
Improving on the Kalman Swarm

Extracting Its Essential Characteristics

Christopher K. Monson and Kevin D. Seppi

Brigham Young University, Provo UT 84602, USA
{c,kseppi}@cs.byu.edu

Abstract. The Kalman Swarm (KSwarm) is a new approach to particle
motion in PSO that reduces the number of iterations required to reach
good solutions [1]. Unfortunately, it has much higher computational com-
plexity than basic PSO. This paper addresses the runtime of KSwarm in
a new algorithm called “Linear Kalman Swarm” (LinkSwarm) which has
linear complexity and performs even better than KSwarm. Some possible
reasons for the success of KSwarm are also explored.

1 Introduction

The Kalman Swarm (KSwarm) [1] is an adaptation of standard PSO [2] that
uses the Kalman Filter [3] to calculate the next position of each particle. The
best location in its neighborhood (which always includes the particle itself) is
used as an observation at each time step, producing a new location through
prediction. This approach has been shown to produce better solutions in fewer
iterations than standard PSO in a variety of test functions.

KSwarm, however, is not without liabilities. The dimensional complexity of
running the algorithm is O(d3), which is much higher than the O(d) complexity
of basic PSO. Furthermore, KSwarm has a number of input parameters that are
difficult to tune.

This paper presents the new algorithm “Linear Kalman Swarm” (Link-
Swarm), which is an approximation to KSwarm with linear complexity that
obtains better performance. The algorithm is developed by analyzing and ex-
tracting the essential characteristics of KSwarm. Through its development, some
ideas are generated that may help explain the good performance of KSwarm. Re-
sults that compare the performance of the two algorithms are given on various
test functions.

2 KSwarm Speed

Although KSwarm can often get better results in fewer iterations than basic
PSO, each iteration is far more expensive. Because the complexity of KSwarm
is O(d3), this significantly increases the running time of the algorithm and is
especially a problem when optimizing high-dimensional functions.

We will therefore attempt to extract the essential characteristics of the
KSwarm algorithm in order to provide a fast approximation. The Kalman Filter
is the basis for the update equations, and these will be analyzed first. Recall that
F and H are the transition and sensor characteristic matrices with Vx and Vz

as their respective covariance matrices, mt and Vt are the mean and covariance
parameters of the filtered state at time t, and Kt is the “Kalman Gain” at time t.
These parameters and the following update equations comprise the multivariate
Kalman Filter:

mt+1 = Fmt + Kt+1(zt+1 −HFmt) (1)

Vt+1 = (I −Kt+1)(FVtF
> + Vx) (2)

Kt+1 = (FVtF
> + Vx)H>

(
H(FVtF

> + Vx)H> + Vz

)−1
. (3)

The complexity of KSwarm is due almost entirely to complex matrix opera-
tions, like multiplication and inversion. This complexity is present in the update
equations above and in sampling from a multivariate Normal distribution. Any
approximation intended to speed up the algorithm should address these two key
areas.

2.1 Weighted Vectors

Because each particle knows with certainty where its neighbors are, we may
assume that the system has perfect sensors (H = I), and may rearrange (1)
thus:

mt+1 = Fmt + Kt+1(zt+1 − Fmt)

= Fmt + Kt+1zt+1 −Kt+1Fmt

= (I −Kt+1)Fmt + Kt+1zt+1 .

(4)

This makes the filtered state look like a convex combination (assuming, of course,
that Kt+1 has the appropriate properties) of the predicted next state Fmt and
the observed state zt+1. It seems reasonable to assume that this is an essential
characteristic of the Kalman Filter: it balances observations and myopic predic-
tions. If this is indeed a governing principle of a Kalman Filter, then it should
be possible to construct a useful approximation of that behavior.

Since the Kalman Filter is basically balancing between myopic predictions
and neighborhood observations using the linear operator K, we may view this as
generating a vector through rotation and scaling of one of the two other vectors.
This operation may be done by rotating one of the vectors by a specified angle
through the plane defined by both vectors (a matrix operation that we would
like to avoid), or it may be approximated by taking a weighted average of the
normalized vectors and performing some post scaling. The two approaches are
depicted in Figure 1.

As the weighted average is a much cheaper computation than rotation, this
is what is done. Though it does not produce precisely the same results when

xt

Fxt
zt+1

(a) Vectors weighted
through rotation

xt

Fxt
zt+1

(b) Approximation us-
ing weighted average
of each coordinate

xt

Fxt
zt+1

(c) Rescaled result

Fig. 1. Weighting two vectors to generate a third

the new vector is very close to one of the original vectors, it does provide a fast
and useful approximation. To make the weighted average work correctly, we first
normalize the original vectors, take a weighted sum to generate a new vector,
normalize it, and then scale it so that its length is a weighted sum of the original
lengths.

More formally, if we have a weight scalar α ∈ [0, 1] and vectors u1 and u2,
we may generate a new vector v thus:

v̂ = α
u1

‖u1‖
+ (1 − α)

u2

‖u2‖
(5)

v =
v̂

‖v̂‖
(α‖u1‖ + (1 − α)‖u2‖) . (6)

Care must be taken when u1 and u2 point in opposite directions. In this case
we have two options: point the new vector in some direction orthogonal to one
of the vectors (of which there are two if d = 2 and infinite if d > 2) or pick some
other direction. In practice this is solved by simply picking one of the original
vectors as the new vector, usually that which has a better associated value. This
case is easily detected by calculating v̂ using (5) and then noting that ‖v̂‖ is
extremely small.

The behavior of KSwarm is approximated using this approach to calculate
a new velocity for a particle. The particle’s current velocity is balanced against
the relative best position from its neighborhood. The new velocity is some vector
between the two, based on α.

We were previously using mt as the current position and velocity of the par-
ticle, but now we compute only the velocity using the approximation outlined
above. We add the velocity to our current position to get a new position. There-
fore, there is no longer any need to compute mt nor is there any use for F, as the
prediction of our next position is trivially calculated using the current velocity.

It is worth noting that though this is beginning to sound like the original PSO
algorithm, it is not (see Section 2.4).

2.2 Sampling From the Normal

So far, the approximation contains no randomness at all, effectively removing
the complexity introduced from generating samples from a multivariate Normal.
Randomness, however, is an essential part of the original algorithm, so some
sampling should be done to determine the final velocity of the particle.

KSwarm particles each sampled their final state from a multivariate Normal
with parameters Fmt and Vt. They were provided with diagonal matrices for
Vt=0, Vx, and Vz. If Vt were to remain diagonal, we could optimize the mul-
tivariate sample (which involves matrix operations) with d univariate samples.

Therefore, instead of a covariance matrix, we select a variance vector σ
2

for our approximate algorithm. We further assume that this vector is constant
(unlike Vt in the Kalman Filter). Had Vt been constant in the Kalman Filter,
the gain Kt would have also been constant, as Vt was the only time-dependent
portion of (3). This assumption of a constant σ

2 allows us to further assume
that α is constant.

To generate randomness, the approximate algorithm uses each component
of the normalized final velocity vector bv

‖bv‖ as the mean of a distribution. The

variance is given by the corresponding component of σ
2. Since we are dealing

with a normalized mean, it is not unreasonable to assume that σ
2 = σ2e, where

σ2 is a constant scalar (and e is a vector of all ones). This effectively reduces
the number of tunable parameters and simplifies the algorithm even further.

2.3 Linear Kalman Swarm (LinkSwarm)

The two fundamental approximations above complete the development of Link-
Swarm, an approximation to KSwarm. The full LinkSwarm algorithm for particle
motion is summarized in Table 1.

The performance and runtimes of LinkSwarm and KSwarm are shown in
Figure 2. For all experiments, d = 30, σ2 = 0.6, α = 0.45, the sociometry is
“star”, and 20 particles are used. Also, KSwarm uses a prior based on initial
particle positions.

It is interesting that LinkSwarm, which runs roughly 10 times faster than
the original KSwarm in 30 dimensions, also performs better on every test func-
tion. Figure 2(f) also shows that the approximate algorithm is only very slightly
slower than basic PSO (because of magnitude calculations and multiple Nor-
mal samples) but, in contrast with KSwarm, has the same O(d) computational
complexity.

It appears that we have not only maintained the essential characteristics of
KSwarm, but that we have improved on it in the process.

1e−10
1e−08
1e−06
1e−04

0.01
1

100
10000

 1 10 100 1000

V
al

ue

Iterations (Sphere)

PSO
KSwarm

LinkSwarm

(a) Sphere

1e−25
1e−20
1e−15
1e−10
1e−05

1
1e+05
1e+10

 1 10 100 1000

V
al

ue

Iterations (Dejongf4)

PSO
KSwarm

LinkSwarm

(b) DejongF4

10
100

1000
10000
1e+05
1e+06
1e+07
1e+08
1e+09
1e+10

 1 10 100 1000

V
al

ue

Iterations (Rosenbrock)

PSO
KSwarm

LinkSwarm

(c) Rosenbrock

10

100

1000

 1 10 100 1000

V
al

ue

Iterations (Rastrigin)

PSO
KSwarm

LinkSwarm

(d) Rastrigin

1e−08
1e−06
1e−04

0.01
1

100
10000

 1 10 100 1000

V
al

ue

Iterations (Griewank)

PSO
KSwarm

LinkSwarm

(e) Griewank

 0
 20
 40
 60
 80

 100
 120
 140

 0 5 10 15 20 25 30

T
im

e
in

 S
ec

on
ds

Dimensions

PSO
KSwarm

LinkSwarm

(f) Average Runtimes on Sphere

Fig. 2. Performance of LinkSwarm as compared with original KSwarm

Table 1. The LinkSwarm Algorithm

Given a particle’s current velocity vt and the relative position of the neigh-
borhood best vbest (the particle is always part of its own neighborhood in
LinkSwarm), generate a new normal velocity vector v′ as follows (norm gen-
erates a normalized vector):

v
′ = norm

„

α
vt

‖vt‖
+ (1 − α)

vbest

‖vbest‖

«

. (7)

For each coordinate v
′

i of v′, generate v̂ by drawing samples from a Normal
distribution:

v̂i ∼ Normal(v′

i, σ
2) . (8)

Normalize v̂ and scale to a weighted sum of the lengths of vt and vbest to
create vt+1:

vt+1 = (α‖vt‖ + (1 − α)‖vbest‖) norm(v̂) . (9)

Add this velocity to the current position xt to get xt+1.

2.4 LinkSwarm vs. PSO

With all of the approximations made, the algorithm has been reduced to
(roughly) a weighted sum of two vectors. Arguably, PSO does the same thing.
The question arises, then, as to whether we really do anything different from
basic PSO, besides sampling from a Normal distribution to get the final result.
The answer is “yes”.

Basic PSO and many of its variants also take a “weighted sum” of two vectors
in order to generate a new velocity. There are two very important differences,
however, between LinkSwarm and basic PSO: the vectors involved in the weight-
ing operation are different, and the velocity is set to a new value, not augmented

by it. In other words, LinkSwarm generates a velocity, not an acceleration.

The fact that LinkSwarm sets rather than augments its current velocity
neatly sidesteps the issue of velocity explosion. Of more interest, however, is
the fact that it uses different vectors in its decision process. In basic PSO, the
two vectors involved in the weighting operation are the relative position of the
particle’s personal best and the relative position of the neighborhood best. Link-
Swarm uses a particle’s current velocity (which may also be viewed as the relative
predicted position at the next time step) instead of the relative position of its
personal best. It only uses its personal best in the context of its neighborhood.

This basic difference between KSwarm and PSO is explored further in Sec-
tion 4 as part of the explanation for its success.

3 KSwarm Deficiencies

When compared with the basic PSO algorithm, KSwarm performs very well, re-
ducing the number of iterations required to reach good solutions and improving
on the overall solutions on a number of test functions. This is an interesting
result, as it does so by altering the motion characteristics of particles. Funda-
mental changes in motion have not received much attention in recent research
because motion has been considered to be less important than the social and
diversity aspects of the algorithm [4–10, 2, 11–15]. KSwarm represents a possible
counterexample to that often implicit assumption.

One may ask why Kalman Filter motion works well in this context. There is
one rather unflattering reason that it works especially well on the test functions:
the original KSwarm is subtly origin-seeking. The Kalman Filter requires a prior
distribution on the particle’s state. Recall that the state of a particle has been
defined to be the position and velocity of that particle [1]. Absent a reasonable
prior, this was always set to 0, indicating that the particle began its life with
the assumption that it was at the origin and that it was not moving. In other
words, it assumed it was already at the optimum, a deficiency addressed here.

A change was made to KSwarm, setting the prior of each particle to its initial
position instead of 0. The graphs in Figure 3 compare the two approaches. It is
clear that especially for strongly multi-modal functions like Rastrigin, the prior
has a significant impact on the algorithm’s behavior.

While this change significantly degrades the performance of KSwarm on Ras-
trigin, it leaves it practically unchanged on the other test functions, most of
which are unimodal. Griewank is of particular interest because it is multimodal
but the performance did not degrade for that function. Some attempt to explain
this behavior is given in the next section.

4 Why It Works

It is first important to acknowledge that the basic PSO algorithm has had many
changes applied in recent years that substantially improve its performance. These
methods are not considered here due to space and time constraints, but it is
worth noting that LinkSwarm outperforms many of them where KSwarm did
not. The results of those experiments are reserved for a later, more complete
paper.

The development of LinkSwarm served to expose some interesting charac-
teristics of the original KSwarm. The most striking of these has already been
mentioned, and is best understood in contrast to basic PSO: the vectors involved
in the decision process are different. While basic PSO particles use personal and
neighborhood bests to make their decisions, LinkSwarm particles throw their
personal best in with their neighbors and decide between the neighborhood best
and their current trajectory. This difference represents an interesting and useful
assumption: a particle’s current direction is probably pretty good.

1

10

100

1000

10000

 1 10 100 1000

V
al

ue

Iterations (Sphere)

Zero
Initial

(a) Sphere

1
10

100
1000

10000
1e+05
1e+06
1e+07

 1 10 100 1000

V
al

ue

Iterations (Dejongf4)

Zero
Initial

(b) DejongF4

1000
10000
1e+05
1e+06
1e+07
1e+08
1e+09
1e+10

 1 10 100 1000

V
al

ue

Iterations (Rosenbrock)

Zero
Initial

(c) Rosenbrock

10

100

1000

 1 10 100 1000

V
al

ue

Iterations (Rastrigin)

Zero
Initial

(d) Rastrigin

0.1

1

10

100

1000

 1 10 100 1000

V
al

ue

Iterations (Griewank)

Zero
Initial

(e) Griewank

Fig. 3. Results of KSwarm with a zero prior and with a more reasonable prior based
on initial particle positions

The validity of this assumption depends on the kinds of functions that are
being optimized. It is motivated by the fact that the particle was already ap-
proaching a good area to begin with, so there is no reason that it should have to
stop and turn around just because one of its neighbors wants it to see something;
it may be onto something good already.

This assumption works especially well with functions that, though potentially
multimodal, have an overall trend. Functions like Rastrigin and Griewank fit this
criterion quite nicely. Though they have many local minima, they each exhibit
an overall downward trend toward the global minimum. A particle that is able
to filter out the “noise” of the local minima in favor of discovering the overall
trend is in general going to do well with these types of functions. The Kalman
Filter was designed to do precisely that. These particles are expected to do very
well on functions where sufficient “blurring” will produce a unimodal function.

5 Conclusions and Future Research

An enormous number of things have yet to be tried. Currently the weight param-
eter α is constant, but it could be changed dynamically, perhaps based on some
confidence parameter that is learned over time. This needs to be explored more
fully. The effect of the various parameters in general is not currently known, and
that is also begging for more exploration.

These algorithms need to be tested against the state of the art. The basic
PSO algorithm is known to be naive and suboptimal, and much research has
been done to improve it. In order to be truly interesting, LinkSwarm and its
variants must be compared with the best PSO algorithms known to date. Pre-
liminary experiments show that it compares very favorably with recent PSO
improvements.

Surprisingly, the approximate algorithm performed better than the original.
The reasons for this are unknown, though we have some preliminary ideas. The
parameters used to initialize KSwarm might not have been optimal, causing it
to perform somewhat more poorly than it might otherwise have done. While
this could potentially be explored to good effect, there are simply too many
parameters to make such exploration feasible. The number of tunable parameters
in KSwarm was one of its major shortcomings. The LinkSwarm algorithm not
only has fewer and more intuitive parameters, but it is faster and works better.

LinkSwarm is a major improvement over KSwarm, not only in computational
complexity, but also in the results obtained. It represents the elimination of
numerous tunable parameters and is much simpler to code and to understand.
Along with its improved speed and simplicity, preliminary work suggests that
it does better than many recent improvements to PSO, potentially making it a
strong contender in the field of swarm optimization.

References

1. Monson, C.K., Seppi, K.D.: The Kalman swarm. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), Seattle, Washington (2004)

(To Appear)
2. Kennedy, J.: Small worlds and mega-minds: Effects of neighborhood topology on

particle swarm performance. In Angeline, P.J., Michalewicz, Z., Schoenauer, M.,
Yao, X., Zalzala, Z., eds.: Proceedings of the Congress of Evolutionary Computa-
tion. Volume 3., IEEE Press (1999) 1931–1938

3. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering 82 (1960) 35–45

4. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana (2003) 80–87

5. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the Congress on Evolutionary Computation (CEC 2002), Honolulu,
Hawaii (2002)

6. Vesterstrøm, J.S., Riget, J.: A diversity-guided particle swarm optimizer – the
ARPSO. Technical Report 2002-02, Departemnt of Computer Science, University
of Aarhus, EVALife (2002)

7. Richards, M., Ventura, D.: Dynamic sociometry in particle swarm optimization. In:
International Conference on Computational Intelligence and Natural Computing.
(2003)

8. Mendes, R., Kennedy, J., Neves, J.: Watch thy neighbor or how the swarm can learn
from its environment. In: Proceedings of the IEEE Swarm Intelligence Symposium
2003 (SIS 2003), Indianapolis, Indiana (2003) 88–94

9. Kennedy, J., Mendes, R.: Neighborhood topologies in fully-informed and best-of-
neighborhood particle swarms. In: Proceedings of the 2003 IEEE SMC Workshop
on Soft Computing in Industrial Applications (SMCia03), Binghamton, New York,
IEEE Computer Society (2003)

10. Angeline, P.J.: Using selection to improve particle swarm optimization. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), An-
chorage, Alaska (1998)

11. Kennedy, J.: Stereotyping: Improving particle swarm performance with cluster
analysis. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2000), San Diego, California (2000) 1507–1512

12. Vesterstroem, J.S., Riget, J., Krink, T.: Division of labor in particle swarm op-
timisation. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2002), Honolulu, Hawaii (2002)

13. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999),
Piscataway, New Jersey (1999) 1945–1950

14. Krink, T., Vestertroem, J.S., Riget, J.: Particle swarm optimisation with spatial
particle extension. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC 2002), Honolulu, Hawaii (2002)

15. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on
Evolutionary Programming, New York (1998) 591–600

