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Abstract— We recast the problem of unconstrained con-
tinuous evolutionary optimization as inference in a fixed
graphical model. This approach allows us to address several
pervasive issues in optimization, including the traditionally
difficult problem of selecting an algorithm that is most
appropriate for a given task. This is accomplished by placing
a prior distribution over the expected class of functions, then
employing inference and intuitively defined utilities and
costs to transform the evolutionary optimization problem
into one of active sampling. This allows us to pose an
approach to optimization that is optimal for each expressly
stated function class. The resulting solution methodology can
optimally navigate exploration-exploitation tradeoffs using
well-motivated decision theory, while providing the process
with a natural stopping criterion. Finally, the model natu-
rally accommodates the expression of dynamic and noisy
functions, setting it apart from most existing algorithms that
address these issues as an afterthought. We demonstrate the
characteristics and advantages of this algorithm formally and
with examples.

I. Introduction

Continuous empirical optimization can be conceptu-
alized as an inference process: given observed function
values, conclusions are drawn about the hidden location
of the global optimum. These conclusions are frequently
drawn in the presence of uncertainty, where critical char-
acteristics of the function are unknown and sampling
produces sparse information.

This viewpoint suggests that the problem of optimiza-
tion can be represented as a graphical model that describes
its inherent information relationships [1], [2]. A graphical
model is a probabilistic model that represents random
variables with nodes and dependencies with edges. In
this representation a problem’s natural causality is easily
represented and visualized. We refer to our model of
evolutionary optimization as the Graphical Optimization
Model (GOM).

Once defined, a GOM allows optimization to be con-
ceptualized as a rational decision process: rather than
assuming that sample locations are provided by some
external source, an agent is created that selects them.
In contrast to most other evolutionary algorithms based
on probabilistic models, this rational agent will create
populations based on both probabilistic models and
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well-defined utilities that reflect the goal of optimization:
exploring the domain so as to acquire information about
the global optimum.

The purpose of this work is to briefly introduce and
explore this rich idea of inference-based evolutionary
optimization, creating graphical models which describe
the optimization process and developing them into a
complete inference-based, evolutionary algorithm. The
resulting algorithm is called the Utile Function Opti-
mizer (UFO), and admits a principled analysis of opti-
mization. We then provide a simple definition of utility
and explore agents that use it to make rational sampling
decisions, producing sophisticated behavior when pro-
vided with intuitive and straightforward declarations of
practitioner intent.

This paper is organized as follows: In Section II we
discuss related work. In Section III we review basic
Bayesian techniques and graphical models. In Section IV
we develop a graphical model of the evolutionary op-
timization problem and discuss the selection of its re-
quired prior distribution. In Section V we introduce
optimal sampling in this model using utility theory. In
Section VI we discuss how to implement this sampling
technique and thus optimally select the membership
of the next population using a specific utility model.
In this section we also introduce the complete Utile
Function Optimizer algorithm (UFO). In Section VII we
summarize and clarify these concepts with a simple
case study, and demonstrate how the various graphical
model specifications can be produced. In Section VIII we
discuss the problem of selecting an appropriate function
class and compare it to the more traditional problem of
selecting an appropriate algorithm. Finally, in Section IX
we give conclusions and suggest future work.

II. RelatedWork

Optimization through Bayesian inference is not unique
to this work: Stuckman [3] and Törn [4] survey a number
of Bayesian optimization approaches. Mockus [5], [6]
and Törn [4] also contribute important ideas to these
methods. Many existing techniques rely on Gaussian
Processes [7], including Kriging [8]. Particle Swarm Op-
timization has also been adapted to create and use
distributions inferred through a Bayesian model [9], [10].

Other algorithms exist that specify a function class. In
particular, meta models are used to tune an algorithm
for a specified function class by reducing the need for
expensive function evaluations [11]–[13].



Also related to this work is the field of function
approximation. Linear, quadratic, Bayesian, and other
forms of regression all relate to this work in the sense
that data is used to draw conclusions about a function. In
this work, however, the focus is limited to the discovery
of the minimum, not the approximation of the entire
function. In some cases a very good estimate for the
location of the minimum can be obtained while leaving
much about the rest of the function undiscovered.

Estimation of Distribution Algorithms (EDAs) gener-
ate distributions over likely minima [14]. While similar
in spirit, EDAs and the UFO have a critical difference:
EDAs rely on a fixed and usually implicit function class,
encoded in the distribution representation and the al-
gorithm used to obtain it; the Static Graphical Opti-
mization Model relies on an exchangeable and explicit
function class, encoded in the model distributions. This
distinction will be discussed in greater detail later.

III. BayesianModels

Given continuous random variables representing the
state of the world x and a resulting observation y, Bayes’
Law is used to compute the inverse relationship:

ρx|y
(

x|y
)

=
ρy|x
(

y|x
)

ρx(x)
∫

ρy|x
(

y|x
)

ρx(x) dx
,

allowing conclusions to be drawn about x when ob-
serving only y. To do this, it is required that a prior
distribution ρx(x) and likelihood ρy|x

(

y|x
)

be specified; the
former represents what is believed about x in the absence
of data, and the latter represents a belief about how the
state of the world impacts observed data.

While it is possible to reason about these probabilities
directly in the given notation, it is useful to depict the
variables and relationships as a graphical model: a graph
where nodes represent random variables and edges rep-
resent information dependencies [1]. In a directed graph-
ical model (or Bayesian Network), the edges typically
represent causal relationships, and every node in the
model has an associated distribution: conditional if the
node has parents, unconditional if not.

These models are typically acyclic when used for
Bayesian inference. In this case, Bayes’ Law and simple
rules of probability can be combined to compute a
distribution over any query variable given information
about any number of evidence variables in the model [2]:
ρ
(

query|evidence
)

. Any variables that do not represent
queries or evidence are integrated away in the inference
process. This is a powerful tool for determining infor-
mation about hidden state from available observations.

IV. Optimization as Inference

In the case of optimization, the development of a
graphical model involves a declaration of available infor-
mation and of the relationships that make inferring the
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Fig. 1. The Static Graphical Optimization Model (SGOM)

location of the global optimum possible. These relation-
ships can be extracted from the nature of the sampling
process and straightforward notions of causality.

The sampling process involves querying a function f
at locations X to obtain corresponding values Y. This
process can be flexibly expressed as a conditional distri-
bution ρY | f,X . The goal of optimization is also important:
to draw conclusions about the location of the global
optimum x⋆, a location that is defined by the func-
tion itself. This relationship may be described by the
distribution ρx⋆ | f . An appeal to causality suggests that
the direction of influence is correct: samples do not
define the function, nor does its global optimum. All of
these relationships are collected in the Static Graphical
Optimization Model (SGOM) depicted in Figure 1, where
the shading indicates the additional assumption that X
and Y are observed while f and x⋆ are hidden.

Using the SGOM, Bayes law, and other standard
statistical techniques, optimization in the presence of
sample information is simply the process of inferring the
distribution over the location of the global optimum x⋆,
given the observed values of X and Y:

ρx⋆|X,Y

(

x⋆|X,Y
)

=

∫

ρx⋆ | f
(

x⋆| f
)

ρY | f,X
(

Y| f,X
)

ρX(X) ρ f
(

f
)

d f
∫

ρY | f,X
(

Y| f,X
)

ρX(X)ρ f
(

f
)

d f
(1)

A. The Necessity of a Prior

Inference of ρx⋆ |X,Y requires the definition of the prior
distribution ρ f . This requirement is important because
it indicates that useful conclusions about x⋆ cannot be
drawn without first specifying a distribution over all
possible functions: a function class of interest. This neces-
sity is unsurprising in light of No Free Lunch theorems
(NFL) for optimization, which state that no (discrete)
optimization algorithm has better average performance
over all functions than random search [15]; if an algo-
rithm is expected to perform better than random search,
it must do so only for a limited class of functions. It will
be demonstrated that in the SGOM, this class is specified
precisely by ρ f and ρY | f,X .

The prior ρ f may be expressed in many ways. It may
be a discrete list of functions with associated proba-
bilities, a distribution over the parameters of a fixed
parametric representation (e.g., polynomial coefficients
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Fig. 2. The Graphical Optimization Model (GOM)

or artificial neural network weights [16]), a potentially
unbounded data-based representation (e.g., a support
vector machine [17]) or a hybrid of these. An example
of one such representation will be given in Section VII.

V. Rational Sampling

Once a function class is defined, optimization is
achieved through inference in the SGOM by solving (1).
Happily, the resulting Bayesian posterior over global
optima inherits the standard arguments for Bayesian
optimality with respect to utility [18].

The optimality of the process itself is contingent upon
the population of externally provided function samples.
This raises the question of their origin. Therefore, the
decision process involved plays as critical a role as does in-
ference. In fact, it may be stated that a critical but under-
appreciated goal of optimization is to select sample
locations X that will provide maximal information about
x⋆. This is the process of active sampling, also known
as active learning, active selection, experimental design, or
optimal allocation of trials [19]–[21].

Extending the SGOM to include an informed decision-
making agent results in the complete Graphical Opti-
mization Model (GOM) in Figure 21.

A rational optimizing agent will select samples that
tend to benefit future generations. The utility of these
sampling choices may be defined in a variety of ways,
including simple definitions of the value of exploitation,
measures based on Shannon information [20], [22], [23]
and the Expected Value of Sample (or Partial) Informa-
tion (EVSI) [24], [25]. Here we employ EVSI to assess
the value of potential samples in the next generation;
in applications where utility measures are available,
samples based on EVSI will maximize expected utility.
The next section gives an example of how to use EVSI
to make rational decisions.

A. EVSI tutorial and example: Drilling For Oil

Consider an oil company that has an opportunity to
purchase a plot of land [24] for $1 million. If the site

1The network has a structure similar to a Partially Observable
Markov Decision Process (POMDP), but is fundamentally continuous,
has non-stationary transitions, and is utilized quite differently than a
traditional POMDP. Therefore, while noting the similarities, this work
will not generally refer to the network as a POMDP.

contains oil, it is worth $10 million, that is, $9 million
net. Given this information, a utility function may be
defined in terms of the boolean decision variable Drill
and the boolean query variable Oil:

uDrill,Oil (T,T) = $9M uDrill,Oil (T, F) = −$1M

uDrill,Oil (F,T) = $0 uDrill,Oil (F, F) = $0 .

If the site’s potential for containing oil is known in terms
of the prior probabilities, e.g., PrOil (T) = 0.6, then the
most rational action can be calculated using the Expected
Utility (EU) of drilling (d = T) and not drilling (d = F):

Ed
[

uDrill,Oil (d, o)
]

=
∑

o∈{T,F}

uDrill,Oil (d, o) PrOil (o)

=















$5M if d = T

$0 if d = F
.

On average, drilling a plot like this one will produce
a $5 million profit, so the choice to purchase is rational.
This result, however, says nothing about whether this
specific plot should be purchased, only that the prior
information suggests good return on average. Given such
an isolated opportunity, a company would be unlikely to
make a purchase based on such a result: it would gather
more information first, perhaps in the form of a survey.

The presence of additional information improves the
company’s chances of making a profitable decision, so
the availability of a geological survey (“test”) transforms
the problem from a purchase decision into a decision as
to whether the cost of a test should be incurred. This is
what EVSI computes. Let us suppose, then, that the test
costs $0.1 million and has the following characteristics:

PrTest|Oil (T|T) = 0.95 PrTest|Oil (T|F) = 0.20 .

The test is not very accurate, but may still provide use-
ful information. The outcome of the test may affect the
purchase decision, so expected utility is now conditional:

Ed|t
[

uDrill,Oil (d, o)
]

=
∑

o∈{T,F}

uDrill,Oil (d, o) PrOil|Test (o|t)

where PrOil|Test (o|t) is the Bayesian posterior

PrOil|Test (o|t) =
PrTest|Oil (t|o) PrOil (o)

PrTest (t)

and the marginal on t is

PrTest (t) =
∑

o∈{T,F}

PrTest|Oil (t|o) PrOil (o)

= 0.65

giving that

PrOil|Test (T|T) ≈ 0.88 PrOil|Test (F|T) ≈ 0.12

PrOil|Test (T|F) ≈ 0.09 PrOil|Test (F|F) ≈ 0.91



and finally

Ed|t
[

uDrill,Oil (d, o)
]

=























$7.8M if t = T, d = T

−$0.1M if t = F, d = T

$0 if d = F

.

The presence of information changes the expected utility
of drilling and therefore affects the purchase decision.

Knowledge of the test’s outcome is desirable; it guides
the decision process such that maximum expected utility
(MEU) can be increased. The test itself costs $0.1 million,
however, making it useful to know the expected improve-
ment in maximum utility given the test’s outcome before it
is performed. EVSI is the right way to calculate this while
taking the accuracy of the test into account:

EVSITest = E
[

max
d

Ed|t
[

uOil,Drill (o, d)
]

]

−max
d

Ed
[

uOil,Drill (o, d)
]

= E





























$7.8M if t = T

$0 if t = F















− $5M

= (($7.8M) PrTest (T) + ($0) PrTest (F)) − $5M

= $0.07M

Test results are therefore worth about $0.07 million, but
the test is not cost-effective because it costs $0.1 million.
Were the test more accurate, the expected value improve-
ment might be higher; as it is, a lower price should be
negotiated or a more accurate test utilized.

EVSI has answered an important question: whether
or not to pay for this test before making a purchase
decision. If two tests with distinct costs and accuracies
are available, EVSI can also be used to choose between
them based on their net expected utilities.

VI. A Utile Function Optimizer: EVSI in the GOM

EVSI is powerful and simple, indicating whether new
information is expected to be worth its cost. In the pro-
cess, it answers another supremely important question in
function optimization: “How will immediate exploration
affect future exploitation?” Optimization is fundamen-
tally concerned with finding a location that, if sampled,
will produce a good value, not with actually sampling
that value. EVSI is a principled and meaningful way to
accomplish this goal of active sampling for maximization
of information about the global minimum, and it is only
possible within a framework such as the GOM.

In the oil example, the question is whether to purchase
(and drill) the land. The test (e.g., a geological survey)
is distinct and has its own associated costs. It is conceiv-
able, however, that the test could consist of purchasing
and drilling the land; after all, doing so would yield
excellent information. Function optimization is a similar
situation; infinite sample locations (tests) are available,
and the outcome of those tests will affect knowledge of
x⋆: the location of Maximum Expected Utility (MEU).

In optimization, the distinction between tests and de-
cisions is the same as the distinction between exploration
and exploitation: the test is performed in the hopes of
obtaining more information, and the decision is made
in order to obtain the actual value. EVSI computes the
utility of exploration, and Expected Utility computes the
utility of exploitation. Because they operate in the same
domain, greater care must be taken with the notation.

The Utile Function Optimizer (UFO) employs EVSI in
the context of the GOM, so the math of expectations will
be used frequently throughout the rest of this work. We
write the expectation thus:

Ey|x
[

g(y, z)
]

=

∫

g(y, z)ρZ|X(z|x) dz , (2)

where any variable not appearing in the subscript is
integrated away. It is worth nothing that at least two
popular opposing notations are used in practice, and
that we have selected one that is consistent with the
notations for probability and utility employed in this
work. The reader who has prior experience with the
opposing notation (where subscripts that do appear are
integrated away) should therefore take care to perform
the necessary mental reversals when examining the for-
mulas that follow. Furthermore, we frequently employ a
space-saving notational shortcut, denoting all evidence
variables as et = (Xt−1,Yt−1).

A test variable and its outcome are distinguished by
a superscript ?: the candidate population X?

t represents
a test, and its outcome is denoted Y?

t . The decision
variable is also a population Xt, representing locations
that would be given high value by Expected Utility.
The test is concrete, representing real samples, and the
decision is hypothetical in the calculation of EVSI (as
evidenced by the fact that decisions only appear in
the context of the max operator). The query variable,
representing desired information, must be one of the
utility function parameters and is in this case ft, from
which x⋆t is obtainable via the relationship ρx⋆| f .

Assuming a candidate population of size 1, EVSI
applied to the GOM is given as

EVSIx?
t |et
= E|et,x

?
t

[

max
xt

Ext |et,x
?
t ,y

?
t

[

uxt , ft

(

xt, ft
)

]

]

−max
xt

Ext |et

[

uxt, ft

(

xt, ft
)

]

. (3)

Here EVSI uses evidence et = (Xt−1,Yt−1). Reorganizing
to highlight required distributions yields

Ext |et ,x
?
t ,y

?
t

[

uxt, ft

(

xt, ft
)

]

=

∫

uxt, ft

(

xt, ft
)

ρ ft |et,x
?
t ,y

?
t

(

ft|et, x
?
t , y

?
t

)

d ft (4)

Ext |et

[

uxt, ft

(

xt, ft
)

]

=

∫

uxt, ft

(

xt, ft
)

ρ ft |et

(

ft|et
)

d ft . (5)

Additionally, computation of the outermost expecta-
tion in the first term of (3) requires specification of



Algorithm 1 Particle filter for the SGOM: produces an
empirical ρ f |X,Y for one instance of the static network

1: # Given candidate population X, sample f⋆ to obtain results

2: Y = (y1 . . .yNX
)⊤, with yi = f⋆(xi) for xi ∈ X

3: # Create particles and calculate the normalized likelihood for each

4: P = ( f1 . . . fNP
)⊤, with fi ∼ ρ ft

(

ft
)

5: L =
(

L f1 |X,Y . . .L fNP
|X,Y

)⊤
/
∑NP

i=1
L fi |X,Y with L fi |X,Y =

∏NX

j=1
ρyt | ft,xt

(

y j| fi, x j

)

6: # The result is a discrete representation of the function posterior:

7: ρ f |X,Y
(

f|X,Y
)

≔ P,L

Algorithm 2 EVSIx? |Xt−1,Yt−1
in the UFO using a particle

filter (x? is supplied and tested for information content)

1: # Create empirical distributions as bags of values (chain rule)

2: P = ( f1 . . . fNP
)⊤, where fi ∼ ρ ft |et

(·|Xt−1,Yt−1)
3: X = (x1 . . . xNP

), where xi ∼ ρx⋆t | ft

(

·| fi
)

for fi ∈ P

4: Y? =
(

y?
1
. . .y?

NP

)

, where y?
i
∼ ρyt | ft,xt

(

·| fi, x
?
)

for fi ∈ P
5: # Calculate EVSI

6: T = 1
NP

∑

y?∈Y? maxx∈X

∑

f∈P ux, f
(

x, f
)

ρyt | ft,xt

(

y?| f , x?
)

7: M = maxx∈X

∑

f∈P ux, f
(

x, f
)

ρ ft |Xt−1,Yt−1

(

f |Xt−1,Yt−1
)

8: EVSIx?|Xt−1,Yt−1
= T −M

ρy?
t |Xt−1,Yt−1,x

?
t
. All necessary distributions may be obtained

from the network using empirical methods such as parti-
cle filters [2], the method of choice for this work (and the
source of much of the computational complexity of this
method). Computation of ρ f |X,Y is performed as shown
in Algorithm 1, and the method for computing EVSI in
this context is supplied as Algorithm 2.

Application of this algorithm provides the practitioner
with important information: where next to sample f⋆ to
obtain maximal information about x⋆.

The specification of function class and creation of a
rational UFO that makes use of sampling cost and EVSI
are best described with a simple example.

VII. Example: Optimal Chemistry

Consider a laboratory technician tasked with finding
an optimal mixture of chemicals in a solution, where op-
timality is achieved by maximizing the percentage yield
of a precipitate. The technician receives a commission
based on achieved yield but must pay for all ingredients.
Every experiment thus has a concrete cost (the cost in
dollars of the ingredients) in the same units as the utility
of its output (the dollar value of the commission).

This example will be used to describe each step of
the setup procedure for the Graphical Optimization
Model (GOM) and the creation of a corresponding Utile
Function Optimizer (UFO), that is, representation of
the function class, representation of the sample noise,
representation of the goal of optimization, construction
of a utility model for the output of the optimizer, and
the construction of a cost model for sampling.
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A. Function Class

The technician’s first task is to declare the function
class. We will assume that this class contains truncated
cones in the proportion space2:

f (x; a) = max















0, 1 −

∥

∥

∥

∥

∥

∥

10













x
∑D

i=1 xi

− a













∥

∥

∥

∥

∥

∥

2















(6)

a1 ∼ N (0.5, 0.2) and a2 = 1 − a1 (7)

where xi, ai > 0 and
∑D

i=1 ai = 1. The true function f⋆ is a
member of this class with a = (0.3, 0.7)⊤ as in Figure 3.

B. Sample Noise

An important aspect of the function class is sample
noise, in this case due to measurement uncertainty. As
ingredient quantities approach zero, accurate measure-
ments become increasingly difficult to achieve. Uncer-
tainty also increases as quantities become very large,
since the error of measuring using available equipment
compounds when multiple measurements must be taken
to achieve larger quantities. As the measurements be-
come very large, the experiments take on absurd charac-
teristics: it is increasingly difficult to accurately measure
vats, lakes, or oceans of constituent ingredient quantities.

Assuming that the sample noise is additive Gaus-
sian, this implies that the standard deviation of noise
changes with the absolute ingredient quantities. The
size of that standard deviation might be conveniently
described using a function like the shifted and scaled
log-gamma shown in Figure 4, defined precisely within

2This model is purposely simplistic for pedagogical purposes; highly
flexible models exist that, surprisingly, are only slightly more complex.



this specification of the likelihood:

ρy| f ,x
(

y| f , x
)

= N















y − f (x), σy















1 + Γ















3

2

1

D

D
∑

i=1

xi











































. (8)

This definition assumes that the most accurate measure-
ment is scaled to 1 unit. It is also assumed that overall
accuracy is a function of average quantities.

The distributions ρ f (entirely represented by ρa) and
ρY | f,X are now defined, completing the definition of
this “cone-like” function class: ρ f dictates that the class
contains cones, and ρY | f,X defines how far outside of
that strict definition a sample value may be and still be
considered consistent with the class.

C. Goal of Optimization

In this example, the goal of our optimization process is
to find the maximum. Since the location of the maximum
of any function in the truncated cone function class is a,
ρx⋆ | f
(

x⋆| f
)

should place maximal probability mass on the
value x⋆ = a, thus the goal distribution is simply:

ρx⋆ | f
(

x⋆| f
)

∼ δ(x⋆ − a) (9)

where δ represents Dirac’s delta distribution, which
places all of its density at the origin. That the maximum
for any function in the class can be trivially extracted is
not coincidental, but the product of a careful choice of
function class representation. If the representation of ρ f

does not admit trivial extraction of the optimum from
its parameters, the evaluation of ρ f may hide a complex
internal optimization problem. Addressing this directly
is beyond the scope of this introductory material, but
will be addressed in future work.

D. Output Utility

Compensation is a linear function of percentage yield:
$100 for an experiment producing 100% yield:

u ft,xt

(

ft, xt
)

= $100 ft(xt) . (10)

Even though the goal of the technician is to maximize
information about regions of higher payoff, that goal is
not directly reflected in the utility function. Instead,
utility is defined as before, in terms of exploitation. It is
unnecessary to explicitly define a utility of exploration.
Instead, EVSI will be used to compute it.

E. Sample Cost

An obvious and trivial way to define sampling cost in
this example is as the sum of the prices of the constituent
ingredients that go into an experiment:

c =

D
∑

i=1

cixi (11)

where ci is the cost of a single unit of ingredient i. This is
a straightforward definition of cost from the technician’s
perspective, who is required to buy his own ingredients.
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Fig. 5. Chemistry experiments with EVSI

When mixing a solution in order to achieve a precipi-
tate, however, it is often possible to add ingredients incre-
mentally to adjust the percentage yield, even after some
amount of precipitate has been previously removed and
measured. In other words, it is possible to perform a
new experiment by continuing an old one, giving rise to
a more interesting cost function:

ct =















∑D
i=1 cixt,i if restartt
∑D

i=1 ci
(

xt,i − xt−1,i
)

otherwise
(12)

where

restartt =
(

∃i. xt,i < xt−1,i
)

∨ (xt = xt−1) . (13)

If the technician desires to reduce an ingredient or
to duplicate an experiment, the cost is calculated by
totaling the cost of the constituents; the only way to
repeat or reduce constituent quantities is to begin again.
If, however, he wishes to adjust the balance by adding
a small amount of an ingredient, the cost is the price of
the additional material, not of the full solution.

F. Algorithm Behavior

The results of using EVSI for experiment selection in
this section assume the following:

• Sample noise has the (scale) parameter σy = 0.1,
• All ingredients cost $10.00 per unit, and
• The best proportion is a = (0.3, 0.7)⊤.

A number of interesting behaviors are observed when
applying the UFO (EVSI in the GOM) to this problem.

Figure 5, for example, illustrates the path taken by
EVSI through the space of absolute quantities: Fig-
ure 5(a) shows the path of experiments when EVSI is not
aware of the sampling cost, and Figure 5(b) illustrates the
path when costs are supplied. In the first case, it contin-
ues experimenting until a pre-specified maximum num-
ber of iterations has been reached (20 for this example)
and does not appear to follow any particular pattern.
In the second, it always adds ingredients incrementally
and stops after 9 iterations. In both cases the resulting
posteriors allocated more than 99% of the probability on
solutions within 1% of the true optimal.

It is significant that the technician that does not supply
a declaration of costs spends $222.00 and uses all of



the 20 allowed experiments, and the technician that
does supply cost spends $8.00 on ingredients before
determining that 9 experiments are sufficient. Even if the
first technician had stopped after 9 iterations, he would
have spent $117.00 on ingredients.

The fact that the algorithm stopped the sampling
process early is significant because the determination
of a suitable stopping criterion is a common problem
in empirical optimization. Generally it is assumed that
one must put a cap on the number of samples taken for
practical reasons, implying that it has an associated cost.
The use of EVSI and the admission of an explicit cost
specification makes the stopping criterion obvious: stop
sampling (exploring) when its cost exceeds the expected
improvement in utility. Then exploit the learned values.

It is also noteworthy that both sets of experiments
choose absolute ingredient amounts that do not deviate
too far from 1 unit of measurement. This is expected
because ingredient quantities close to 0 and much higher
than 1 have higher sample noise. Therefore, even though
cost minimization is an important issue for this prob-
lem, taking measurements that are too small to admit
much certainty does little to help the technician; the
experimental process dictated by EVSI and the supplied
declarations match this reasoning well.

One benefit of this approach is the ability to define
various natural costs, including opportunity cost, defined
as the expected loss due to lack of exploitation:

cx?
t
= max

xt

Ext |et

[

uxt, ft

(

xt, ft
)

]

− Ex?
t |et

[

uxt , ft

(

x?
t , ft
)]

. (14)

In the absence of other cost information, opportunity
cost is a natural and easily-applied definition that at
least takes into consideration the fact that exploration
often precludes exploitation. For example, if the tech-
nician were adjusting controls on a production mixer,
opportunity cost would be appropriate; exploration that
does not produce immediately better output costs money
because it keeps known better output from occurring.
This idea is easily applied in the context of the GOM.

The sophisticated behaviors of the UFO, i.e., its ten-
dency to minimize cost, stay away from noisy regions,
and stop when sampling is no longer valuable, are a
direct result of the application of standard principles of
decision theory to a generalized model of optimization.
This connection obviates the need for carefully crafted
heuristics and makes powerful decision-theoretic tools
available for solving optimization problems.

VIII. Function Class Specification

Setting up an optimization problem so that the UFO
can be applied requires prior knowledge of the function
class of interest and the ability to codify this knowledge.
Of all the required specifications in the GOM, this is
likely to be the most difficult. Sample noise and utility

are often easily obtained, but the function class defini-
tion generally contains some of the information that is
desired but not directly available in optimization.

The function class declaration can take many forms,
some more general and interesting than others, but NFL
dictates that some function class must be chosen by the
practitioner, even when presented with a completely un-
known function. This fact is hidden by common practice
in optimization. Practitioners often have a toolbox of
existing algorithms at their disposal, from which they
select one to apply to a given problem. Such a toolbox
may contain PSOs, GAs, EDAs, etc. Without knowledge
of the function class, each must be applied with various
parameter settings before one may be selected that is at
least good enough for the given function.

The function class specification requirement imposed
by the UFO initially appears to be even more onerous: if
a practitioner has no prior knowledge about the func-
tion, how can he appropriately declare the function’s
class? The problem of function class specification is, in
fact, the same as algorithm selection. Lacking any prior
knowledge of the function, a practitioner will try various
function classes in UFO to find one that works well. Once
it is discovered that a particular problem performs well
with a given function class, the practitioner gains specific
information about the problem, namely that it belongs to
a specific function class. No such information is gained
when selecting opaque algorithms which do not explic-
itly indicate their intended function class. Furthermore,
because a Bayesian framework is used to perform opti-
mization, the various classes at a practitioner’s disposal
may be compared, contrasted, and even combined using
principled statistical methods [22], [23].

IX. Conclusions and FutureWork

The UFO is purely declarative, requiring the following:

• The function class (ρ f ),
• The nature of sampling noise (ρY | f,X),
• The goal of optimization (ρx⋆| f ),
• The value of results (u ft,xt

), and
• The cost of samples (cx?

t
).

With the possible exception of the function class, each
of these is typically available and can be specified in
the GOM in its natural form. The class specification,
while requiring a different and non-traditional approach
to optimization, has many benefits and is not as difficult
as it may seem. Simple yet highly flexible function class
definitions exist and will be described in future work.

One benefit not directly explored in this work is the
fact that the SGOM admits the natural expression of un-
certainty in function output due to real nondeterminism
(noise), subjective uncertainty, or a combination of the
two. Uncertainty is expressed in its native language: as
the distribution ρY | f,X . The GOM also admits a natural
expression of functions that change over time, similarly
expressed as the distribution ρ ft | ft−1

shown in Figure 2



but assumed to be fixed and non-varying in this work.
This expressive flexibility inherent in the GOM is fairly
unique, since existing methods are frequently designed
for the static, deterministic case; noise and dynamics are
left to future research. That the addition of measurement
noise in the chemistry example was so natural as to not
merit specific mention is significant: it was simply folded
naturally into the likelihood and then forgotten.

The iterative nature of the GOM places it in company
with other Evolutionary algorithms based on probabilis-
tic models. It bears strong resemblance to EDAs but
uses expected utility rather than a random variable to
induce exploration. It also may be related to Particle
Swarm Optimization in that PSO has been shown to
have surprisingly deep ties to Bayesian reasoning [10].

The GOM has been labeled as a model of optimization,
but in reality it is a more general model of targeted
search: the distribution ρx⋆| f may be defined in arbitrary
ways, allowing for the expression of multiple simul-
taneous target locations, none of which is required to
be an optimum of the function. It can, in fact, direct
search to any region of interest and is therefore simply a
specification of practitioner intent. This flexibility lends
credibility to the model because optimization is fun-
damentally a search problem with a very simple and
specific definition of success.

The importance of the GOM and its associated UFO
algorithm is best understood from the perspective of No
Free Lunch: any optimizer that is more successful than
random search must so be on a well-delimited function
class [15], [26]. Discovery of that class is an implicit goal
of most optimization research, generally approached
using empirical approaches involving benchmarks [27].
The GOM changes the process of discovery into one
of specification; because the function class is known to
exist, it makes more sense to incorporate its specification
directly and transparently into the algorithm design
process. As a result, it becomes possible to specify more
of the information that is available to a practitioner but
that is often difficult to incorporate: utilities and costs.

This work has introduced an idea that is both in-
teresting and rich enough to admit only a brief and
rather dense introduction: evolutionary optimization in
terms of Bayesian inference. The idea has been explored
in two steps. First, the Graphical Optimization Model
was introduced. This model describes the optimization
process as inference, using samples to obtain useful
information about the location of the optimum. Second,
the Utile Function Optimizer algorithm was developed
to address the source of those samples, a rational de-
cision process based on available information and clear
and explicit declaration of practitioner intent. The model
and corresponding algorithm together make a powerful
way of thinking about and working with optimization
problems, obtaining sophisticated behavior from simple
distributions and rules.

References

[1] F. V. Jensen, Bayesian Networks and Decision Graphs. New York:
Springer Verlag, 2001.

[2] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Englewood Cliffs, New Jersey: Prentice Hall, 2003.

[3] B. E. Stuckman and E. E. Easom, “A comparison of
bayesian/sampling global optimization techniques,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 22, no. 5, pp.
1024–1032, 1992.
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