particle Swarm Optimization, a set of particles explores
the input space of a function. Each particle has a position
and velocity, which are updated during each iteration of the
algorithm. Additionally, each particle remembers its own best
position so far (personal best) and the best position found by
any particle in the swarm (global best).

Initially, each particle has a random position and velocity
drawn from a function-specific feasible region. The particle
evaluates the function and updates its velocity such that it is
drawn towards its personal best point and the global best point.
This influence towards promising locations is strong enough
that the particle eventually converges but weak enough that
the particles explore a wide area.

The following equations are used in constricted PSO to
update the position x and velocity v of a particle with personal
best p and global best g:

vt+1 = χ [vt + φ1 U()⊗ (p− xt) + φ2 U()⊗ (g − xt)]
(1)

xt+1 = xt + vt+1 (2)

where φ1 = φ2 = 2.05, U() is a vector of samples drawn from
a standard uniform distribution, and ⊗ represents element-wise

multiplication. The constriction χ is defined to be:

χ =
2κ

|2− φ−
√
φ2 − 4φ|

where κ = 1.0 and φ = φ1 + φ2 [3].
There are several parallel adaptations of Particle Swarm

Optimization. Synchronous PSO, like MRPSO, preserves the
exact semantics of serial PSO [12]. In contrast, asynchronous
variants do not preserve the exact semantics of serial PSO, but
instead focus on better load balancing [9], [13]. Other variants
propose different topologies to limit communication among
particles and between groups of particles [1], [10]. Parallel
PSO has been applied to applications including antenna design
[6] and biomechanics [9] and adapted to solve multiobjective
optimization problems [10], [11].

III. MAPREDUCE

MapReduce is a functional programming model that is well
suited to parallel computation. In the model, a program con-
sists of a high-level map function and reduce function which
meet a few simple requirements. If a problem is formulated
in this way, it can be parallelized automatically.

In MapReduce, all data are in the form of keys with
associated values. For example, in a program that counts the
frequency of occurrences for various words, the key would be
a word and the value would be its frequency.

A MapReduce operation takes place in two main stages. In
the first stage, the map function is called once for each input
record. At each call, it may produce any number of output
records. In the second stage, this intermediate output is sorted
and grouped by key, and the reduce function is called once for
each key. The reduce function is given all associated values
for the key and outputs a new list of values (often “reduced”
in length from the original list of values).

The following notation and example are based on the
original presentation [4].

A. Map Function

A map function is defined as a function that takes a single
key-value pair and outputs a list of new key-value pairs. The
input key may be of a different type than the output keys,
and the input value may be of a different type than the output
values:

map : (K1, V1)→ list((K2, V2))

Since the map function only takes a single record, all map
operations are independent of each other and fully paralleliz-
able.

B. Reduce Function

A reduce function is a function that reads a key and a
corresponding list of values and outputs a new list of values
for that key. The input and output values are of the same type.
Mathematically, this would be written:

reduce : (K2, list(V2))→ list(V2)

Function 1 WordCount Map

def mapper (key , v a l u e) :
f o r word in v a l u e . s p l i t () :

emi t ((word , 1))

Function 2 WordCount Reduce

def r e d u c e r (key , v a l u e l i s t) :
t o t a l = sum (v a l u e l i s t)
emi t (t o t a l)

A reduce operation may depend on the output from any
number of map calls, so no reduce operation can begin
until all map operations have completed. However, the reduce
operations are independent of each other and may be run in
parallel.

Although the formal definition of map and reduce functions
would indicate building up a list of outputs and then returning
the list at the end, it is more convenient in practice to emit one
element of the list at a time and return nothing. Conceptually,
these emitted elements still constitute a list.

C. Example: WordCount

The classic MapReduce example is WordCount, a program
which counts the number of occurrences of each word in a
document or set of documents. For this program, the input
and output sets are:

K1 : N
V1 : set of all strings
K2 : set of all strings
V2 : N

In WordCount, the input value is a line of text. The input
key is ignored but arbitrarily set to be the line number for the
input value. The output key is a word, and the output value is
its count.

The map function, shown as Function 1, splits the input line
into individual words. For each word, it emits the key-value
pair formed by the word and the value 1.

The reduce function, shown as Function 2, takes a word and
list of counts, performs a sum reduction, and emits the result.
This is the only element emitted, so the output of the reduce
function is a list of size 1.

These map and reduce functions are deceptively simple. The
problem itself is inherently difficult—implementing a scalable
distributed word count system with fault-tolerance and load-
balancing is not easy. However all of the complexity is found
in the surrounding MapReduce infrastructure rather than in the
map and reduce functions. Note that the reduce function does
not even output a key, since the MapReduce system already
knows what key it passed in.

The data given to map and reduce functions, as in this ex-
ample, are generally as fine-grained as possible. This ensures

that the implementation can split up and distribute tasks. The
MapReduce system consolidates the intermediate output from
all of the map tasks. These records are sorted and grouped by
key before being sent to the reduce tasks.

If the map tasks emit a large number of records, the
sort phase can take a long time. MapReduce addresses this
potential problem by introducing the concept of a combiner
function. If a combiner is available, the MapReduce system
will locally sort the output from several map calls on the same
machine and perform a “local reduce” using the combiner
function. This reduces the amount of data that must be sent
over the network for the main sort leading to the reduce phase.
In WordCount, the reduce function would work as a combiner
without any modifications.

D. Benefits of MapReduce

Although not all algorithms can be efficiently formulated
in terms of map and reduce functions, MapReduce provides
many benefits over other parallel processing models. In this
model, a program consists of only a map function and a reduce
function. Everything else is common to all programs. The
infrastructure provided by a MapReduce implementation man-
ages all of the details of communication, load balancing, fault
tolerance, resource allocation, job startup, and file distribution.
This runtime system is written and maintained by parallel
programming specialists, who can ensure that the system is
robust and optimized, while those who write mappers and
reducers can focus on the problem at hand without worrying
about implementation details.

A MapReduce system determines task granularity at runtime
and distributes tasks to compute nodes as processors become
available. If some nodes are faster than others, they will be
given more tasks, and if a node fails, the system automatically
reassigns the interrupted task.

E. MapReduce Implementations

Google has described its MapReduce implementation in
published papers and slides, but it has not released the sys-
tem to the public. Presumably the implementation is highly
optimized because Google uses it to produce its web index.

The Apache Lucene project has developed Hadoop, an
Java-based open-source clone of Google’s closed MapRe-
duce platform. The platform is relatively new but rapidly
maturing. At this time, Hadoop overhead is significant but
not overwhelming and is expected to decrease with further
development.

IV. MAPREDUCE PSO (MRPSO)
In an iteration of Particle Swarm Optimization, each particle

in the swarm moves to a new position, updates its velocity,
evaluates the function at the new point, updates its personal
best if this value is the best seen so far, and updates its global
best after comparison with its neighbors. Except for updating
its global best, each particle updates independently of the rest
of the swarm.

Due to the limited communication among particles, updating
a swarm can be formulated as a MapReduce operation. As

a particle is mapped, it receives a new position, velocity,
value, and personal best. In the reduce phase, it incorporates
information from other particles in the swarm to update its
global best. The MRPSO implementation conforms to the
MapReduce model while performing the same calculations as
standard Particle Swarm Optimization.

A. Particle Representation and Messages

In MRPSO, the input and output sets are:

K1 : N
V1 : set of all strings
K2 : N
V2 : set of all strings

Each particle is identified by a numerical id key, and
particle state is represented as a string. The state of a particle
consists of its dependents list (neighbors’ ids), position,
velocity, value, personal best position, personal best value,
global best position, and global best value. The state string is
a semicolon-separated list of fields. If a field is vector valued,
its individual elements are comma-separated. The state string
is of the form:

deps; pos; vel; val; pbpos; pbval; gbpos; gbval

A typical particle is shown in Figure 1. This particle is
exploring the function f(x) = x21 + x22. Its components are
interpreted as follows:

3 particle id
1, 2, 3, 4 dependents (neighbors)
1.7639, 2.5271 current position (x1, x2)
52.558, 50.444 velocity (x1, x2)
9.4976 value of f(x) at the current position

(1.76392 + 2.52712)
1.7639, 2.5271 personal best position (x1, x2)
9.4976 personal best value
−1.0151,−2.0254 global best position (x1, x2)
5.1325 global best value

MRPSO also creates messages, which are like particles
except that they have empty dependents lists. A message is
sent from one particle to another as part of the MapReduce
operation. In the reduce phase, the recipient reads the personal
best from the message and updates its global best accordingly.

B. MRPSO Map Function

The MRPSO map function, shown as Function 3, is called
once for each particle in the population. The key is the id
of the particle, and the value is its state string representation.
The PSO mapper finds the new position and velocity of the
particle and evaluates the function at the new point. It then
calls the update method of the particle with this information.
In addition to modifying the particle’s state to reflect the new
position, velocity, and value, this method replaces the personal
best if a more fit position has been found.

(3, “1, 2, 3, 4; 1.7639, 2.5271; 52.558, 50.444; 9.4976; 1.7639, 2.5271; 9.4976;−1.0151,−2.0254; 5.1325”)

Fig. 1. A particle as a key-value pair

Function 3 MRPSO Map

def mapper (key , v a l u e) :
p a r t i c l e = P a r t i c l e (v a l u e)

Update t h e p a r t i c l e :
n e w p o s i t i o n , n e w v e l o c i t y = p s o m o t i o n (p a r t i c l e)
y = e v a l u a t e f u n c t i o n (n e w p o s i t i o n)
p a r t i c l e . u p d a t e (n e w p o s i t i o n , n e w v e l o c i t y , y)

Emit a message f o r each d e p e n d e n t p a r t i c l e :
message = p a r t i c l e . make message ()
f o r d e p e n d e n t i d in p a r t i c l e . d e p e n d e n t l i s t :

i f d e p e n d e n t i d == key :
p a r t i c l e . g b e s t c a n d i d a t e (p a r t i c l e . p b e s t p o s i t i o n , p a r t i c l e . p b e s t v a l u e)

e l s e :
emi t ((d e p e n d e n t i d , r e p r (message)))

Emit t h e upda ted p a r t i c l e w i t h o u t chang ing i t s i d :
emi t ((key , r e p r (p a r t i c l e)))

Function 4 MRPSO Reduce

def r e d u c e r (key , v a l u e l i s t) :
p a r t i c l e = None
b e s t = None

Of a l l o f t h e i n p u t s , f i n d t h e r e c o r d w i t h t h e b e s t g b e s t v a l u e :
f o r v a l u e in v a l u e l i s t :

r e c o r d = P a r t i c l e (v a l u e)
i f (b e s t i s None) or (r e c o r d . g b e s t v a l u e <= b e s t . g b e s t v a l u e) :

b e s t = r e c o r d
i f not r e c o r d . i s m e s s a g e () :

p a r t i c l e = r e c o r d

Update t h e g b e s t o f t h e p a r t i c l e and e m i t :
i f p a r t i c l e i s not None :

p a r t i c l e . g b e s t c a n d i d a t e (b e s t . g b e s t p o s i t i o n , b e s t v a l u e)
emi t (r e p r (p a r t i c l e))

e l s e :
emi t (r e p r (b e s t))

The key to implementing PSO in MapReduce is communi-
cation between particles. Each particle maintains a dependents
list containing the ids of all neighbors that need information
from the particle to update their own global bests. After the
map function updates the state of a particle, it emits messages
to all dependent particles. When a message is emitted, its
corresponding key is the id of the destination particle, and its
value is the string representation, which includes the position,
velocity, value, and personal best of the source particle. The
global best of the message is also set to the personal best.

If the particle is a dependent of itself, as is usually the case,
the map function updates the global best of the particle if the
personal best is an improvement. Finally, the map function
emits the updated particle and terminates.

C. MRPSO Reduce Function

The MRPSO reduce function, shown as Function 4, receives
a key and a list of all associated values. The key is the
id of a particular particle in the population. The values list
contains the newly updated particle and a message from each
neighbor. The PSO reducer combines information from all of
these messages to update the global best position and global
best value of the particle. The reducer emits only the updated
particle.

Function 4 also works as a combiner. If no particle is
found in the input value list, the function combines the list
by emitting only the best message. This message is then sent
to the reducer.

D. Map and Reduce in Context

When a particle is emitted by a reducer, it is fully updated.
In the map phase, it updates, moves, and evaluates, and then
updates its personal best. In the reduce phase, it updates its
global best after receiving messages from all of its neighbors in
the swarm. A map phase followed by a reduce phase performs
an iteration of the swarm that is exactly equivalent to an
iteration in single-processor PSO.

Observe that the MRPSO implementation does not explicitly
deal with communication across nodes, load balancing, or
node failures. The MapReduce formulation of the problem
allows the work to be divided in small enough pieces that
the MapReduce system can balance work across processors
and deal with failed nodes.

V. RESULTS AND REMARKS

A. Implementation

Our experiments involve both a serial and a parallel imple-
mentation of Particle Swarm Optimization. The two Python
programs share code for particle motion and for performing
evaluations of the objective function. Particle motion is a
straightforward implementation of (1) and (2).

The serial PSO program creates a swarm, or list of particle
objects. During each iteration, it updates the velocity, position,
value, and personal best of all of the particles. It then finds
the global best, updates all of the particles, and continues to
the next iteration.

The MRPSO program performs the same operations as
the sequential code. However, instead of performing PSO
iterations internally, it delegates this work to the Hadoop
MapReduce system. After creating the initial swarm, it saves
the particles to a file as a list of key-value pairs, as in Figure 1.
This file is the input for the first MapReduce operation.
Hadoop performs a sequence of MapReduce operations, each
of which evaluates a single iteration of the particle swarm.
The output of each MapReduce operation represents the state
of the swarm after the iteration of PSO, and this output
is used as the input for the following iteration. In each
MapReduce operation, Hadoop calls map (Function 3) and
reduce (Function 4) in parallel to update particles in the
swarm. Note that the code that we have shown for these two
functions is the actual implementation.

B. Environment

Performance experiments were run on Brigham Young
University’s Marylou4 supercomputer. Marylou4 is a cluster
of Dell 1955 blade servers. Each node has four 2.6 GHz
Xeon cores and 8 GB of memory. In serial experiments, we
reserved one processor per node, and in parallel experiments,
we used all four processors on each machine. Hadoop version
0.10 in Java 1.6 was used as the MapReduce system for all
experiments. Both MRPSO and serial PSO were run in a
Python 2.5 interpreter. Hadoop’s streaming system provided
the interface between Java and Python code.

C. Methodology

MRPSO performs the same calculations as a serial imple-
mentation of PSO. With the same number of particles and
iterations, MRPSO and serial PSO will achieve the same level
of accuracy. Comparing the quality of solutions is useful only
to verify correctness. However, the average execution time per
iteration is important because it shows whether the parallel
implementation is an improvement. Unless noted otherwise,
the first iteration of each run was excluded from averages
because they often ran slightly faster or slower than the rest
of the runs.

Each swarm consists of 1,000 fully connected particles.
Since each particle has a 1,000 neighbors, the dependents list
is quite large. Since the sociometry is static in this case, an
explicit list is not necessary. To save space, we replaced the
full dependents list field in the string representation with the
special string “all-1000.” When a particle saw this string, it
emitted messages for all 1,000 particles in the swarm as if the
dependents list were included.

MapReduce has many parameters involving issues such
as how to partition the input and how many tasks to run
concurrently on each machine. We decided how to set these
parameters after performing some initial experiments with n
nodes and p processors for various values of n and p. The
number of tasks per node, which indicates how many total
map and reduce functions can be executing concurrently on
one physical computer, was set to 4 (the number of processors
per node). The number of map tasks per job, which determines

how finely to partition the input, was set to p, the total number
of processors. We used log2 n, but not more than 4, reduce
tasks per job. We also configured the MapReduce system to
use the reduce function as a combiner.

We used speedup as a measure of scalability. However, there
are enough variants of speedup that the measure is worse than
useless without precise clarification. Speedup is defined as the
ratio of the serial runtime of the best sequential algorithm for
solving a problem to the time taken by the parallel algorithm
to solve the same problem on p processing elements [5]. Thus
the speedup with p processors is:

Sp =
t1
tp

(3)

The definition of speedup is ambiguous as to what constitutes
the best sequential algorithm. Since MRPSO is a reformulation
of PSO that performs the same operations, we use our standard
single-processor PSO implementation as the best sequential
algorithm. This implementation and the MRPSO implemen-
tation are written in the same language, share common code,
and run on the same hardware.

D. RBF Network Training

We used a RBF network training function as our primary
test function because it is representative of functions that use
large amounts of data. An RBF network is a sum of radial
basis functions and is used as a function approximator [2].
The following equation describes the activation function of an
RBF network:

f(x) =

nbases∑
i=1

si√
2π

exp


dinput∑

j=1

wij

625
(xi − cij)2

 1
2

 (4)

The RBF network f is composed of nbases Gaussian basis
functions. Basis i has center ci, input weights wi (precision),
and output scale si.

Given a set of training points with known values, a particle
swarm can minimize the sum square error function to find the
parameters of the RBF network that best fits the data. Thus,
the training problem becomes an optimization problem of the
error function:

g(X,y) =

npoints∑
i=1

(f(Xi)− yi)2 (5)

where X are the training points and y are the corresponding
values. A particle swarm finds parameters for the RBF network
f in (4) that minimize the error function g shown in (5).

To a particle swarm, an RBF network with one-dimensional
input and four basis functions is represented as a 12-
dimensional vector with 3 parameters for each of the 4 bases,
for example:

(s1, w11, c11, s2, w21, c21, s3, w31, c31, s4, w41, c41)

= (32, 1.3,−22, 11, 37, 18, 45, 4.3,−7.8, 1.4, 11, 0.53) (6)

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 1 4 8 16 32 64 128Ex
ec

ut
io

n
Ti

m
e

pe
r I

te
ra

tio
n

(s
ec

on
ds

)

Number of Processors

RBF MRPSO
Serial Execution Time

Fig. 2. Execution times per iteration for RBF with 10,000 points

 1

 2

 4

 8

 16

 32

 1 4 8 16 32 64 128

Sp
ee

du
p

Number of Processors

RBF MRPSO
Linear Speedup

Fig. 3. Speedup for RBF with 10,000 data points

E. RBF Results

We used PSO for the 12-dimensional problem of optimizing
weights for an RBF network. The function minimized by PSO
was g in (5); in this problem, a particle’s position is a vector
of weights for an RBF network. The training data was a set
of 10,000 samples from the RBF network of (6).

We ran PSO for the serial implementation and for MRPSO
with 1, 4, 8, 16, 32, 64, and 128 processors. In each case,
we report the average execution time of at least 70 iterations
of PSO. For MRPSO, the estimated standard deviation of
execution times ranged from 2.3 seconds for 8 processors to
6.7 seconds for 128 processors. For serial PSO, the estimated
standard deviation was 34 seconds (2.8% of the average time).
The execution times are shown in Figure 2.

With 10,000 training points, each evaluation of g took about
1.2 seconds. Although this is not a very long time, it is much
longer than common PSO benchmark functions. In fact, a
single iteration in the serial implementation took 1,230 seconds
(20.5 minutes) to complete. A training set of 10,000 data
points is not a large, and a function that takes 1.2 seconds
to compute is not slow. However, even with this function,
parallelization made a huge difference: with 64 processors,
each iteration took 65 seconds.

The speedup, as calculated using (3), is shown in Figure 3.

1/256

1/64

1/16

1/4

 1

 4

 16

 64

 1 4 8 16 32 64 128

Sp
ee

du
p

Number of Processors

Sphere MRPSO
RBF MRPSO

Linear Speedup

Fig. 4. Speedup for the sphere function compared to the speedup for RBF.
Using MRPSO for sphere would not be appropriate.

Improvement was dramatic until 64 processors, but beyond this
point, implementation and communication overhead hindered
further improvement. For each iteration with 128 processors,
the amount of computation per processor was only 9.6 sec-
onds.

F. Sphere

A MapReduce runtime system introduces overhead due to
job startup, communication, and sorting. Additional overhead
is incurred by MRPSO’s inter-particle messages. If the func-
tion being optimized is simple enough that particle commu-
nication takes longer than function evaluation, then MRPSO
should not be used.

The sphere function is: f(x) = x21 + x22 + · · · + x2n. Like
all of the standard benchmarks, it is easily evaluated. In our
serial PSO, it took less than a millisecond per evaluation on
12-dimensional sphere with 1,000 particles. For parallelization
to be useful, there would have to be almost no additional
overhead. In MapReduce, the overhead to process each particle
would certainly be expected to take much longer than a
millisecond (on the cluster, round trip time alone is 0.084
milliseconds). In Hadoop 0.10, the amount of time to evaluate
sphere was dominated by the time needed by the MapReduce
runtime system.

Figure 4 shows the speedup of MRPSO with 1,000 particles
on 12-dimensional sphere. The baseline is a standard serial
implementation which completed each iteration in 0.867 sec-
onds on average. Even at its best, MRPSO took 41.5 seconds
per iteration, which is many times slower than a millisecond.
MRPSO should not be used for easily evaluated functions.

The sphere function serves another useful purpose by mea-
suring the amount of MRPSO overhead. Since each evaluation
of sphere takes less than a millisecond to compute, the function
is essentially a null operation compared to the total execution
time. Overlaying the graph of RBF execution times with the
graph of sphere execution times shows how much of the time
was spent on function evaluation and how much was spent
on overhead. In Figure 5, the time between the two curves
approximates the amount of RBF computation time, while

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 4 8 16 32 64 128Ex
ec

ut
io

n
Ti

m
e

pe
r I

te
ra

tio
n

(s
ec

on
ds

)

Number of Processors

RBF MRPSO
Overhead (Sphere MRPSO)

Fig. 5. Execution times per iteration for RBF with 10,000 data points and
implementation overhead as measured by sphere

 1
 2
 4
 8

 16
 32
 64

 128
 256

 4 8 16 32 64 128 256

Sp
ee

du
p

Number of Processors

RBF 1,000,000
Linear Speedup

Fig. 6. Speedup for RBF with 1,000,000 data points

the line beneath the lower curve shows the amount of over-
head. As the number of processors increases to 128, the two
curves nearly meet. After this point, each additional processor
increases overhead more than it contributes to computation.
Some of the overhead represented by this curve is unavoidable,
but much of it will decrease as Hadoop continues to improve.

G. RBF With 1,000,000 Points

The earlier RBF experiments used 10,000 training points
and took 1.2 seconds to compute one function evaluation.
Although MRPSO scaled well for this function, it was not
particularly long-running function. However, with 100 times
as many data points, the RBF network error function from (5)
takes 100 times longer to run. At 120 seconds per function
evaluation, training an RBF network with 1,000,000 training
points is noticeably slow. Over 10 serial PSO experiments, the
average time per iteration was 120,000 seconds (33 hours),
with an estimated standard deviation of 710 seconds (12
minutes).

MRPSO experiments were similar to the previous experi-
ments. However, the first iteration was not dropped because
of the sparsity of data. Also, the 256-processor experiments
were run with 500 map tasks instead of 256 because of the
need for load balancing, as discussed below.

Figure 6 shows the speedup of RBF network training in
MRPSO. Note that the RBF nearly matches linear speedup
through 128 processors. The speedup with 16 processors is
14.9, and the speedup with 128 processors is 101.

H. Load Balancing

In each experiment with up to 128 processors, the number
of map tasks was equal to the total number of processors.
In these experiments, the MapReduce system performed static
load balancing. It split the input into similarly sized tasks and
assigned a task to each processor.

Alternatively, the number of map tasks can be set to the total
number of particles. In this case, there would be 1,000 map
tasks, with exactly one particle in each map task. However,
experimentation showed that this increased overhead.

With 256, we found that it was relatively common for a
machine to experience a network error and lose a map task.
When this happened, the MapReduce system recognized the
fault and restarted the task. The iteration completed success-
fully, but the reduce tasks could not begin until the last map
task completed. With 256 processors, iterations finished in less
than 600 seconds in the normal case, but took more than 1,000
seconds in the event of a failure.

To reduce the variance, the number of map tasks was set
to 500 instead of 256. Since there were more map tasks than
processors, Hadoop performed dynamic load balancing, and if
a task failed, the reassigned map task would complete more
quickly because it included 2 particles instead of 4. After
making this change, the slowest iteration time was 865 seconds
rather than 1,078 seconds. The more processors in use, the
greater the need for dynamic load balancing.

VI. FUTURE WORK AND CONCLUSIONS

If an MRPSO swarm has fewer particles than the number of
available processors, then the extra processors are idle. With
more particles than the number of processors, the MapReduce
system can dynamically balance the load. This suggests that
with thousands of processors, MRPSO would perform best
with a very large number of particles.

The number of messages emitted by the map function is pro-
portional to the size of the particle’s dependents list. Because
of this, each particle should have a limited number of neigh-
bors. MRPSO makes it easy to control the swarm sociometry,
but it is still not clear which sociometries work best in which
contexts, and very little work has been done on large swarms.
Experiments with more sparsely connected sociometries such
as rings, directed rings, and tribes in MRPSO might show how
to reduce communication and improve optimization. [7]

Since a particle’s dependents list is part of its state, it can be
updated during either the map or the reduce phase. Dynamic
changes to the dependents list might affect the performance
of PSO.

MRPSO makes no assumptions about whether the sociom-
etry is static or dynamic. If the sociometry is assumed to
be static, then the map function could refrain from emitting
unnecessary messages. In this case, a message would only be

emitted in iterations where a particle updates its personal best.
This might reduce the average communication overhead.

In summary, we have shown that Particle Swarm Optimiza-
tion can be naturally adapted to the MapReduce programming
model. With a function that took 2 minutes to evaluate,
MapReduce Particle Swarm Optimization scaled well through
256 processors. MRPSO addresses the problems that face
highly parallel programs because it builds on a system that
is specifically designed be robust.

REFERENCES

[1] M. Belal and T. El-Ghazawi. Parallel models for particle swarm
optimizers. The International Journal of Intelligent Computing and
Information Sciences, 4(1):100–111, 2004.

[2] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, November 1995.

[3] Maurice Clerc and James Kennedy. The particle swarm: Explosion,
stability, and convergence in a multidimensional complex space. IEEE
Transactions on Evolutionary Computation, 6(1):58–73, February 2002.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. Sixth Symposium on Operating System
Design and Implementation, November 2004.

[5] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel
Computing. Addison-Wesley, Harlow, England, second edition, 2003.

[6] Nanbo Jin and Yahya Rahmat-Samii. Parallel particle swarm optimiza-
tion and finite-difference time-domain (pso/fdtd) algorithm for multiband
and wide-band patch antenna designs. IEEE Transactions on Antennas
and Propogation, 53(11):3459–3468, 2005.

[7] James Kennedy. Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance. In Proceedings of the Congress
of Evolutionary Computation, volume 3, pages 1931–1938. IEEE Press,
1999.

[8] James Kennedy and Russell C. Eberhart. Particle swarm optimization.
In International Conference on Neural Networks IV, pages 1942–1948,
Piscataway, NJ, 1995. IEEE Service Center.

[9] Byung-Il Koh, Alan D. George, Raphael T. Haftka, and Benjamin J.
Fregly. Parallel asynchronous particle swarm optimization. International
Journal of Numerical Methods in Engineering, 67:578–595, 2006.

[10] Sanaz Mostaghim, Jürgen Branke, and Hartmut Schmeck. Multi-
objective particle swarm optimization on computer grids. Technical
Report 502, AIFB Institute, DEC 2006.

[11] K. Parsopoulos, D. Tasoulis, and M. Vrahatis. Multiobjective opti-
mization using parallel vector evaluated particle swarm optimization.
In Proceedings of the IASTED International Conference on Artificial
Intelligence and Applications, 2004.

[12] J. Schutte, J. Reinbolt, B. Fregly, R. Haftka, and A. George. Parallel
global optimization with the particle swarm algorithm. International
Journal of Numerical Methods in Engineering, 61:2296–2315, 2004.

[13] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. A parallel
particle swarm optimization algorithm accelerated by asynchronous
evaluations. In Proceedings of the 6th World Congresses of Structural
and Multidisciplinary Optimization, 2005.

