
The Kalman Swarm

A New Approach to Particle Motion in Swarm
Optimization

Christopher K. Monson and Kevin D. Seppi

Brigham Young University, Provo UT 84602, USA
c@cs.byu.edu or kseppi@cs.byu.edu

Abstract. Particle Swarm Optimization is gaining momentum as a sim-
ple and effective optimization technique. We present a new approach to
PSO that significantly reduces the number of iterations required to reach
good solutions. In contrast with much recent research, the focus of this
work is on fundamental particle motion, making use of the Kalman Filter
to update particle positions. This enhances exploration without hurting
the ability to converge rapidly to good solutions.

1 Introduction

Particle Swarm Optimization (PSO) is an optimization technique inspired by
social behavior observable in nature, such as flocks of birds and schools of fish
[1]. It is essentially a nonlinear programming technique suitable for optimizing
functions with continuous domains (though some work has been done in discrete
domains [2]), and has a number of desirable properties, including simplicity of
implementation, scalability in dimension, and good empirical performance. It has
been compared to evolutionary algorithms such as GAs (both in methodology
and performance) and has performed favorably [3, 4].

As an algorithm, it is an attractive choice for nonlinear programming because
of the characteristics mentioned above. Even so, it is not without problems. PSO
suffers from premature convergence, tending to get stuck in local minima [4–
7]. We have also found that it suffers from an ineffective exploration strategy,
especially around local minima, and thus does not find good solutions as quickly
as it could. Moreover, adjusting the tunable parameters of PSO to obtain good
performance can be a difficult task [7, 8].

Research addressing the shortcomings of PSO is ongoing and includes such
changes as dynamic or exotic sociometries [6, 9–12], spatially extended particles
that bounce [13], increased particle diversity [4, 5], evolutionary selection mech-
anisms [14], and of course tunable parameters in the velocity update equations
[7, 8, 15]. Some work has been done that alters basic particle motion with some
success, but the possibility for improvement in this area is still open [16].

This paper presents an approach to particle motion that significantly speeds
the search for optima while simultaneously improving on the premature conver-
gence problems that often plague PSO. The algorithm presented here, KSwarm,
bases its particle motion on Kalman filtering and prediction.

We compare the performance of KSwarm to that of the basic PSO model. In
the next section, the basic PSO algorithm is reviewed, along with an instructive
alternative formulation of PSO and a discussion of some of its shortcomings.
Unless otherwise specified, “PSO” refers to the basic algorithm as presented in
that section. Section 3 briefly describes Kalman Filters, and Section 4 describes
KSwarm in detail. Experiments and their results are contained in Section 5.
Finally, conclusions and future research are addressed in Section 6.

2 The Basic PSO Algorithm

PSO is an optimization strategy generally employed to find a global minimum.
The basic PSO algorithm begins by scattering a number of “particles” in the
function domain space. Each particle is essentially a data structure that keeps
track of its current position x and its current velocity v. Additionally, each
particle remembers the “best” (lowest valued) position it has obtained in the
past, denoted p. The best of these values among all particles (the global best
remembered position) is denoted g.

At each time step, a particle updates its position and velocity by the following
equations:

vt+1 = χ
(

vt + φ1(p − x) + φ2(g − x)
)

(1)

xt+1 = xt + vt+1 . (2)

The constriction coefficient χ = 0.729844 is due to Clerc and Kennedy [15] and
serves to keep velocities from exploding. The stochastic scalars φ1 and φ2 are
drawn from a uniform distribution over [0, 2.05) at each time step. Though other
coefficients have been proposed in an effort to improve the algorithm [7, 8], they
will not be discussed here in detail.

2.1 An Alternative Motivation

Although the PSO update model initially evolved from simulated flocking and
other natural social behaviors, it is instructive to consider an alternative moti-
vation based on a randomized hill climbing search. A naive implementation may
place a single particle in the function domain, then scatter a number of random
sample points in the neighborhood, moving toward the best sample point at each
new time step: xt+1 = gt.

If the particle takes this step by first calculating a velocity, the position is
still given by (2) and the velocity update is given by

vt+1 = gt − xt . (3)

As this type of search rapidly becomes trapped in local minima, it is useful to
randomly overshoot or undershoot the actual new location in order to do some
directed exploration (after all, the value of the new location is already known).
For similar reasons, it may be desirable to add momentum to the system, allowing

particles to “roll out” of local minima. Choosing a suitable random scalar φ, this
yields

vt+1 = vt + φ(gt − xt) . (4)

The equation (4) is strikingly similar to (1). In fact, it is trivial to reformulate
the PSO update equation to be of the same form as (1) [15, 12].

The fundamental difference between this approach and PSO is the way that
g is calculated. In PSO, g is taken from other particles already in the system.
In the approach described in this section, g is taken from disposable samples
scattered in the neighborhood of a single particle.

This suggests that the basic PSO is a hill climber that uses existing informa-
tion to reduce function evaluations. It is set apart more by its social aspects than
by its motion characteristics, an insight supported by Kennedy but for different
reasons [16].

2.2 Particle Motion Issues

Given that PSO is closely related to an approach as simple as randomized hill
climbing, it is no surprise that attempts to improve the velocity update equa-
tion with various scaling terms have met with marginal success. Instead, more
fundamental changes such as increased swarm diversity, selection, and collision
avoiding particles have shown the greatest promise [4, 5, 14].

Unfortunately these methods are not without problems either, as they gen-
erally fail to reduce the iterations required to reach suitable minima. They focus
primarily on eliminating stagnation, eventually finding better answers than the
basic PSO without finding them any faster.

It has been pointed out that nonlinear programming is subject to a funda-
mental tradeoff between convergence speed and final fitness [4], suggesting that it
is not generally possible to improve one without hurting the other. Fortunately,
this tradeoff point has not yet been reached in the context of particle swarm
optimization, as it is still possible to find good solutions more quickly without
damaging final solution fitness.

For example, the development of a PSO visualization tool served to expose
a particularly interesting inefficiency in the basic PSO algorithm. As the parti-
cles close in on g they tend to lose their lateral momentum very quickly, each
settling into a simple periodic linear motion as they repeatedly overshoot (and
undershoot) the target. This exploration strategy around local minima is very
inefficient, suggesting that a change to particle motion may speed the search by
improving exploration.

Such a change should ideally preserve the existing desirable characteristics
of the algorithm. PSO is essentially a social algorithm, which gives it useful
emergent behavior. Additionally, PSO motion is stochastic, allowing for ran-
domized exploration. Particles also have momentum, adding direction to the
random search. The constriction coefficient indicates a need for stability. Alter-
ations to particle motion should presumably maintain these properties, making
the Kalman Filter a suitable choice.

3 The Kalman Filter

Kalman filters involve taking noisy observations over time and using model in-
formation to estimate the true state of the environment [17]. Kalman filtering is
generally applied to motion tracking problems. It may also be used for prediction
by applying the system transition model to the filtered estimate.

The Kalman Filter is limited to normal noise distributions and linear transi-
tion and sensor functions and is therefore completely described by several con-
stant matrices and vectors. Specifically, given an observation column vector zt+1,
the Kalman Filter is used to generate a normal distribution over a belief about
the true state. The parameters mt+1 and Vt+1 of this multivariate distribution
are determined by the following equations [18]:

mt+1 = Fmt + Kt+1(zt+1 −HFmt) (5)

Vt+1 = (I −Kt+1)(FVtF
> + Vx) (6)

Kt+1 = (FVtF
> + Vx)H>

(

H(FVtF
> + Vx)H> + Vz

)−1
. (7)

In these equations, F and Vx describe the system transition model while H

and Vz describe the sensor model. The equations require a starting point for
the filtered belief, represented by a normal distribution with parameters m0 and
V0, which must be provided.

The filtered or “true” state is then represented by a distribution:

xt ∼ Normal(mt,Vt) . (8)

This distribution may be used in more than one way. In some applications, the
mean mt is assumed to be the true value. In others, the distribution is sampled
once to obtain the value. In this work, the latter is done.

The above describes how to do Kalman filtering, yielding mt from an obser-
vation zt. A simple form of prediction involves applying the transition model to
obtain a belief about the next state m′

t+1:

m′

t+1 = Fmt . (9)

There are other forms of prediction, but this simple approach is sufficient for
the introduction of the algorithm in the next section, and for its use in particle
swarms.

4 The Kalman Swarm (KSwarm)

KSwarm defines particle motion entirely from Kalman prediction. Each particle
keeps track of its own mt, Vt, and Kt. The particle then generates an observation
for the Kalman filter with the following formulae:

zv = φ(g − x) (10)

zp = x + zv . (11)

Similar to PSO, φ is drawn uniformly from [0, 2), and the results are row vec-
tors. The full observation vector is given by making a column vector out of the
concatenated position and velocity row vectors: z = (zp, zv)>. This observation
is then used to generate mt+1 and Vt+1 using (5), (6), and (7)

Once the filtered value is obtained, a prediction m′
t+2 is generated using (9).

Together, m′

t+2 and Vt+1 parameterize a normal distribution. We say, then, that

xt+1 ∼ Normal(m′

t+2,Vt+1) . (12)

The new state of the particle is obtained by sampling once from this distribution.
The position of the particle may be obtained from the first half of x>

t+1, and the
velocity (found in the remaining half) is unused.

This method for generating new particle positions has at least one imme-
diately obvious advantage over the original approach: there is no need for a
constriction coefficient. Particle momentum comes from the state maintained by
the Kalman Filter rather than from the transition model. In our experiments,
this eliminated the need for any explicit consideration of velocity explosion.

5 Experiments

KSwarm was compared to PSO in five common test functions: Sphere, DejongF4,
Rosenbrock, Griewank, and Rastrigin. The first three are unimodal while the
last two are multimodal. In all experiments, the dimensionality d = 30. The
definitions of the five functions are given here:

Sphere(x) =
d

∑

i=1

x2
i (13)

DeJongF4(x) =
d

∑

i=1

ix4
i (14)

Rosenbrock(x) =

d−1
∑

i=1

100(xi+1 − x2
i)

2 + (xi − 1)2 (15)

Rastrigin(x) =

d
∑

i=1

x2
i + 10 − 10 cos(2πxi) (16)

Griewank(x) =
1

4000

d
∑

i=1

x2
i −

d
∏

i=1

cos

(

xi
√

i

)

+ 1 . (17)

The domains of these functions are given in Table 1.

5.1 Experimental Parameters

In all experiments, a swarm size of 20 was used. Though various sociometries
are available, the star (or gbest [1]) sociometry was used almost exclusively in

Table 1. Domains of Test Functions

Function Domain

Sphere (−50, 50)d

DeJongF4 (−20, 20)d

Rosenbrock (−100, 100)d

Griewank (−600, 600)d

Rastrigin (−5.12, 5.12)d

the experiments because it allows for maximum information flow [13]. Each ex-
periment was run 50 times for 1000 iterations, and the results were averaged to
account for stochastic differences. The parameters to (5), (6), and (7) are given
below, and are dependent on the domain size of the function. The vector contain-
ing the size of the domain in each dimension is denoted w. The column vector
w = (w, w)> is formed from two concatenated copies of w. In the following
equations, In is an identity matrix with n rows.

m0 = 0 V0 = θ diag(w) (18)

H = I2d Vz = θ diag(w) (19)

F =

(

Id Id

0 Id

)

Vx = θ diag(w) . (20)

The initial mean m0 is a column vector of 2d zeros. The scalar θ indicates how
large the variance should be in each dimension, and was set to 0.0001 for all
experiments, as this produced a variance that seemed reasonable. The transi-
tion function simply increments position by velocity while leaving the velocity
untouched.

All of the vectors used in the Kalman equations are of length 2d and all
matrices are square and of size 2d. This is the case because the model makes use
of velocity as well as position, so extra dimensions are needed to maintain and
calculate the velocity as part of the state. This implies that the sample obtained
from (12) is also a vector of length 2d, the first half of which contains position
information. That position information is used to set the new position of the
particle and the velocity information is unused except for the next iteration of
the Kalman update equations.

5.2 Results

Table 2 shows the final values reached by each algorithm after 1000 iterations
were performed. It is clear from the table that the KSwarm obtains values that
are often several orders of magnitude better than the original PSO algorithm.

In addition to obtaining better values, the KSwarm tends to find good solu-
tions in fewer iterations than the PSO, as evidenced by Figs. 1, 2, 3, 4, and 5.
Note that each figure has a different scale.

Because the results obtained using the star sociometry were so striking, this
experiment was also run using a sociometry where each particle had 5 neighbors.
The corresponding results were so similar as to not warrant inclusion in this work.

Table 2. PSO vs. KSwarm Final Values

Function PSO KSwarm

Sphere 370.041 4.723

DejongF4 4346.714 4.609

Rosenbrock 2.61e7 3.28e3

Griewank 13.865 0.996

Rastrigin 106.550 53.293

These results represent a clear and substantial improvement over the basic
PSO, not only in the final solutions, but in the speed with which they are found.
It should be noted that much research has been done to improve PSO in other
ways and that KSwarm performance in comparison to these methods has not
been fully explored. The purpose of this work is to demonstrate a novel approach
to particle motion that substantially improves the basic algorithm. The compari-
son and potential combination of KSwarm with other PSO improvements is part
of ongoing research and will be a subject of future work.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900 1000

B
es

t v
al

ue
 o

bt
ai

ne
d

Iterations on "Sphere"

Kalman
Standard

Fig. 1. Sphere

5.3 Notes on Complexity

It is worth noting that the Kalman motion update equations require more com-
putational resources than the original particle motion equations. In fact, because

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

B
es

t v
al

ue
 o

bt
ai

ne
d

Iterations on "Dejongf4"

Kalman
Standard

Fig. 2. DeJongF4

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 100 200 300 400 500 600 700 800 900 1000

B
es

t v
al

ue
 o

bt
ai

ne
d

Iterations on "Rosenbrock"

Kalman
Standard

Fig. 3. Rosenbrock

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800 900 1000

B
es

t v
al

ue
 o

bt
ai

ne
d

Iterations on "Griewank"

Kalman
Standard

Fig. 4. Griewank

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

B
es

t v
al

ue
 o

bt
ai

ne
d

Iterations on "Rastrigin"

Kalman
Standard

Fig. 5. Rastrigin

of the matrix operations, the complexity is O(d3) in the number of dimensions
(d = 30 in our experiments). The importance of this increased complexity, how-
ever, appears to diminish when compared to the apparent exponential improve-
ment in the number of iterations required by the algorithm. Additionally, the
complexity can be drastically reduced by using matrices that are mostly diag-
onal or by approximating the essential characteristics of Kalman behavior in a
simpler way.

6 Conclusions and Future Work

It remains to be seen how KSwarm performs against diversity-increasing ap-
proaches, but preliminary work indicates that it will do well in that arena, es-
pecially with regard to convergence speed. Since many methods which increase
diversity do not fundamentally change particle motion update equations, com-
bining this approach with those methods is simple. It can allow KSwarm to not
only find solutions faster, but also to avoid the stagnation to which it is still
prone.

Work remains to be done on alternative system transition matrices. The tran-
sition model chosen for the motion presented in this work is not the only possible
model; other models may produce useful behaviors. Additionally, the complexity
of the algorithm should be addressed. It is likely to be easy to improve by simple
optimization of matrix manipulation, taking advantage of the simplicity of the
model. More work remains to be done in this area.

KSwarm fundamentally changes particle motion as outlined in PSO while
retaining its key properties of sociality, momentum, exploration, and stability.
It represents a substantial improvement over the basic algorithm not only in the
resulting solutions, but also in the speed with which they are found.

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: International Con-
ference on Neural Networks, IV (Perth, Australia), Piscataway, NJ, IEEE Service
Center (1995) 1942–1948

2. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algo-
rithm. In: Proceedings of the World Multiconference on Systemics, Cybernetics,
and Informatics, Piscataway, New Jersey (1997) 4104–4109

3. Kennedy, J., Spears, W.: Matching algorithms to problems: An experimental test
of the particle swarm and some genetic algorithms on the multimodal problem
generator. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 1998), Anchorage, Alaska (1998)

4. Riget, J., Vesterstroem, J.S.: A diversity-guided particle swarm optimizer - the
ARPSO. Technical Report 2002-02, Department of Computer Science, University
of Aarhus (2002)

5. Løvbjerg, M.: Improving particle swarm optimization by hybridization of stochas-
tic search heuristics and self-organized criticality. Master’s thesis, Department of
Computer Science, University of Aarhus (2002)

6. Richards, M., Ventura, D.: Dynamic sociometry in particle swarm optimization. In:
International Conference on Computational Intelligence and Natural Computing.
(2003)

7. Vesterstroem, J.S., Riget, J., Krink, T.: Division of labor in particle swarm op-
timisation. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2002), Honolulu, Hawaii (2002)

8. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on
Evolutionary Programming, New York (1998) 591–600

9. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the Congress on Evolutionary Computation (CEC 2002), Honolulu,
Hawaii (2002)

10. Kennedy, J., Mendes, R.: Neighborhood topologies in fully-informed and best-of-
neighborhood particle swarms. In: Proceedings of the 2003 IEEE SMC Workshop
on Soft Computing in Industrial Applications (SMCia03), Binghamton, New York,
IEEE Computer Society (2003)

11. Kennedy, J.: Small worlds and mega-minds: Effects of neighborhood topology on
particle swarm performance. In Angeline, P.J., Michalewicz, Z., Schoenauer, M.,
Yao, X., Zalzala, Z., eds.: Proceedings of the Congress of Evolutionary Computa-
tion. Volume 3., IEEE Press (1999) 1931–1938

12. Mendes, R., Kennedy, J., Neves, J.: Watch thy neighbor or how the swarm can learn
from its environment. In: Proceedings of the IEEE Swarm Intelligence Symposium
2003 (SIS 2003), Indianapolis, Indiana (2003) 88–94

13. Krink, T., Vestertroem, J.S., Riget, J.: Particle swarm optimisation with spatial
particle extension. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC 2002), Honolulu, Hawaii (2002)

14. Angeline, P.J.: Using selection to improve particle swarm optimization. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), An-
chorage, Alaska (1998)

15. Clerc, M., Kennedy, J.: The particle swarm: Explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6 (2002) 58–73

16. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana (2003) 80–87

17. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans-
actions of the ASME–Journal of Basic Engineering 82 (1960) 35–45

18. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Second edn.
Prentice Hall, Englewood Cliffs, New Jersey (2003)

