
Simple Adaptive Cognition for PSO
Christopher K. Monson

Google, Inc.
6425 Penn Ave.

Pittsburgh, PA 15206
Email:shiblon@gmail.com

Abstract—A simple, effective, computationally cheap, and eas-
ily tuned method is presented for improving PSO performance
by automatically adapting acceleration coefficients. While this
approach can be shown to be effective on its own as a source
of swarm diversity on difficult functions, it is also capable of
enhancing other adaptive strategies commonly employed with
PSO. Significantly, and unlike many other PSO enhancements
designed to improve swarm diversity, this approach does not
typically harm the performance of the underlying method,
allowing it to work well on easy and difficult functions alike.

I. INTRODUCTION

Particle swarm optimization, in its simplest form, consists
of initializing a number of “particles” in a limited area of a
function’s domain, then iteratively updating the state of these
particles based on simple rules. These particles keep a modest
amount of state, including current position and velocity, the
best known position, and the best known function value.

Initialization typically involves scattering the particles uni-
formly within a cube that is assumed to contain the global
optimum and assigning random velocity vectors to each. The
basic behavior of particles is described by the following
acceleration and velocity equations [12], [24]:

ẍt+1 = φp U⊗(pt − xt) + φg U⊗(gt − xt) (1)
ẋt+1 = ωẋt + ẍt+1 (2)
xt+1 = xt + ẋt+1 (3)

where the acceleration coefficients in (1) are respectively
the “cognitive” and “social” coefficients φp = φg = 2.05,
U is a vector whose elements are drawn from a standard
uniform distribution each time it is used in a computation,
and ⊗ represents element-wise vector multiplication. The
“momentum” coefficient ω in (2) is typically between 0.4 and
1.0, though values close to 1.0 can cause swarm divergence
and velocity explosion1.

Additionally, after every computation of (2), the absolute
value of each component of ẋ is capped by the vector Vmax,
which is typically set to the lengths of the sides of the
initialization cube. The diagonal of this cube is called L, and

1The use of a “constriction coefficient” is also popular [3]. It is not explored
further here because the use of momentum is equivalent with the right choice
of coefficients [7], and because its global affect on the equations makes it
much harder to get right when coefficients are changing at every step. This
is particularly true of the method described here, which quickly reduces to a
set of coefficients that effectively disable constriction altogether.

the vector containing the lengths of the cube’s sides is |L|
(using an element-wise absolute value).

PSO, especially given the simple rules governing individual
particle behavior, is surprisingly effective in a variety of
optimization settings, including some difficult multi-modal op-
timization problems. The emergent behavior that is responsible
for this success includes a tendency of particles to periodically
jump far outside of the current region of exploration (“bursts
of outliers”) [10], [11], and a tendency of the swarm as a
whole to converge to a single point over time [3].

Obviously, each of these behaviors can be good or bad,
depending on how and when they are observed. The ability to
explore, for example, is of great benefit when trying to avoid
getting stuck in local minima, but can be a liability when
high levels of precision are desired once the general location
of the global minimum is found. Conversely, convergence is
beneficial when seeking precision, but converging too early
can cause the swarm to get stuck in a local minimum.
Balancing these two basic behaviors is critical to a performant
swarm and is the subject of a large body of PSO research
devoted to swarm diversity.

The method presented here, Simple Adaptive Cognition
(SAC) is focused on balancing exploration and convergence
by using more of the information available to each particle to
guide its motion more intelligently. It is interesting because
it does not suffer from some of the common difficulties
observed in other diversity-enhancing approaches, such as a
tendency to increase diversity too much on easy functions
[15], [20] or the introduction of substantial tuning difficulties
[23]. SAC is intuitively simple and appealing, requires little
if any tuning, uses very little extra particle memory, and does
not introduce any new computationally-intense procedures for
measuring or improving swarm diversity. Furthermore, it is
compatible with many other techniques used to improve PSO;
it usually improves on them and does not appear to degrade
their performance even on easy functions.

Before fully describing this method, relevant related work
will be presented and discussed. As familiarity with the
concepts of basic PSO is assumed, these discussions will focus
on the broad strokes of various enhancements and will be brief.
Simple Adaptive Cognition is then presented and discussed,
followed by experimental results on popular benchmark func-
tions before conclusions are drawn and avenues for future
work are considered.

II. RELATED WORK

The need for balanced diversity in particle swarms, par-
ticularly when working with highly multi-modal functions, is
universally recognized, and there is therefore a large amount of
research on the topic. Though varied, most approaches fit into
one of a few high-level categories: altered swarm topology [2],
[9], [13], [16], [22], direct diversity detection and injection [4],
[15], [20], [23], [28], [29], and methods involving coefficient
adjustment [8], [25]–[27], [30].

Each of these approaches, and sometimes several of them
together, has its own benefits and liabilities. For example,
altered swarm topologies (i.e., anything not fully connected)
always reduce the flow of information in a swarm, resulting
in slower overall convergence [5], [9], [16], [22]. Sometimes
this is desirable (e.g., in highly multimodal functions where
convergence is often premature), but often it is not, and it
represents yet another decision that requires some a priori
global knowledge of the target function (i.e., whether it is
close enough to convex that fast convergence is appropriate).
Both of these issues become less important when topology
is changed in response to swarm performance, TRIBES being
one example where performance and tuning considerations are
addressed simultaneously by constantly adapting swarm size
and topology [2], [19].

Direct diversity detection and injection is also a two-edged
sword. The general approch involves applying a diversity
measure to the swarm and then using that to inform artificial
injection of additional diversity. This can, for example, be
accomplished by giving particles volume and allowing them
to “bounce” off of one another, as in the Spatial Extension
PSO (SEPSO) [15], [20], [28]; in this case the detection is a
pairwise distance calculation, and the injection is a reversal
of velocity accompanied by a reflection of particle position.
Another example of artificial detection and injection is the
Attraction and Repulsion PSO (ARPSO) [23], where global
swarm entropy triggers a temporary change to a “repulsion”
mode in the swarm (where acceleration coefficients temporar-
ily reverse sign).

The measure-and-inject approach is popular because the
underlying concept is intuitive: if diversity is too low, it is
artificially increased. But, these methods can substantially
increase computational requirements due to the need to mea-
sure global swarm characteristics (a feature that also makes
them difficult to parallelize), and they typically introduce
several new diversity parameters and thresholds that must be
tuned. Tuning is made more difficult still by their tendency to
unconditionally suppress convergence, causing the swarm to
lose its ability to drill down to the bottom of good local minima
with any precision unless the parameter settings are just right
for the application. As was the case with topology, however,
more successful methods can be obtained by replacing some
of the static tuning with automatic parameter adaptation [20].

Another classic technique for changing swarm convergence
behavior involves changing the nature of the acceleration
(φp, φg) and momentum (ω) coefficients [8], [24] (other

popular adaptations may provide additional coefficients [17]).
These methods are appealing because their implementation is
simple and they do not fundamentally change the underlying
equations, making them easier to implement, explain, and
reproduce: what is left is still easily recognizable as PSO.
These are of particular interest in this work, and there are
several classes of them.

One very popular technique for improving swarm behavior
is linearly decreasing momentum ω over the course of an
optimization run. The velocity update equation (2) is changed
to something like the following:

ẋt+1 =

((
1− t

T

)
ω0 +

t

T
ω1

)
ẋt + ẍt+1 (4)

where T is the maximum number of iterations or function
evaluations, ω0 is the start momentum, and ω1 is the end mo-
mentum. Each of these parameters must be tuned. This linear
decrease of momentum over the course of an optimization run
has been shown to increase PSO effectiveness and is widely
used [8], but interestingly, so has a linear increase [18], [30],
making it unclear which way it should be altered for any
given optimization problem. A typical setup might decrease
momentum from 0.9 to 0.4, but the range used is problem- and
dimensionality-dependent. Furthermore, this approach attaches
more than the usual significance to the number of iterations,
which makes it hard to adjust running time without observing
surprising effects on performance.

Similar changes to φg and φp have been proposed in the
literature, typically favoring a linear increase or decrease of
these coefficients over time, bounded by a maximum number
of iterations [26], [27]. Nonlinear versions based on the same
idea have also been proposed [14]. Significant improvements
have been reported using these methods, but the complexity of
finding useful settings for all of the new parameters introduced
is considerable.

It is also possible, though not yet substantiated, that the
reason for the success of linear changes in momentum and
other coefficients has little to do with the specific schedule and
more to do with the fact that they happen to pass through good
values during an optimization run. This seems evident in the
case of the ongoing ω controversy, but becomes considerably
more difficult to see when several coefficients are altered at
once. This is an interesting avenue for future research.

In the case of topology adaptation or direct manipulation
of swarm diversity, ease of use and improvement of perfor-
mance are obtained when the method uses current swarm
characteristics to inform some type of automated parameter
adaptation. In other words, things work better with a feedback
loop, and coefficient adjustment may benefit from properly-
applied feedback, as well. Ideally, the resulting procedure
will be informed by easily-obtained swarm state, minimally
invasive, easy to understand, minimally tuned, computationally
efficient, and decoupled from other useful parameters like T .
This paper proposes one such approach.

TABLE I
BENCHMARK FUNCTIONS, WITH ASSOCIATED PER-DIMENSION INITIALIZATION BOUNDS AND OFFSET VECTOR c.

Parabola (Sphere): (−50, 50) fc(x) = ‖x− c‖22 (5)

Ackley: (−32.768, 32.768) fc(x) = 20 + e− 20 exp

(
−‖x− c‖2

5
√
D

)
− exp

(
1

D

D∑
i=1

cos 2π(xi − ci)
)

(6)

Rastrigin: (−5.12, 5.12) fc(x) = ‖x− c‖22 + 10

D∑
i=1

1− cos(2π(xi − ci)) (7)

Rosenbrock: (−100, 100) fc(x) =

D−1∑
i=1

100
(
(xi+1 − ci+1)− (xi − ci)2

)2
+ (xi − ci − 1)2 . (8)

III. SIMPLE ADAPTIVE COGNITION

Social algorithms of all kinds make use of a simple and
powerful idea: complex and useful emergent behavior can be
obtained through the use of simple rules applied by individuals
of the group. Fundamentally, this means that the complexity
in a social algorithm arises from the way that information
moves through the system and how that information is used by
individuals. Too often, however, the information traverses the
social links without any associated qualitative characteristics
that would aid an individual in its use of that information;
there is no good way for an individual to assess or act upon
the reliability of the information it has just received.

Thus, in PSO and many of its popular variants, there is
a strong implicit assumption that one piece of information
is very much like another. For example, the best location
of a neighbor (g) is not typically viewed any differently
than the best remembered location of the individual (p).
Intuitively, this assumption is almost never true; no two bits
of information have the same utility for the optimization
problem. The challenge lies in assigning quantifiable quality to
information without requiring an inordinate amount of a priori
problem knowledge. Unfortunately, the complete and correct
answer to the query “How should I use this information to
find the minimum?” ultimately requires prior knowledge of
the location of that minimum [21].

Information utility, then, is perhaps too general a charac-
teristic to tackle directly. Information age, however, can be
a good proxy for utility in the context of particle swarm
optimization. If a particle has not updated p in a large number
of algorithm steps, then that is an indication that its best
remembered location is not in a region of the function that
warrants further exploration; ostensibly the particle that last
saw that location has already explored it and not found much
of value, else it would have been updated earlier. Using this
idea, it is possible to efficiently improve PSO by breaking the
assumption that information obtained long ago is precisely as
useful as information obtained recently2.

Simple Adaptive Cognition (SAC) does exactly this. It
decays the magnitude of vectors toward locations in propor-

2Note that particle age has been explored before [6], but the previous work
changed age without regard to fitness: there was no feedback.

tion to how long ago they were discovered. Specifically, the
acceleration update equation (1) is changed as follows:

ẍt+1 = φpγ
t−tp U⊗(pt − xt) + φgγ

t−tg U⊗(gt − xt) (9)

In the above equation, one new parameter and two new
measurement variables have been introduced. The adaptation
weight γ ∈ (0, 1) is typically close to 1.0 (e.g., 0.999), and
controls how fast a value is suppressed as the time between
updates goes up. The time of the last update of p is tp, and the
time of the last update of g is tg . Each time a particle updates
its own pt (i.e., whenever pt 6= pt−1), it also sets tp = t.
Otherwise it is left unchanged. Note that letting γ = 1.0
restores standard PSO behavior.

The intuitive appeal of this algorithm is obvious: if a best
location has not been updated recently, then the vector toward
that location tends to have a smaller magnitude. Effectively,
this keeps a particle from favoring that location based on
how long ago it was discovered. It has practical appeal, as
well, since in the case of easy functions, updates are frequent,
causing the exponent of γ to be small, restoring standard (and
highly effective) PSO behavior for those functions. From there
it scales naturally to more difficult functions where updates can
happen less frequently.

Furthermore, it has been noted that one of PSO’s strengths
is its ability to generate chaotic motion at opportune times
[3], [10], [11]. Usually, as swarms converge, particles slow
down, and the chaotic behavior is naturally suppressed. This
simple adaptation tends to selectively restore that behavior
if the particles are learning new things as they converge
(and not merely converging to stagnant values) by suddenly
lengthening the acceleration vector for each particle affected
by a recent update. This allows adapted swarms to continue
making progress long after other variants would permanently
stagnate.

IV. EXPERIMENTS

Simple Adaptive Cognition was tested on some common
100-dimensional benchmark functions in conjunction with
several other PSO variants, including standard, decreasing
momentum, linearly adapted acceleration coefficients [27], and
various parameterizations of particle bouncing [20]. In the case
of linear changes in acceleration coefficients, the behavior was

10-5

10-4

10-3

10-2

10-1

100

101

102

103 104 105

Ackley

Constant
Constant**
Linear
Linear**

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
3

10
4

10
5

Parabola

Constant

Constant**

Linear

Linear**

101

102

103

104

103 104 105

Rastrigin

Constant
Constant**
Linear
Linear**

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
3

10
4

10
5

Rosenbrock

Constant

Constant**

Linear

Linear**

Fig. 1. Performance of constant and linear momentum strategies (“**” denotes use of SAC). X-axis is function evaluations (log-log scale).

sufficiently poor in this setup as to not warrant inclusion in
the displayed results; it typically performed only marginally
better than standard PSO, and thus occupied the same space
on the graphs.

A. Benchmarks

The common benchmark functions selected for comparison
are defined in Table I with their associated per-dimension
initialization bounds. Because all of the functions have their
minimum at or near the origin, each function was shifted
to ensure that good results were not obtained because of
accidentally-introduced origin-seeking behavior [19]. This in-
volved offsetting the domain in each dimension by 0.25|L|,
e.g., for Parabola, every element of c is 25.

B. Setup

For all experiments, the dimensionality D = 100, the
number of particles N = 5, and the neighborhood topology is
fully-connected3. The initialization cube is specified for each
benchmark function in Table I, and each initial velocity is
generated by multiplying each element of the diagonal vector
L by a uniform draw from the interval (−1, 1). For each
experiment, the maximum number of function evaluations is

3The dimensionality and swarm size often vary greatly in the literature,
as does the selection of topology. No universally correct settings are known
for any of these, though some attempts have been made to define standard
starting points [1]. Though there is not room to adequately demonstrate it in
this work, further testing verified that the algorithm presented here also works
well on problems of lower dimensionality and with larger swarm sizes.

T = 250000. The motion equations used are repeated here for
convenient reference:

ẍt+1 = φpγ
t−tp U⊗(pt−xt) + φgγ

t−tg U⊗(gt−xt) (10)

ẋt+1 =

((
1− t

T

)
ω0 +

t

T
ω1

)
ẋt + ẍt+1 (11)

xt+1 = xt + ẋt+1 . (12)

In all cases, φp = φg = 2.05.
Where particle bouncing is indicated, it follows the Con-

tracting Radius, Increasing Bounce SEPSO (CRIBS) algorithm
[20]. Specifically, a collision occurs when the following is
satisfied for particle i:

∃j 6=i.‖xi − xj‖ < (βbi + βbj)r (13)

with β = 0.9, r = 0.1‖L‖2, and b is the number of times
a particle has experienced a collision. Note that letting r =
0 restores standard non-bouncing behavior, since the above
inequality will never be satisfied in that case.

When a collision is detected, the velocity and position of
the corresponding particle are changed according to

ẋt+1 = −ẋt+1 (14)

xt+1 = xt − β−b(xt+1 − xt) . (15)

Because the methodologies here make use of momentum
instead of constriction [3], the absolute value of the velocity
vector must be capped at each iteration using the well-known
vector Vmax, each element of which is set to 0.5|L| (e.g., for
Parabola, every element of Vmax is 50).

100

101

102

103

104

104 105 106

Rastrigin, Evals=1000000

Constant
Constant**
Linear
Linear**

10-2

100

102

104

106

108

1010

1012

104 105 106

Rosenbrock, Evals=1000000

Constant

Constant**

Linear

Linear**

Fig. 2. Performance of best run of momentum strategies (“**” denotes use of SAC) on Rastrigin and Rosenbrock with 1 million function evaluations. The
vertical lines denote 250000 evaluations.

C. Results and Analysis

As can be seen in the definitions given in Section IV-B,
the various approaches tested, including SAC, are compatible
with one another and can be employed in any number of
combinations.

For example, it is possible to use any combination of
adaptive coefficients and momentum strategies, some of which
are shown Fig. 1. In these and all graphs, unless otherwise
specified, the values shown are the minimum value of the
best particle in the swarm over 20 independent runs. In this
particular figure, the following settings apply:
• Constant Momentum: ω0 = ω1 = 0.75
• Linear Momentum: ω0 = 0.75, ω1 = 0.4
• Constant Cognition: γ = 1.0
• Adaptive Cognition: γ = 0.999

Again looking at Fig. 1, the use of SAC can improve
performance in two important ways: evaluations required to
begin obtaining good values, and the final value obtained at
the end of the run. In all cases, stopping the process early
produces better results when using SAC. This behavior is
particularly interesting for the function Parabola, since it is
an “easy” function that does not typically respond well to
diversity-increasing techniques, as they tend to slow down
convergence [20].

In addition to finding better values sooner, SAC also per-
forms as well as or better than its corresponding baseline
when the algorithm terminates. In the case of the Rosen-
brock function, however, it appears that the standard linearly-
decreasing momentum is about to overtake it, suggesting that
the algorithm should be run for more iterations before drawing
any definitive conclusions. The result of doing this is shown in
Fig. 2, where the number of function evaluations T has been
increased to 1 million.

The vertical line in Fig. 2 indicates 250000 function evalua-
tions, where previous graphs ended. As might be expected, the
constant momentum entries are simply continuing along their
previous trajectories; the adaptive version continues to improve
while the non-adaptive version continues to stagnate. The
linear momentum entries, however, are different: performance
is stretched out along the x-axis; at 250000 evaluations, they

have not achieved values equal to the earlier experiments in
Fig. 1. Given the momentum schedule’s dependence on T ,
this is hardly surprising. They do at least eventually surpass
their previous performance, but do not improve on their SAC
variants.

While stretching the momentum schedule was ultimately
beneficial in this case, it could just as easily have been
detrimental to do so; it is always naive to assume, when using
a linear schedule tied to T on any coefficient, that one can
simply extend the number of function evaluations and watch
the swarm continue progressing as before. This is a significant
shortcoming of the linear schedule: it conflates a useful and
intuitive parameter (T) with a set of parameters that are harder
to tune (the coefficient schedule), often resulting in surprising
behavior.

The linear schedule for momentum appears to be detrimen-
tal when applied to Rastrigin. It is possible that the momentum
is simply too small by the time the algorithm is halfway done,
indicating that the end momentum ω1 is probably too low.
This is one example of the difficulty inherent in tuning that
parameter, and learning to adapt that as well is a subject of
future research.

Putting momentum concerns aside for a moment, it is also
instructive to compare the behavior of SAC in conjunction
with methods that directly measure and increase swarm di-
versity, such as bouncing particles. Fig. 3 shows the various
combinations (bouncing is disabled when r = 0 and enabled
when r > 0 as described previously).

Once again, the use of SAC improves either the bouncing
or non-bouncing strategy in both initial speed of improvement
and quality of final result. With Rastrigin and Rosenbrock,
the adaptive and non-adaptive cases appear to approach one
another near the end, but this is less striking once the log scale
is noted. In any case, the addition of SAC simultaneously does
no harm and allows the algorithm to be stopped much earlier
while still obtaining reasonable results.

The behavior of the swarm on Parabola remains notable:
not only does SAC improve results on Parabola, it completely
obviates the need for bouncing at all. This is notably true for
Ackley, as well, which is a difficult multi-modal function.

10-5

10-4

10-3

10-2

10-1

100

101

102

104 105

Ackley

Normal
Normal**
Bounce
Bounce**

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
4

10
5

Parabola

Normal

Normal**

Bounce

Bounce**

101

102

103

104

104 105

Rastrigin

Normal
Normal**
Bounce
Bounce**

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
4

10
5

Rosenbrock

Normal

Normal**

Bounce

Bounce**

Fig. 3. Performance of bouncing (“**” denotes use of SAC). X-axis is function evaluations (log-log scale).

Finally, over all methods evaluated, the best runs consis-
tently came from a method that was combined with SAC, as
shown in Fig. 4. Furthermore, the methods used in conjunction
with SAC were almost always more consistent (sometimes
substantially so) in their performance than methods used
without it, shown in Fig. 5. The one notable exception is on
the Ackley function, where there is no disernible difference in
either case.

V. CONCLUSION AND FUTURE WORK

Particle swarm algorithms implicitly assign a sort of quality
measure to the information obtained by each particle: the age
of the best known location. Making use of that quality to
inform a particle’s motion is the underlying principle behind
Simple Adaptive Cognition (SAC).

As the magnitudes of vectors toward old information are
suppressed, the particles in the swarm tend to avoid less
interesting regions of the domain and converge instead toward
more recently-updated locations, often providing substantial
benefits when optimizing both easy and hard functions alike.

This simple approach is intuitive, consistently performant,
and practically cost-free in terms of computation and memory.
Furthermore, it combines elegantly with and improves upon
other PSO variants. Also, when information is updated fre-
quently, it reduces gracefully to the behavior of the underlying
method. This particular feature allows it to perform as well as
or better than standard PSO on easy functions, and allows it to
serve as a non-intrusive enhancement for harder ones, making
it a compelling addition to any compatible PSO algorithm.

Finally, the fact that it introduces exactly one new parameter
that appears to require little if any tuning is an added bonus.

The study of this approach has opened up a few new
questions, the pursuit of which is left for future work. For
example, the new interactions between momentum and the
now-decreasing coefficients need to be studied in more detail.
This was particularly evident when optimizing Rastrigin.

Additionally, having applied the concept of information
quality to the acceleration coefficients in SAC, it seems natural
to wonder whether the momentum term in the velocity equa-
tion would benefit from similar treatment. The linear schedule
has some definite drawbacks, so making momentum dependent
on intrinsic information has obvious appeal. As there is no up-
date rule in direct evidence there, the selection of a reasonable
proxy for information quality is not as straightforward.

Finally, how this approach will fare on fully informed
swarms [17] is an open question, since they tend to provide
many more disparate sources of information to each particle.
This and other questions remain to be studied in detail, but
until then the method is simple and compelling enough to
make it a solid addition to any swarm optimization toolbox.

REFERENCES

[1] D. Bratton and J. Kennedy, “Defining a standard for particle swarm op-
timization,” in Proceedings of the IEEE Swarm Intelligence Symposium
(SIS 2007), Honolulu, HI, 2007, pp. 120–127.

[2] M. Clerc, “TRIBES - un exemple d’optimisation par essaim particulaire
sans paramètres de contrôle,” in Optimisation par Essaim Particulaire
(OEP 2003), Paris, France, 2003.

[3] M. Clerc and J. Kennedy, “The particle swarm: Explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, February 2002.

10-5

10-4

10-3

10-2

10-1

100

101

102

103 104 105 106

Ackley

Constant
Adaptive

10-12
10-10
10-8
10-6
10-4
10-2
100
102
104
106

103 104 105 106

Parabola

Constant
Adaptive

101

102

103

104

103 104 105 106

Rastrigin

Constant
Adaptive

100
101
102
103
104
105
106
107
108
109

1010
1011

103 104 105 106

Rosenbrock

Constant
Adaptive

Fig. 4. Best run over all algorithms with and without SAC. X-axis is function evaluations (log-log scale).

10-1

100

101

103 104 105 106

Ackley

Constant
Adaptive

101

102

103

104

105

103 104 105 106

Parabola

Constant
Adaptive

101

102

103

103 104 105 106

Rastrigin

Constant
Adaptive

106

107

108

109

1010

1011

103 104 105 106

Rosenbrock

Constant
Adaptive

Fig. 5. Standard deviation across all algorithms with and without SAC plotted against function evaluations (log-log scale).

[4] Z. Cui, J. Zeng, and X. Cai, “A new stochastic particle swarm optimizer,”
in Proceedings of the 2004 IEEE Congress on Evolutionary Computa-
tion. Portland, Oregon: IEEE Press, 20-23 June 2004, pp. 316–319.

[5] M. A. M. de Oca, T. Stützle, M. Birattari, and M. Dorigo, “Franken-
stein’s pso: A composite particle swarm optimization algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1120–
1132, October 2009.

[6] S. Dehuri, A. Gosh, and R. Mall, “Particles with age for data clustering,”
in Proceedings of the 9th International Conference on Information
Technology (ICIT), Bhubaneswar, December 2006, pp. 221–224.

[7] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC 2000), San Diego, Cali-
fornia, 2000, pp. 84–88.

[8] ——, “Particle swarm optimization: Developments, applications, and
resources,” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2001), Seoul, Korea, 2001.

[9] J. Kennedy, “Small worlds and mega-minds: Effects of neighbor-
hood topology on particle swarm performance,” in Proceedings of the
Congress of Evolutionary Computation, P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and Z. Zalzala, Eds., vol. 3. IEEE Press, 1999,
pp. 1931–1938.

[10] ——, “Probability and dynamics in the particle swarm,” in Proceedings
of the Congress on Evolutionary Computation (CEC 2004), vol. 1, June
2004, pp. 340–347.

[11] ——, “Dynamic-probabilistic particle swarms,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2005),
vol. 1, June 2005, pp. 201–207.

[12] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
International Conference on Neural Networks IV. Piscataway, NJ: IEEE
Service Center, 1995, pp. 1942–1948.

[13] J. Kennedy and R. Mendes, “Neighborhood topologies in fully-informed
and best-of-neighborhood particle swarms,” in Proceedings of the 2003
IEEE SMC Workshop on Soft Computing in Industrial Applications
(SMCia03). Binghamton, New York: IEEE Computer Society, June
2003.

[14] C.-N. Ko, Y.-P. Chang, and C.-J. Wu, “An orthogonal-array-based par-
ticle swarm optimizer with nonlinear time-varying evolution,” Applied
Mathematics and Computation, vol. 191, no. 1, pp. 272–279, August
2007.

[15] T. Krink, J. S. Vestertroem, and J. Riget, “Particle swarm optimisation
with spatial particle extension,” in Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, 2002.

[16] R. Mendes, J. Kennedy, and J. Neves, “Watch thy neighbor or how the
swarm can learn from its environment,” in Proceedings of the IEEE
Swarm Intelligence Symposium 2003 (SIS 2003), Indianapolis, Indiana,
2003, pp. 88–94.

[17] ——, “The fully informed particle swarm: Simpler, maybe better,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3, June 2004.

[18] C. K. Monson and K. D. Seppi, “Bayesian optimization models for
particle swarms,” in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2005), vol. 1, Washington, D.C.,
2005, pp. 193–200.

[19] ——, “Exposing origin-seeking bias in pso,” in Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO 2005),
vol. 1, Washington, D.C., 2005, pp. 241–248.

[20] ——, “Adaptive diversity in pso,” in Proceedings of the 8th Annual
conference on Genetic and Evolutionary Computation (GECCO 2006).
Seattle, Washington: ACM, 2006, pp. 59–66.

[21] ——, “A graphical model for evolutionary optimization,” Evolutionary
Computation, vol. 16, no. 3, pp. 289–313, 2008.

[22] M. Richards and D. Ventura, “Dynamic sociometry in particle swarm op-
timization,” in International Conference on Computational Intelligence
and Natural Computing, September 2003.

[23] J. Riget and J. S. Vesterstrøm, “A diversity-guided particle swarm
optimizer — the ARPSO,” Department of Computer Science, University
of Aarhus, Tech. Rep. 2002-02, 2002.

[24] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
1998), Piscataway, New Jersey, 1998.

[25] ——, “Particle swarm optimization with fuzzy adaptive inertia weight,”
in Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2001), Seoul, Korea, 2001.

[26] P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-objective
particle warm optimization with time variant inertia and acceleration
coefficients,” Information Sciences, vol. 177, no. 22, pp. 5033–5049,
November 2007.

[27] Z. Wu and J. Zhou, “A self-adaptive particle swarm optimization
algorithm with individual coefficients adjustment,” in 2007 International
Conference on Computational Intelligence and Security (CIS 2007).
Harbin, China: IEEE, 2007, pp. 133–136.

[28] J. Zhang, Y. Tan, and X. He, “Concentric spatial extension based particle
swarm optimization inspired by brood sorting in ant colonies,” in Swarm
Intelligence Symposium (SIS 2009). Nashville, Tennessee: IEEE, 2009,
pp. 9–15.

[29] S.-Z. Zhao and P. N. Suganthan, “Diversity enhanced particle swarm
optimizer for global optimization of multimodal problems,” in Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC 2009).
Trondheim, Norway: IEEE, 2009, pp. 590–597.

[30] Y. Zheng, L. Ma, L. Zhang, and J. Qian, “Empirical study of particle
swarm optimizer with an increasing inertia weight,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC 2003), Canbella,
Australia, 2003, pp. 221–226.

